low

Chardham temples to reopen, no pilgrim to be allowed

''The opening ceremony of the four temples in Uttarakhand is an important annual event attended by thousands of pilgrims but the extended lockdown to halt the spread of coronavirus has cast its shadow on the yatra this year. The Chardham yatra begins with the opening of Gangotri and Yamunotri temples on April 26 this year.''




low

Other e-commerce giant of China follows its own path

Just about every June, on the anniversary of his company’s founding, Richard Liu dons a big motorcycle helmet and red uniform...




low

Eurozone inflation in Jan at lowest level since 2009

Inflation in the eurozone has fallen to its lowest level since 2009, according to official data released...




low

Twitter sees plenty of money in tweet flow

To Dick Costolo, there’s gold in them thar tweets, and Twitter has just begun to mine it.




low

Air India arm Alliance Air to induct 8 ATR-72 planes for big low-cost RCS push

Alliance Air, which is the low cost regional subsidiary of Air India, will launch three new routes under the government's regional connectivity scheme by the end of September and will induct eight ATR – 72 aircraft by the end of FY18 to further consolidate and expand its operations.




low

RBI measures for NBFCs unlikely to boost credit flow to broader economy: Moody’s

The RBI announced the liquidity facility under the TLTRO 2.0 window for NBFCs and MFIs after these institutions failed to get funding under the earlier TLTRO scheme announced late in March.




low

Union Bank plans to lower stake in IndiaFirst Life to less than 10 per cent

Union Bank received the stake after Andhra Bank was merged with the Mumbai-based lender, effective April 1.




low

RBI Governor meets heads of banks; discusses loan moratorium, post-lockdown credit flows

Implementation of three months moratorium on repayment of loan instalments announced by the RBI was also reviewed during the meeting.




low

Delhi HC allows HDFC Bank to deduct Indiabulls’ loan installment from fixed deposit

Delhi high court, in an interim order on May 1, has allowed HDFC Bank to deduct a Rs 90-crore loan installment from Indiabulls' fixed deposit which it holds as security.




low

Coronavirus outbreak: MIT team working on an open-source, low-cost design of ventilators

COVID-19: The team, which consists of only volunteers, has been working without any funding and is working anonymously so that people do not call them with inquiries about the project.




low

IIT Roorkee develops low-cost face shields for doctors, nurses treating Covid-19 patients

More than a thousand face shields have been dispatched for the doctors and healthcare staff of AIIMS Rishikesh.




low

Super Flower Moon 2020: Date, timing in India, how to watch full moon; check details

Did you miss last month's Pink Supermoon? Don’t worry! You can witness another supermoon today.




low

Super Flower Moon 2020: Last ‘supermoon’ of the year is truly amazing! Check images

Super Flower Moon 2020: Scintillating images of the full moon, also a 'supermoon', are being shared from across the world.




low

India strongly protests against the recent order of Pakistan Supreme Court to allow elections in Gilgit Baltistan

Pakistan Supreme Court has passed an Order on 30th April to make amendments in the Gilgit Baltistan Order of 2018 to conduct the general assembly elections in that area.India has lodged a strong protest with Islamabad against these directions of the




low

Five substitutions per team to be allowed on temporary basis

Teams will be allowed up to five substitutions per match, instead of the usual three, as a temporary measure to help cope with potential fixture congestion in the aftermath of the novel coronavirus outbreak, FIFA said Friday.




low

Book Review: Jeet Thayil’s new novel ‘Low’ is a poem of nothingness

Reading Jeet Thayil’s latest novel Low, Johan Sebastian Bach’s iconic composition The Chaconne suddenly came to mind.




low

Techsplained@FE: Low on energy, high on performance

While the technology will not be as effective as a GSPS tracing, it would undoubtedly save battery as the power consumption of GPS is much higher than Bluetooth.




low

Net inflows into equity MFs halve in April compared to March, as investors turn cautious

Industry experts say that lump-sum investments have stopped and even some investors are stopping their SIPs, due to the unpredictable equity markets.




low

FM Nirmala Sitharaman to meet PSB chiefs on Monday; to review credit flow, support to NBFCs

The meeting, to be held via video conference, will also dwell on credit disbursement since March, with the focus on Covid-19-related credit sanction and offtake.




low

West Bengal govt not allowing trains with migrants to reach state; Shah writes to Mamata

Shah said migrant workers from West Bengal are also eager to reach home and the central government is also facilitating the train services.




low

Central Government Employee? Modi govt makes new clarification on travelling allowance

Central Government Employees Travelling Allowance: This order was issued after consultation with the Comptroller and Auditor General of India, as mandated under Article 148(5) of the Constitution.




low

Catching Cybercriminals Exploiting the Pandemic Follow Up

Read additional insights from The DomainTools Security Research Team's recent presentation on CovidLock including results from participant polls and supplemental Q&A.




low

Pandemic slams Asia's factories, activity hits financial crisis lows

Asia's factory activity was ravaged in April, business surveys showed Monday, and the outlook dimmed further as government restrictions on movement to contain the coronavirus outbreak froze global production and slashed demand.




