pe

Chinese Man Duped Of Rs 11 Lakh By Fiancee In "Marriage Bed Burning" Scam

In a unique online romance scam, a man in Tianjin, China, fell victim to a bizarre "marriage bed burning" ritual, costing him Rs 11 lakh.




pe

US Woman Stopped For Orange Juice, Ended Up Winning $250,000 Lottery Prize

The $20 Merry Multiplier scratch-off ticket she chose turned out to be a $250,000 top prize winner.




pe

Watch: US Comedian's Hilarious Impersonation Of Trump In India Goes Viral

US-based comedian Austin Nasso is going viral online for his hilarious impersonation of US-President-elect Donald Trump during a fictional visit to India.




pe

Family Members Of Foreign Workers In Canada Now Allowed To Work: Spouses, Working-Age Children Will Get Work Permits!

After its decision to strengthen visa infrastructure in Delhi and Chandigarh, Canada has now announced that family members of temporary international workers will also be allowed to work in the country. Sean Fraser, Canada’s Minister of Immigration, Refugees, and Citizenship, recently informed the media that his agency will be granting work permits to relatives of […]




pe

Amazon Can Fire 20,000 Employees: 6% Workforce Can Be Fired Which Is 100% More Than We Expected

Latest report reveals that the layoffs announced by the Jeff Bezos founded e-commerce giant Amazon are likely to impact double the number of employees than reported earlier. Amazon Layoffs Affecting Mass Workforce This new report indicates that internet giant Amazon is planning to cut around 10,000 jobs in corporate and technology roles following the massive […]




pe

Exciting Details Of Redmi K60 Series Revealed: Will It Be 2023’s 1st Flagship Smartphone? Check Specs, USPs & More!

The success of the Redmi K50 series, especially the Redmi K50 Pro was resounding, and now, a lot of leaks about the Redmi K60 series have emerged as well. The box of the Redmi K60 was leaked recently, and promotional dates of the phone series have also appeared. Redmi K60 Features Leaked: All You Need […]




pe

Interesting Details Of iPhone 15 Ultra Revealed: Find Out Design, Specs, USPs & More

Apple 14 is barely out of the box and features and rumors of the Apple 15 series are already making rounds of the internet.  The newest reports have revealed that the iPhone 15 Pro Max is to be replaced by the brand-new iPhone 15 Ultra. With the iPhone 15 series, the corporation is also said […]




pe

Vesper closes $23M Series B for its sensor-based microphone: Amazon Alexa Fund among investors

Vesper, the maker of piezoelectric sensors used in microphone production and winner of CES Innovation Award 2018 raised a $23M Series B round. American Family Ventures led the investment with participation from Accomplice, Amazon Alexa Fund, Baidu, Bose Ventures, Hyperplane, Sands Capital, Shure, Synaptics, ZZ Capital and some undisclosed investors.

Vesper VM1000

Vesper’s innovative sensors can be used in consumer electronics like TV remote controls, smart speakers, smartphones, intelligent sensor nodes, and hearables. The company will use the funding proceeds to scale-up its functions like mass production of its microphones and support expanded research and development, hiring, and establishing international sales offices.

The main product of Vesper is VM1000, a low noise, high range,single-ended analog output piezoelectric MEMS microphone. It consists of a piezoelectric sensor and circuitry to buffer and amplify the output.

Vesper VM1010

The hot-selling product of Vesper is VM1010 with ZeroPower Listening which is the first MEMS microphone that enables voice activation to battery-powered consumer devices.

The unique selling point of Vesper’s products is they are built to operate in rugged environments that have dust and moisture.

"Vesper's ZeroPower Listening capabilities coupled with its ability to withstand water, dust, oil, and particulate contaminants enables users that have never before been possible," said Katelyn Johnson, principal of American Family Ventures. "We are excited about Vesper's quest to transform our connected world, including IoT devices."