low

RBI allows foreign banks to lend in Indian rupees

RBI allows non-resident foreign banks to lend in Indian rupees




low

RBI may not allow alternate saturday bank holiday

Reserve Bank Of India may not allow alternate saturday holiday to banks




low

~$CPIL$372150$title$textbox$Wicklow Site Acquisition Part of Wider Irish Expansion Plan - Zoetis$/CPIL$~




low

These 4 States Allow Online Sales Of All Goods After April 20th; But There Are Exceptions

The Ministry of Home Affairs (MHA) released a set of revised guidelines this week which included full fledged operation of the ecommerce companies from April 20. However the Centre has left it to the state governments to decide in which areas and to ensure compliance with rules of social distancing and sanitisation. Flipkart, Snapdeal and […]

The post These 4 States Allow Online Sales Of All Goods After April 20th; But There Are Exceptions first appeared on Trak.in . Trak.in Mobile Apps: Android | iOS.




low

Larson returns to racing following firing for slur

Kyle Larson returned to racing for the first time since he was fired by Chip Ganassi Racing for using a racial slur in an iRacing event last month.




low

Taiwan baseball fans allowed inside stadium

There were fans in the stands for baseball in Taiwan on Friday, albeit spaced far apart as a safeguard against the spread of the coronavirus.




low

May be harmful if inhaled or swallowed

In the book “The World of _____” by Bennett Alan Weinberg and Bonnie K Bealer, there is a photograph of a label from a jar of pharmaceutical-grade crystals. It reads:

“WARNING: MAY BE HARMFUL IF INHALED OR SWALLOWED. HAS CAUSED MUTAGENIC AND REPRODUCTIVE EFFECTS IN LABORATORY ANIMALS. INHALATION CAUSES RAPID HEART RATE, EXCITEMENT, DIZZINESS, PAIN, COLLAPSE, HYPOTENSION, FEVER, SHORTNESS OF BREATH. MAY CAUSE HEADACHE, INSOMNIA, VOMITING, STOMACH PAIN, COLLAPSE AND CONVULSIONS.”

Fill in the blank.

Workoutable © 2007 IndiaUncut.com. All rights reserved.
India Uncut * The IU Blog * Rave Out * Extrowords * Workoutable * Linkastic




low

Cadence JasperGold Brings Formal Verification into Mainstream IC Verification Flows

Formal verification is a complex technology that has traditionally required experts or specialized teams who stood apart from the IC design and verification flow. Taking a different approach, a new release of the Cadence JasperGold formal verification platform (June 8, 2015) provides formal techniques that complement simulation, emulation, and debugging in the form of “Apps” or under-the-hood solutions that any design or verification engineer can use.

JasperGold was the initial (in fact only) product of Jasper Design Automation, acquired by Cadence in 2014. Jasper pioneered the formal Apps concept several years ago. While the company had previously sold JasperGold as a one-size-fits-all solution, Jasper began selling semi-automated JasperGold Apps that solved specific problems using formal analysis technology.

The new release is the next generation of JasperGold and will be available later this month. It includes three major improvements over previous Cadence and Jasper formal analysis offerings:

  • A unified Cadence Incisive and JasperGold formal verification platform delivers up to 15X performance gain over previous solutions.
  • JasperGold is integrated into the Cadence System Development Suite, where it provides formal-assisted simulation, emulation, and coverage. As a result, System Development Suite users can find bugs three months earlier than existing verification methods.
  • JasperGold’s formal analysis engines are integrated with the recently announced Indago debug platform, automating root cause analysis and on-the-fly, what-if exploration.

Best of Both Formal Verification Worlds

Taking advantage of technologies from both Cadence and Jasper, the new JasperGold represents a “best of both worlds” solution, according to Pete Hardee, product management director at Cadence. This solution combines technologies from the Cadence Incisive Enterprise Verifier and Incisive Formal Verifier with JasperGold formal analysis engines.

For example, to ease migration from Incisive formal tools, Cadence has integrated an Incisive common front end into the JasperGold apps platform. Jasper formal engines can run within the Incisive run-time environment. Cadence has also brought some selected Incisive formal engines into JasperGold.

As shown to the right, the JasperGold platform supports both the existing JasperGold front-end parser and the Incisive front-end parser. Hardee observed that this dual parser arrangement simplifies migration from Incisive formal tools to JasperGold, and provides a common compilation environment for people who want to use JasperGold with Incisive simulation. Further, the common run-time environment enables formal-assisted simulation.

The combination of JasperGold engines and Incisive engines supports two use models for formal analysis: formal proofs and bug hunting. In the first case, formal engines try all combinations of inputs without a testbench. The test is driven by formal properties written in languages such as SVA (SystemVerilog assertions) or PSL (Property Specification Language). Completion of a property is exhaustive proof that something can or cannot happen. This provides a “much stronger result” than simulation, Hardee said.

He also noted that formal analysis doesn’t necessarily require that all properties are completed. “You can get a lot of value even if proofs don’t complete,” he said. “Proofs that run deep enough to find bugs are just fine.”

Bug hunting involves random searches, and JasperGold bug hunting engines are very fast. However, these engines don’t necessarily use the most optimal path to get to a bug. So, Cadence engineers brought a constraint solver from Incisive and integrated it into JasperGold. “It looks at the constraints in the environment and gives you a better starting point,” Hardee said. “It takes more up-front time, but once you’ve done that the bug hunting engines can actually take a shorter path and find a bug a lot quicker.”

Another new JasperGold capability from the Incisive Formal Verifier is called “search pointing.” This uses simulation to penetrate deeply into the state space, and then kicks off a random formal search from a given point that you’ve reached in simulation. This technique makes it possible to find bugs that are very deep in the design.

It is probably clear by now that a number of different formal “engines” may be required to solve a given verification problem. Traditionally, a formal tool (or user) will farm a problem out to many engines and see which one works best. To put more intelligence into that process, Cadence launched the Trident “multi-cooperating engine” a couple of years ago. That has now been brought into JasperGold, where it helps “orchestrate” the engines according to what will work best for the design. This is a big part of the reason for the 15X speedup noted earlier in this post.

Integration with System Development Suite

The Cadence System Development Suite is an integrated set of hardware/software development and verification engines, including virtual prototyping, Incisive simulation, emulation, and FPGA-based prototyping. As shown below, JasperGold technology is integrated into the System Development Suite in several places, including formal-assisted debug, formal-assisted verification closure, formal-assisted simulation, formal-assisted emulation, and the Incisive vManager verification planning tool.

Formal-assisted emulation sounds like it should be easy, especially since Cadence has both accelerated verification IP (VIP) and assertion-based VIP. However, there’s a complication. Accelerated VIP represents less verification content than simulation VIP, because you have to remove many checkers to get VIP to compile on a Palladium emulator. That’s because the Palladium requires synthesizable code.

What you can do, however, is use assertion-based VIP in “snoop mode” as shown below. Assertion-based VIP coded in synthesizable SystemVerilog can replace the missing checkers in accelerated VIP. In this diagram, everything in the green box is running in the emulator and is thus completely accelerated.

 

Another example of formal-assisted emulation has to do with deep traces. As Hardee noted, emulation will produce very long traces, and it can be very difficult to find a point of interest in the trace and determine what caused an error. With formal-assisted emulation, users can find interesting events within the traces and create properties that mark them, so a debugger can find these events and trace back to the root cause.

Formal-assisted verification closure is available with the new JasperGold release. This is possible because you can use the vManager product to determine which tasks were completed by formal engines. It’s important information for verification managers who are not used to formal tools, Hardee noted.

Another aspect of formal-assisted verification closure is the JasperGold Unreachability Analysis (UNR) App, which can save simulation users weeks of time and effort. This App takes in the simulation coverage database and RTL, and automatically generates properties to explore coverage holes and determine if holes are reachable or unreachable. The App then generates an unreachable coverage point database. If the unreachable code does something useful, there’s a bug in the design or the testbench; if not, you don’t have to worry about it. The diagram below shows how it works.

Formal-Assisted Debugging

The third major component of the JasperGold announcement is the integration of formal analysis into the Indago debugging platform. As shown below, this platform has several apps, including the Indago Debug Analyzer. Two formal debug capabilities from the Jasper Visualize environment have been added to the the Indago Debug Analyzer:

  • Highlight Relevant Logic: This highlights the “cone of influence,” or the logic that is involved in reaching a given point
  • Why: This button highlights the immediate causes for a given event, and allows users to trace backwards in time

 

More formal capabilities will come with the Indago Advanced Debug Analyzer app, scheduled for release towards the end of 2015. This includes Quiet Trace, a Jasper capability that reduces trace activity to transactions relevant to an event. Also, a what-if analysis allows on-the-fly trace editing and recalculation to explore effects and sensitivities, without having to re-compile and re-execute the simulation.

Finally, Cadence has a Superlint flow that is now fully integrated with the JasperGold Visualize debugger. This two-tiered flow includes a basic lint capability as well as automated formal analysis based on the JasperGold Structural Property Synthesis app. “This could be a very good entry point for designers to start using formal,” Hardee said.

“Formal is taking off,” Hardee concluded. “People are no longer talking about return on investment for formal—they have established that. Now they’re supporting a proliferation of formal in their companies such that a wider set of people experience the benefit from that proven return on investment.”

Further information is available at the JasperGold Formal Verification Platform (Apps) page.

Richard Goering

Related Blog Posts

JUG Keynote—How Jasper Formal Verification Technology Fits into the Cadence Flow

Why Cadence Bought Jasper—A New Era in Formal Analysis

Q&A: An R&D Perspective on Formal Verification—Past, Present and Future




low

EDA Retrospective: 30+ Years of Highlights and Lowlights, and What Comes Next

In 1985, as a relatively new editor at Computer Design magazine, I was asked to go forth and cover a new business called CAE (computer-aided engineering). I knew nothing about it, but I had been writing about design for test, so there seemed to be somewhat of a connection. Little did I know that “CAE” would turn into “EDA” and that I’d write about it for the next 30 years, for Computer Design, EE Times, Cadence, and a few others.

Now that I’m about to retire, I’m looking back over those 30 years. What a ride it has been! By the numbers I covered 31 Design Automation Conferences (DACs), hundreds of new products, dozens of acquisitions and startups, dozens of lawsuits, and some blind alleys that didn’t work out (like “silicon compilation”). Chip design went from gate arrays and PLDs with a few thousand gates to processors and SoCs with billions of transistors.

In 1985 there were three big CAE vendors – Daisy Systems, Mentor Graphics, and Valid Logic. All sold bundled packages that included workstations and CAE software; in fact, Daisy and Valid designed and manufactured their own workstations. In the early 1980s a workstation with schematic capture and gate-level logic simulation might have set you back $120,000. In 1985 OrCAD, now part of Cadence, came out with a $500 schematic capture package running on IBM PCs.