Other recent funding news include $24 raised by sensor-based baby sock maker Owlet, IFTTT banks $24M from Salesforce to scale its IoT Enterprise offering, and Intel sells its Wind River Software to TPG.




pe

Former Company Director to Appear in Court for Allegedly Defrauding a Pensioner

[SAPS] - A former company Director (57) is expected to appear in the Thabamoopo Magistrates Court in Lebowakgomo on 11 November 2024 for allegedly defrauding a pensioner an amount of R378 000.00 in the name of business.




pe

Five Suspects Appearing in Kariega Magistrate's Court for Possession of Cycads

[SAPS] - Five suspects are appearing in the Kariega Magistrate's Court today, after they were arrested and found in possession of cycads with an estimated value of R1 Million on Friday 08 November 2024.




pe

Almost 12 600 Suspects Arrested and 345 Firearms Recovered During October Operations

[SAPS] One hundred and seventy one (171) murder suspects, 261 attempted murder suspects and 250 suspected rapists were among 12 593 suspects who were arrested during various operations by police in KwaZulu-Natal in the month of October. During such operations police also managed to recover 345 firearms and 2 998 rounds of ammunition of various calibre of firearms. Among the recovered firearms were 23 rifles and 17 homemade illegal guns.




pe

Operation Shanela Yielded Good Results in the Joe Gqabi District

[SAPS] SAPS members' continued efforts to prevent and detect crime yielded the following successes within the Joe Gqabi District as part of Operation Shanela during the week and start of the weekend .




pe

Cape Town Secures Historic Bid to Host WorldPride 2028

[allAfrica] We are excited to share the momentous news that Cape Town Pride has officially won the bid to host WorldPride 2028. This significant event is a global celebration of LGBTQ+ pride and rights, marking a pivotal milestone not only for the LGBTQ+ community in the city but also for the entire African continent. This victory positions Cape Town as a leading symbol of inclusivity and diversity, showcasing its commitment to advancing a welcoming environment for all.




pe

Urgent Intervention Needed to Address Illicit Gun Violence and Resource Shortages in the Western Cape

[DA] Note to editors: Please find attached soundbite by Ian Cameron MP.




pe

COP29 Expected Finalise Financing Model for Developing Economies

[SAnews.gov.za] With the United Nations Framework Convention on Climate Change (COP29) taking place this week, South Africa expects the COP29 Presidency to enhance efforts to finalise the New Collective Quantified Goal on Finance (NCQG), which is a matter of great importance for developing economies.




pe

Joburg's Water Restrictions Set to Tighten Further As Crisis Deepens

[Daily Maverick] Office of the Chief Justice reveals Constitutional Court has been unable to sit because of unreliable water supply. This article is free to read.Sign up for free or sign in to continue reading.Unlike our competitors, we don't force you to pay to read the news but we do need your email address to make your experience better.Create your free account or sign in FAQ | Contact Us Nearly there! Create a password to finish signing up with us: You want to receive First Thing, our flagship daily newsletter. Opt




pe

How to create multiple shapes of same port in innovus?

LEF allows the same port with multiple shape definitions. Does anybody know if innovus can create multiple duplicate shapes associated with the same port? Assume they are connected outside the block with perfect timing synchronization. Thank you!




pe

Specifying the placement of submodules in the top module during the pnr using Innovus

Hi everyone,

I'm designing a digital chip that will be fabricated. I have a HDL top module that includes several submodules inside it. I want to define the position of some of the submodules during the PnR so that later I can specify there positions in the Micrograph photo after the IC fabrication. When I perform the PnR using Innovus, I always got a layout shape where the submodules seems to be flatted. I wonder if there is a way to specify the placement of each submodule in my top module  (maybe in the tcl file) during the PnR so later I can define there positions in the micrograph photo. 

Thanks in Advance!




pe

UPF 3.1 / Genus - Cannot find any instance for scope

Hi, I'm using genus (Version 21.14-s082_1) to synthesis a VHDL-design with multiple power-domains. After reading the power intent file and calling 'apply_power_intent',  I get the following warning:

Warning : Potential problem while applying power intent of 1801 file. [1801-99]
: Cannot find any instance for scope '/:CHIP_TOP'. Rest of commands in this scope will be skipped (set_scope:../../upf/CHIP_TOP.upf:2).
: Check the power intent. If the scenario is expected, this message can be ignored.

The fist two lines of CHIP_TOP.upf:

upf_version 3.1
set_scope :CHIP_TOP

I simulated the same  UPF and VHDL files with Xeclium and was able to verify all the IEEE1801/UPF aspects I need without any problems. I don't know, why genus is having a problem with the 'scope'.
In genus, after getting the warning, running 'set_db power_domain:CHIP_TOP/BLOCK_A/PD_CORE_D .library_domain PD0V5' returns the following error:

Error : <Start> word is not recognized. [TUI-182] [set_db]
: 'power_domain:CHIP_TOP/BLOCK/PD_CORE_D' is not a recognized object/attribute. Type 'help root:' to get a list of all supported objects and attributes.
: Check if the given <Start> word is a valid object_type, object or attribute.

Running 'commit_power_intent' gives me:

Started inserting low power cells...
====================================
Info : Command 'commit_power_intent' cannot proceed as there are no power domains present. [CPI-507]
: Design with no power domains is 'design:CHIP_TOP'.
Completed inserting low power cells (runtime 0.00).
====================================================

I'm suspecting that the problem lies in 'set_scope' and VHDL. I never had such problems with Verilog. I tried every way to reference the hierarchy in the code and now I'm at my wit's end and I need your help o/
How to set the scope with 'set_scope' in UPD 3.1 to the toplevel in VHDL, so that genus accepts it? Or is the problem caused by something else?

Best,

Iqbal




pe

How to quit “[SUSPEND]” in innovus

for debug I use suspend in my tcl script to debug,here is the code

after that the innovus command screen become 

how to quit the SUSPEND status? thanks




pe

Performing a net trace in a CDL file

Hi,

I am looking to perform a net trace in a CDL file.

There is a net at a lower level and would like to know the net it is connected to at the top level.

Please let me know if there is a way to analyze the CDL file to perform this net trace.

Thanks,

Mallikarjun.




pe

Coordinates(bBoxes) of all the shapes(layers) in a layout view

Hello Community,

Is there any simple way how i can get the coordinates of all the shapes in a layout view?

Currently i'm flattening the layout, getting all the lpps from CV and using setof to get all the shapes of a layer and looping through them to get the coordinates.

Is there a way to do it without having to flatten the layout view and shapes merged or any other elegant way to do it if we flatten it?

Also, dbWriteSkill doesn't give output how i desired

Thanks,

Shankar




pe

Disappearing toolbar or docked menu

Disappearing toolbar or docked menu

Is there a way for the toolbar or floating menu from disappearing when a cells tab is added to a window?

I have created a skill toolbar and it disappeared when I add another cell or tab to a window.

The only toolbars that stay are the ones I have defined in the Layout.toolbar file.

Do I have to add a trigger to keep the toolbars visible or not disappearing from the window?

Cadence version IC23.1-64b.ISR7.27

Paul




pe

How to restrict the variable's data type of procedure with @key

Hi,

I want to define a procedure that with @key, and I also want to restrict the variable's datatype, I tried with folloing but I received error in CIW

procedure(tt(handler @key str1 str2 "ssS")
  printf("handler: %L " handler)
)

tt('test)

The error is like: *Error* tt: argument for keyword ?str1 should be a symbol (type template = "ssS") at line 11 of file

Thanks,

James




pe

Destructive form of "cons" - efficiently prepending an item to a procedure's argument which is a list

Hello,

I was looking to destructively and efficiently modify a list that was passed in as an argument to a procedure, by prepending an item to the list.

I noticed that cons lets you do this efficiently, but the operation is non-destructive. Hence this wouldn't work if you are trying to modify a function's list parameter in place.

Here is an example of trying to add "0" to the front of a list:

procedure( attempt_to_prepend_list(l elem)
    l = cons(elem l)
)
a = list(1 2 3)
==> (1 2 3)
attempt_to_prepend_list(a 0)
==> (0 1 2 3)
a
==> (1 2 3)
As we can see, the original list is not prepended.
Here is a function though which achieves the desired result while being efficient. Namely, the following function does not create any new lists and only uses fast methods like cons, rplacd, and rplaca
procedure( prepend_list(l elem)
    ; cons(car(l) cdr(l)) results in a new list with the car(l) duplicated
    ; we then replace the cdr of l so that we are now pointing to this new list
    rplacd(l cons(car(l) cdr(l)))

    ; we replace the previously duplicated car(l) with the element we want
    rplaca(l elem)
)
a = list(1 2 3)
==> (1 2 3)
prepend_list(a 0)
==> (0 1 2 3)
a
==> (0 1 2 3)
This works for me, but I find it surprising there is no built-in function to do this. Am I perhaps overlooking something in the documentation? I know that tconc is an efficient and destructive way to append items to the end of a list, but there isn't an equivalent for the front of the list?




pe

Constraining some nets to route through a specific metal layer, and changing some pin/cell placements and wire directions in Cadence Innovus.