Cadence and Synopsys emerged in the late 1980s, and by the 1990s the EDA industry was pretty much a software-only business (apart from specialized machines like simulation accelerators). Since the early 1990s the “big three” EDA vendors have been Cadence, Synopsys, and Mentor, giving the industry stability but allowing for competition and innovation.

Here, in my view, are some of the highlights that occurred during the past 30 years of EDA.

EDA is a Highlight

The biggest highlight in EDA is the existence of a commercial EDA industry! Marching hand in hand with the fabless semiconductor revolution, commercial EDA made it possible for hundreds of companies to design semiconductors, as opposed to a small handful that could afford large internal CAD operations and fabs. With hundreds of semiconductor companies as opposed to a half-dozen, there’s a lot more creativity, and you get the level of sophistication and intelligence that you see in your smartphone, video camera, tablet, gaming console, and car today.

CAE + CAD = EDA. This is not just a terminology issue. By the mid-1980s it became clear that front-end design (CAE) and physical design (CAD) belonged together. The big CAE vendors got involved in IC and PCB CAD, and presented increasingly integrated solutions. People got tired of writing “CAE/CAD” and “EDA” was born.

The move from gate-level design to RTL. This move happened around 1990, and in my view this is EDA’s primary technology success story during the past 30 years. Moving up in abstraction made the design and verification of much larger chips possible. Going from gate-level schematics to a hardware description language (HDL) revolutionized logic design and verification. Which would you rather do – draw all the gates that form an adder, or write a few lines of code and let a synthesis tool find an adder in your chosen technology?

Two developments made this shift in design possible. One was the emergence of commercial RTL synthesis (or “logic synthesis”) tools from Synopsys and other companies, which happened around 1990. Another was the availability of Verilog, developed by Gateway Design Automation and purchased by Cadence in 1989, as a standard RTL HDL. Although most EDA vendors at the time were pushing VHDL, designers wanted Verilog and that’s what most still use (with SystemVerilog coming on strong in the verification space).

IC functional verification underwent huge changes in the late 1990s and early 2000s, largely due to new technology developed by Verisity, which was acquired by Cadence in 2005. Before Verisity, verification engineers were writing and running directed tests in an ad-hoc manner. Verisity introduced or improved technologies such as pseudo-random test generation, coverage metrics, reusable verification IP, and semi-automated verification planning. The Verisity “e” language became a widely used hardware verification language (HVL).

The biggest way that EDA has expanded its focus has been through semiconductor IP. Today Synopsys and Cadence are leading providers in this area. Thanks to the availability of design and verification IP, many SoC designs today reuse as much as 80% of previous content. This makes it much, much faster to design the remaining portion. While IP began with fairly simple elements, today commercially available IP can include whole subsystems along with the software that runs on them. With IP, EDA vendors are providing not only design tools but design content.

Finally, the EDA industry has done an amazing job of keeping up with SoC complexity and with advanced process nodes. Thanks to intense and early collaboration between foundries, IP, and EDA providers, tools and IP have been ready for process nodes going down to 10nm.

Where Does ESL Fit?

In some ways, electronic system level (ESL) design is both a lowlight and a highlight. It’s a lowlight because people have been talking about it for 30 years and the acceptance and adoption have come very slowly. ESL is a highlight because it’s finally starting to happen, and its impact on design and verification flows could be dramatic. Still, ESL is vaguely defined and can be used to describe almost anything that happens at a higher abstraction level than RTL.

High-level synthesis (HLS) is an ESL technology that is seeing increasing use in production environments. Current HLS tools are not restricted to datapaths, and they produce RTL code that gives better quality of results than hand-written RTL. Another ESL methodology that’s catching on is virtual prototyping, which lets software developers write software pre-silicon using SystemC models. Both HLS and virtual prototyping are made possible by the standardization of SystemC and transaction-level modeling (TLM). However, it’s still not easy to use the same SystemC code for HLS and virtual prototyping.

And Now, Some Lowlights

Every new industry has some twists and turns, and EDA is no exception. For example, the EDA industry in the 1980s and 1990s sparked a lot of lawsuits. At EE Times my colleagues and I wrote a number of articles about EDA legal disputes, mostly about intellectual property, trade secrets, or patent issues. Over the past decade, fortunately, there have been far fewer EDA lawsuits than we had before the turn of the century.

Another issue that was troublesome in the 1980s and 1990s was so-called “standards wars.” These would occur as EDA vendors picked one side or the other in a standards dispute. For example, power intent formats were a point of conflict in the early 2000s, but the Common Power Format (CPF) and the Unified Power Format (UPF) are on the road to convergence today with the IEEE 1801 effort. As mentioned previously, Verilog and VHDL were competing for adoption in the early 1990s. For the most part, Verilog won, showing that the designer community makes the final decision about which standards will be used.

How on earth did there get to be something like 30 DFM (design for manufacturability) companies 10-12 years ago? To my knowledge, none of these companies are around today. A few were acquired, but most simply faded away. A lot of investors lost money. Today, VCs and angel investors are funding very few EDA or IP startups. There are fewer EDA startups than there used to be, and that’s too bad, because that’s where a lot of the innovation comes from.

Here’s another current lowlight -- not enough bright engineering or computer science students are joining EDA companies. They’re going to Google, Apple, Facebook, and the like. EDA is perceived as a mature industry that is still technically very difficult. We need to bring some excitement back into EDA.

Where Is EDA Headed?

Now we come to what you might call “headlights” and look at what’s coming. My list includes:

  • System Design Enablement. This term has been coined by Cadence to describe a focus on whole systems or end products including chips, packages, boards, embedded software, and mechanical components. There are far more systems companies than semiconductor companies, leaving a large untapped market that’s looking for solutions.
  • New frontiers for EDA. At a 2015 Design Automation Conference speech, analyst Gary Smith suggested that EDA can move into markets such as embedded software, mechanical CAD, biomedical, optics, and more.
  • Vertical markets. EDA has until now been “horizontal,” providing the same solution for all market segments. Going forward, markets like consumer, automotive, and industrial will have differing needs and will need optimized tools and IP.
  • Internet of Things. This is a current buzzword, but the impact on EDA remains uncertain. Many IoT devices will be heavily analog, use mature process nodes, and be dirt cheap. Lip-Bu Tan, Cadence CEO, recently pointed out that the silicon percentage of IoT revenue will be small and that a lot of the profits will be on the service side.

Moving On

For the past six years I’ve been writing the Industry Insights blog at Cadence.com. All things change, and with this post comes a farewell – I am retiring in late June and will be pursuing a variety of interests other than EDA. I’ll be watching, though, to see what happens next in this small but vital industry. Thanks for reading!

Richard Goering

 




low

Stylus flowtool

Hi,

  I wanted to open a discussion on the stylus flowtool.  My purpose is to see if there are users out there who are having success with the tool.  To have some discussions around issues that I am running into and to get a user point of view on the problems I am trying to solve.

  Let's start the conversation with : Is there anyone out there trying to use flowtool?  Do you have a centralized flow, or each user has their own?

Thanks, and I look forward to the conversations...

--Craig Crump




low

regarding digital flow

Respected sir,

How can i design and simulate cmos inverter using digital flow and also ineed to do prelayout ans post layout for the same cmos inverter..can i use cadence encounter for this experiments




low

stretching LOW pulse signal for extra 100ns

Hello, i have a logic output from a D-flipflop which generates a reset signal with variable pulse width. I want to stretch this LOW pulse width with an extra 100ns added to the original pulse width digitally, is there any way to do that?




low

Mediatek Deploys Perspec for SoC Verification of Low Power Management (part 3 of 3)

Here we conclude the blog series and highlight the results of Mediatek 's use of Cadence Perspec™ System Verifier for their SoC level verification. In case you missed it, Part 1 of the blog is here , and Part 2 of the blog is here . One of their key...(read more)




low

Whiteboard Wednesdays - Low Power SoC Design with High-Level Synthesis

In this week’s Whiteboard Wednesdays video, Dave Apte discusses how to create the lowest power design possible by using architectural exploration and Cadence’s Stratus HLS solution....

[[ Click on the title to access the full blog on the Cadence Community site. ]]




low

New Rapid Adoption Kit (RAK) Enables Productive Mixed-Signal, Low Power Structural Verification

All engineers can enhance their mixed-signal low-power structural verification productivity by learning while doing with a PIEA RAK (Power Intent Export Assistant Rapid Adoption Kit). They can verify the mixed-signal chip by a generating macromodel for their analog block automatically, and run it through Conformal Low Power (CLP) to perform a low power structural check.  

The power structure integrity of a mixed-signal, low-power block is verified via Conformal Low Power integrated into the Virtuoso Schematic Editor Power Intent Export Assistant (VSE-PIEA). Here is the flow.

 

Applying the flow iteratively from lower to higher levels can verify the power structure.

Cadence customers can learn more in a Rapid Adoption Kit (RAK) titled IC 6.1.5 Virtuoso Schematic Editor XL PIEA, Conformal Low Power: Mixed-Signal Low Power Structural Verification.

The RAK includes Rapid Adoption Kit with demo design (instructions are provided on how to setup the user environment). It Introduces the Power Intent Export Assistant (PIEA) feature that has been implemented in the Virtuoso IC615 release.  The power intent extracted is then verified by calling Conformal Low Power (CLP) inside the Virtuoso environment.

  • Last Update: 11/15/2012.
  • Validated with IC 6.1.5 and CLP 11.1

The RAK uses a sample test case to go through PIEA + CLP flow as follows:

  • Setup for PIEA
  • Perform power intent extraction
  • CPF Import: It is recommended to Import macro CPF, as oppose to designing CPF for sub-blocks. If you choose to import design CPF files please make sure the design CPF file has power domain information for all the top level boundary ports
  • Generate macro CPF and design CPF
  • Perform low power verification by running CLP

It is also recommended to go through older RAKs as prerequisites.

  • Conformal Low Power, RTL Compiler and Incisive: Low Power Verification for Beginners
  • Conformal Low Power: CPF Macro Models
  • Conformal Low Power and RTL Compiler: Low Power Verification for Advanced Users

To access all these RAKs, visit our RAK Home Page to access Synthesis, Test and Verification flow

Note: To access above docs, use your Cadence credentials to logon to the Cadence Online Support (COS) web site. Cadence Online Support website https://support.cadence.com/ is your 24/7 partner for getting help and resolving issues related to Cadence software. If you are signed up for e-mail notifications, you can receive new solutions, Application Notes (Technical Papers), Videos, Manuals, and more.