Hello All:

I am looking for help on the following, as I am new to Cadence tools [I have to use Cadence Innovus for Physical Design after Logic Synthesis using Synopsys Design Compiler, using Nangate 45 nm Open Cell Library]: while using Cadence Innovus, I would need to select a few specific nets to be routed through a specific metal layer. How can I do this on Innovus [are there any command(s)]? Also, would writing and sourcing a .tcl script [containing the command(s)] on the Innovus terminal after the Placement Stage of Physical Design be fine for this?

Secondly, is there a way in Innovus to manipulate layout components, such as changing some pin placements, wire directions (say for example, wire direction changed to facing east from west, etc.) or moving specific closely placed cells around (without violating timing constraints of course) using any command(s)/.tcl script? If so, would pin placement changes and constraining some closely placed cells to be moved apart be done after Floorplanning/Powerplanning (that is, prior to Placement) and the wire direction changes be done after Routing? 

While making the necessary changes, could I use the usual Innovus commands to perform Physical Design of the remaining nets/wires/pins/cells, etc., or would anything need modification for the remaining components as well?

I would finally need to dump the entire design containing all of this in a .def file.

I tried looking up but could only find matter on Virtuoso and SKILL scripting, but I'd be using Innovus GUI/terminal with Nangate 45 nm Open Cell Library. I know this is a lot, but I would greatly appreciate your help. Thanks in advance.

Riya




pe

DRC Developers question

This document resolved my first query,

Article (11638952) Title: How to output power and ground nets to GDS
URL: support.cadence.com/.../ArticleAttachmentPortal

but now I have 20 power and 20 ground

below is my code

------------------------------------------------
variable GND "vss1" "vss2" "vss3" ... "vss20"
variable VDD "vdd1" "vdd2" "vdd3" ... "vdd20"


select_net M1 GND -outputlayer GND_M1
select_net M2 GND -outputlayer GND_M2
...
select_net AP GND -outputlayer GND_AP


select_net M1 VDD -outputlayer VDD_M1
select_net M2 VDD -outputlayer VDD_M2
...
select_net AP VDD -outputlayer VDD_AP


rule GND{

copy GND_M1
copy GND_M2
...
copy GND_AP}

rule VDD{

copy VDD_M1
copy VDD_M2
...
copy VDD_AP}
------------------------------------------------

I want 20 GND and 20 VDD are separately to highlight,
like this


Can DRC command use for-loop(skill or Tcl) to split the rule?
or how can I do to split it? 
I don't really want to repeat the rule 40 times..haha😅 (use Pegasus 22.21)




pe

Unable to open 64bit version of simvison

I am not able to open 64bit version of simvision using the following :

simvision -64 -wav "path to wav"

This throws the error "  /lib64/libc.so.6: version `GLIBC_2.14' not found"

I am only able to open it without the -64 option.

As a result I am not able to use the source browser feature since the simulation was run in 64 bit mode.

Need suggestion on how to resolve this. Thanks.




pe

Unmapped points

Hi ,

 I am using conformal v23.2 for LEC checking b/w netlist vs Netlist. I am getting 8 not mapped points(z) in revised but when i check in mapping manager it showing 0 Not mapped points and showing this 8 not mapped points in extra unmapped section z(f) snps_scan_out_6 .How to resolve this issue Pls help

regards,




pe

Jasper C2RTL App for Datapath Verification

Ensuring that the RTL designs correctly implement the C++ algorithmic intent in every circumstance is difficult to achieve with conventional verification. Learn more how Jasper C2RTL App helps to perform equivalence checking with 100x performance improvement(read more)





pe

Coalesce Xcelium Apps to Maximize Performance by 10X and Catch More Bugs

Xcelium Simulator has been in the industry for years and is the leading high-performance simulation platform. As designs are getting more and more complex and verification is taking longer than ever, the need of the hour is plug-and-play apps that ar...(read more)




pe

JEDEC UFS 4.0 for Highest Flash Performance

Speed increase requirements keep on flowing by in all the domains surrounding us. The same applies to memory storage too. Earlier mobile devices used eMMC based flash storage, which was a significantly slower technology. With increased SoC processing speed, pairing it with slow eMMC storage was becoming a bottleneck. That is when modern storage technology Universal Flash Storage (UFS) started to gain popularity. 