You can send us your feedback by adding a comment below or using the feedback box on Cadence Online Support.

Sumeet Aggarwal




low

Ultra Low Power Benchmarking: Is Apples-to-Apples Feasible?

I noticed some very interesting news last week, widely reported in the technical press, and you can find the source press release here. In a nutshell, the Embedded Microprocessor Benchmark Consortium (EEMBC) has formed a group to look at benchmarks for ultra low power microcontrollers. Initially chaired by Horst Diewald, chief architect of MSP430TM microcontrollers at Texas Instruments, the group's line-up is an impressive "who's who" of the microcontroller space, including Analog Devices, ARM, Atmel, Cypress, Energy Micro, Freescale, Fujitsu, Microchip, Renesas, Silicon Labs, STMicro, and TI.

As the press release explains, unlike usual processor benchmark suites which focus on performance, the ULP benchmark will focus on measuring the energy consumed by microcontrollers running various computational workloads over an extended time period. The benchmarking methodology will allow the microcontrollers to enter into their idle or sleep modes during the majority of time when they are not executing code, thereby simulating a real-world environment where products must support battery life measured in months, years, and even decades.

Processor performance benchmarks seem to be as widely criticized as EPA fuel consumption figures for cars - and the criticism is somewhat related. There is a suspicion that manufacturers can tune the performance for better test results, rather than better real-world performance. On the face of it, the task to produce meaningful ultra low power benchmarks seems even more fraught with difficulties. For a start, there is a vast range of possible energy profiles - different ways that computing is spread over time - and a plethora of low power design techniques available to optimize the system for the set of profiles that particular embedded system is likely to experience. Furthermore, you could argue that, compared with performance in a computer system, energy consumption in an ultra low power embedded system has less to do with the controller itself and more to do with other parts of the system like the memories and mixed-signal real-world interfaces.

EEMBC cites that common methods to gauge energy efficiency are lacking in growth applications such as portable medical devices, security systems, building automation, smart metering, and also applications using energy harvesting devices. At Cadence, we are seeing huge growth in these areas which, along with intelligence being introduced into all kinds of previously "dumb" appliances, is becoming known as the "Internet of Things." Despite the difficulties, with which the parties involved are all deeply familiar, I applaud this initiative. While it may be difficult to get to apples-to-apples comparisons for energy consumption in these applications, most of the time today we don't even know where the grocery store is. If the EEMBC effort at least gets us to the produce department, we're going to be better off.

Pete Hardee 

 




low

New Incisive Low-Power Verification for CPF and IEEE 1801 / UPF

On May 7, 2013 Cadence announced a 30% productivity gain in the June 2013 Incisive Enterprise Simulator 13.1 release.  Advanced debug visualization, faster turn-around time, and the extension of eight years of low-power verification innovation to IEEE 1801/UPF are the key capabilities in the release.

When we talk about low-power verification its easy to equate it with simulation.  For certain, simulation is the heart of a low-power verification solution. Simulation enables engineers to run their design in the context of power intent.  The challenge is that a simulation-only approach is inadequate. For example, if engineers could achieve SoC quality by verifying the individual function of each power control module (PCM), then simulation could be enough.  For a single power domain, simulation can be enough. 

However, when the SoC has multiple power domains -- and we have seen SoCs with hundreds of them -- engineers have to check the PCMs and all of the arcs between the power modes.  These SoCs often synchronize some of the domain switching to reduce overall complexity, creating the potential for signal skew errors on the control signals for the connected domains.  Managing these complexities requires verification methodologies including advanced debug, verification planning, assertion-based verification, Universal Verification Methodology - Low Power (UVM-LP), and more (see Figure 1).

 

Figure 1:  Comprehensive Low-Power Verification 

But even advanced verification methodologies on top of simulation aren't enough.  For example, the state machine that defines the legal and illegal power mode transitions is often written in software. The speed and capacity of the Palladium emulation platform is ideal to verify in this context, and it is integrated with simulation sharing debug, UVM acceleration, and static checks for low-power. And, it reports verification progress into a holistic plan for the SoC.  Another example is the ability to compare the design in the implementation flow with the design running in simulation to make sure that what we verify is what we intend to build.

Taken together, verification across multiple engines provides the comprehensive low-power verification needed for today's advanced node SoCs.  That's the heart of this low-power verification announcement. 

Another point you may have noticed is the extension of the Common Power Format (CPF) based power-aware support in the Incisive Enterprise Simulator to IEEE 1801.  We chose to bring IEEE 1801 to simulation first because users like you sometimes need to mix vendors for regression flows.  Over time, Cadence will extend the low-power capabilities throughout its product suite to IEEE 1801.

If you are using CPF today, you already have the best low-power solution. The evidence is clear:  the upcoming IEEE 1801-2013 update includes many of the CPF features contributed to 1801/UPF to enable methodology convergence.  Since you already have those features in the CPF flow, any migration before you have a mature IEEE 1801-2013 tool flow would reduce the functionality you have today.

If you are using Unified Power Format (UPF) 1.0 today, you want to start planning your move toward the IEEE 1801-2013 standard.  A good first step would be to move to the IEEE 1801-2009 standard.  It fills holes in the earlier UPF 1.0 definition.  While it does lack key features in -2013, it is an improvement that will make the migration to -2013 easier. The Incisive 13.1 release will run both UPF 1.0 and IEEE 1801-2009 power intent today.

Over the next few weeks you'll see more technical blogs about the low-power capabilities coming in the Incisive 13.1 release.  You can also join us on June 19 for a webinar that will introduce those capabilities using the reference design supplied with the Incisive Enterprise Simulator release.

=Adam "The Jouler" Sherer

(Yes, "Sherilog" is still here.  :-) )




low

Mixed-signal and Low-power Demo -- Cadence Booth at DAC

DAC is right around the corner! On the demo floor at Cadence® Booth #2214, we will demonstrate how to use the Cadence mixed-signal and low-power solution to design, verify, and implement a microcontroller-based mixed-signal design. The demo design architecture is very similar to practical designs of many applications like power management ICs, automotive controllers, and the Internet of Things (IoT). Cadene tools demonstrated in this design include Virtuoso® Schematic Editor, Virtuoso Analog Design Environment, Virtuoso AMS Designer, Virtuoso Schematic Model Generator, Virtuoso Power Intent Assistant, Incisive® Enterprise Simulator with DMS option, Virtuoso Digital Implementation, Virtuoso Layout Suite, Encounter® RTL Compiler, Encounter Test, and Conformal Low Power. An extended version of this demo will also be shown at the ARM® Connected Community Pavilion Booth #921.

For additional highlights on Cadence mixed-signal and low-power solutions, stop by our booth for:

  • The popular book, Mixed-signal Methodology Guide, which will be on sale during DAC week!
  • A sneak preview of the eBook version of the Mixed-signal Methodology Guide
  • Customer presentations at the Cadence DAC Theater
    • 9am, Tuesday, June 4  ARM  Low-Power Verification of A15 Hard Macro Using CLP 
    • 10:30am, Tuesday, June 4  Silicon Labs  Power Mode Verification in Mixed-Signal Chip
    • 12:00pm, Tuesday, June 4  IBM  An Interoperable Flow with Unified OA and QRC Technology Files
    • 9am, Wednesday, June 5  Marvell  Low-Power Verification Using CLP
    • 4pm, Wednesday, June 5  Texas Instruments  An Inter-Operable Flow with Unified OA and QRC Technology Files
  • Partner presentations at the Cadence DAC Theater
    • 10am, Monday, June 3  X-Fab  Rapid Adoption of Advanced Cadence Design Flows Using X-FAB's AMS Reference Kit
    • 3:30pm, Monday, June 3  TSMC TSMC Custom Reference Flow for 20nm -  Cadence Track
    • 9:30am,Tuesday, June 4  TowerJazz   Substrate Noise Isolation Extraction/Model Using Cadence Analog Flow
    • 12:30pm, Wednesday, June 5  GLOBALFOUNDRIES  20nm/14nm Analog/Mixed-signal Flow
    • 2:30pm, Wednesday, June 5  ARM  Cortex®-M0 and Cortex-M0+: Tiny, Easy, and Energy-efficient Processors for Mixed-signal Applications
  • Technology sessions at suites
    • 10am, Monday, June 3    Low-power Verification of Mixed-signal Designs
    • 2pm, Monday, June 3      Advanced Implementation Techniques for Mixed-signal Designs
    • 2pm, Monday, June 3      LP Simulation: Are You Really Done?
    • 4pm, Monday, June 3      Power Format Update: Latest on CPF and IEEE 1801  
    • 11am, Wednesday, June 5   Mixed-signal Verification
    • 11am, Wednesday, June 5   LP Simulation: Are You Really Done?
    • 4pm, Wednesday, June 5   Successful RTL-to-GDSII Low-Power Design (FULL)
    • 5pm, Wednesday, June 5   Custom/AMS Design at Advanced Nodes

We will also have three presentations at the Si2 booth (#1427):

  • 10:30am, Monday, June 3   An Interoperable Implementation Solution for Mixed-signal Design
  • 11:30am, Tuesday, June 4   Low-power Verification for Mixed-signal Designs Using CPF
  • 10:30am, Wednesday, June 5   System-level Low-power Verification Using Palladium

 

We have a great program at DAC. Click the link for complete Cadence DAC Theater and Technology Sessions. Look forward to seeing you at DAC!     




low

Low-Power IEEE 1801 / UPF Simulation Rapid Adoption Kit Now Available

There is no better way other than a self-help training kit -- (rapid adoption kit, or RAK) -- to demonstrate the Incisive Enterprise Simulator's IEEE 1801 / UPF low-power features and its usage. The features include:

  • Unique SimVision debugging 
  • Patent-pending power supply network visualization and debugging
  • Tcl extensions for LP debugging
  • Support for Liberty file power description
  • Standby mode support
  • Support for Verilog, VHDL, and mixed language
  • Automatic understanding of complex feedthroughs
  • Replay of initial blocks
  • ‘x' corruption for integers and enumerated types
  • Automatic understanding of loop variables
  • Automatic support for analog interconnections

 

Mickey Rodriguez, AVS Staff Solutions Engineer has developed a low power UPF-based RAK, which is now available on Cadence Online Support for you to download.

  • This rapid adoption kit illustrates Incisive Enterprise Simulator (IES) support for the IEEE 1801 power intent standard. 

Patent-Pending Power Supply Network Browser. (Only available with the LP option to IES)

  • In addition to an overview of IES features, SimVision and Tcl debug features, a lab is provided to give the user an opportunity to try these out.

The complete RAK and associated overview presentation can be downloaded from our SoC and Functional Verification RAK page:

Rapid Adoption Kits

Overview

RAK Database

Introduction to IEEE-1801 Low Power Simulation

View

Download (2.3 MB)

 

We are covering the following technologies through our RAKs at this moment:

Synthesis, Test and Verification flow
Encounter Digital Implementation (EDI) System and Sign-off Flow
Virtuoso Custom IC and Sign-off Flow
Silicon-Package-Board Design
Verification IP
SOC and IP level Functional Verification
System level verification and validation with Palladium XP

Please visit https://support.cadence.com/raks to download your copy of RAK.

We will continue to provide self-help content on Cadence Online Support, your 24/7 partner for learning more about Cadence tools, technologies, and methodologies as well as getting help in resolving issues related to Cadence software. If you are signed up for e-mail notifications, you're likely to notice new solutions, application notes (technical papers), videos, manuals, etc.

Note: To access the above documents, click a link and use your Cadence credentials to log on to the Cadence Online Support https://support.cadence.com/ website.

Happy Learning!

Sumeet Aggarwal and Adam Sherer




low

Freescale Success Stepping Up to Low-Power Verification - Video

Freescale was a successful Incisive® simulation CPF low-power user when they decided to step up their game. In November 2013, at CDNLive India, they presented a paper explaining how they improved their ability to find power-related bugs using a more sophisticated verification flow.  We were able to catch up with Abhinav Nawal just after his presentation to capture this video explaining the key points in his paper.

Abhinav had already established a low-power simulation process using directed tests for a design with power intent captured in CPF. While that is a sound approach, it tends to focus on the states associated with each power control module and at least some of the critical power mode changes.  Since the full system can potentially exercise unforeseen combinations of power states, the directed test approach may be insufficient. Abhinav built a more complete low-power verification approach rooted in a low-power verification plan captured in Cadence® Incisive Enterprise Manager.  He still used Incisive Enterprise Simulator and the SimVision debugger to execute and debug his design, but he also added Incisive Metric Center to analyze coverage from his low-power tests and connect that data back to the low-power verification plan.  As a result, he was able to find many critical system-level corner case issues, which, left undetected, would have been catastrophic for his SoC.  In the paper, Abhinav presents some of the key problems this approach was able to find.

You can achieve results similar to Abhinav. Incisive Enterprise Simulator can generate a low-power verification plan from the power format, power-aware assertions, and it can collect power-aware knowledge.  To get started, you can use the Incisive Low-Power Simulation Rapid Adoption Kit (RAK) for CPF available on Cadence Online Support.

Just another happy Cadence low-power verification user!

Regards,

Adam "The Jouler" Sherer  

 

 




low

Developing a solid DV flow : xrun wrapper tool

Hi all,

I need to develop a digital design/verification solution to compile,elaborate and simulate SV designs (basically a complex xrun wrapper). I am an experienced user of xrun and I have done a number of these wrappers over the years but this one is to be more of a tool, intented to be used Company-wise, so it needs to be very well thought and engineered.

It needs to be robust, simple and extensible. It needs to support multi-snapshot elaboration, run regressions on machine farms, collect coverage, create reports, etc.

I've been browsing the vast amount of documentation on XCELIUM and, although very good, I can't find any document which puts together all the pieces of what I am trying to achieve. I suppose I am more clear on the elaboration, compilation and simulation part but I am really lacking on the other areas like : LSF, regressions coverage, where does vManager fits in all this, etc.

I'd appreciate if someone can comment on whether there is a document which depicts how such a DV flow can be put together from scratch, or whether there is a kind of RAK with some example xrun wrapper.

Thanks




low

Layout can't open with the following warning message in CIW

Hi,

I tried to open my layout by Library Manager, but the Virtuoso CIW window sometimes pops up the follow WARNING messages( as picture depicts). Thus, layout can't open.

Sometimes, I try to reconfigure ICADV12.3 by the iscape and restart my VM and then it incredibly works! But, often not!

So, If anyone knows what it is going on. Please let me know! Thanks!

Appreciated so much   




low

Are You Stuck While Synthesizing Your Design Due to Low-Power Issues? We Have the Solution!

Optimizing power can be a very convoluted and crucial process. To make design chips meet throughput goals along with optimal power consumption, you need to plan right from the beginning! (read more)




low

Virtuosity: Device Arrays in the Automated Device Placement and Routing Flow

Since the release of the Automated Device Placement and Routing solution last year, we have continued to improve and build upon it. In this blog, I’ll talk about the latest addition—the Auto Device Array form—how this is an integral piece of the new Automated Device Placement and Routing solution.(read more)




low

News18 Urdu: Latest News Lower Subansiri

visit News18 Urdu for latest news, breaking news, news headlines and updates from Lower Subansiri on politics, sports, entertainment, cricket, crime and more.





low

Remote Buffer Overflow Bug Bites Linux Kernel