UFS is a simple and high-performance mass storage device with a serial interface. It is primarily used in mobile systems between host processing and mass storage memory devices. Another important reason for the usage of UFS in mobile systems like smartphones and tablets is minimum power consumption. 

To achieve the highest performance and most power-efficient data transport, JEDEC UFS works in collaboration with industry-leading specifications from the MIPI® Alliance to form its Interconnect Layer. MIPI UniPro is used as a transport layer, and MIPI MPHY is used as a physical layer with the serial DpDn interface. 

 

UFS 4.0 specification is the latest specification from JEDEC, which leverages UniPro 2.0 and MPHY 5.0 specification standards to achieve the following major improvements:

  • Enables up to 4200 Mbps read/write traffic with MPHY 5.0, allowing 23.29 Gbps data rate. 
  • High Speed Link Startup, along with Out of Order Data Transfer and BARRIER Command, were introduced to improve system latencies. 
  • Data security is enhanced with Advanced RPMB. Advance RPMB also uses the EHS field of the header, which reduces the number of commands required compared to normal RPMB, increasing the bandwidth. 
  • Enhanced Device Error History was introduced to ease system integration. 
  • File Based Optimization (FBO) was introduced for performance enhancement. 

Along with many major enhancements, UFS 4.0 also maintains backward compatibility with UFS 3.0 and UFS 3.1. 

JEDEC has just announced the UFS 4.0 specification release, quoting Cadence support as a constant contributor in the JEDEC UFS Task Group, actively participating in these specifications development.  

With the availability of the Cadence Verification IP for JEDEC UFS 4.0, MIPI MPHY 5.0 and MIPI UniPro 2.0, early adopters can start working with the provisional specification immediately, ensuring compliance with the standard and achieving the fastest path to IP and SoC verification closure.  

More information on Cadence VIP is available at the Cadence VIP Website. 

 

Yeshavanth B N 




pe

USB4 Interoperability with Thunderbolt™︎ 3 (TBT3) Systems

One of the key goals for USB4 is to retain compatibility with the existing ecosystem of USB3.2, USB 2.0 and Thunderbolt  products, and the resulting connection scales to the best mutual capability of the devices being connected. USB4 is designed to work with older versions of USB and Thunderbolt . USB4 Fabric support high throughput interconnects of 10 Gbps (for Gen 2) and 20 Gbps (for Gen 3) and supports Thunderbolt 3-compatible rates of 10.3125 Gbps (for Gen 2) and 20.625 Gbps (for Gen 3). It becomes very important to verify the Thunderbolt  backward compatibility with the designs. Though the support of USB4 Interoperability with Thunderbolt  3 (TBT3) is optional in USB4 host or USB4 peripheral device and required USB4 Hub and USB4 Based Dock but it is very essential to work in the existing ecosystem. 

Few Main features of USB4 Interoperability with Thunderbolt  3 (TBT3) Systems

  • Support for Bi-Directional Pins & Retimers: TBT3 Active Cables can contain two bidirectional Re-timers which have the capability to send AT Responses on its RX channel. Router connected directly to such Retimer needs to support A Router that is connected directly to a bidirectional Re-timer shall support reception of Transactions on both TX and RX channels. 

  • Bounce Mechanism: This feature is used by Router to access the Register Space of a Cable Re-timer that can only be accessed by its Link Partner.
  • Asymmetric Negotiation: The Router which connects with Cable Retimers needs to follow Asymmetric TxFFE in Phase 5 of Lane Initialization. 
  • USB4 Link Transitions: In TBT3 mode, the configuration of two independent Single Lane Links can be used non-transient state or Single Lane Link just using the Lane1 Adapter.

Cadence has a mature USB4 Verification IP solution that can help in the verification of USB4 designs with TBT3. Cadence has taken an active part in the Cairo group that defined the USB4 specification and has created a comprehensive Verification IP that is being used by multiple members. If you plan to have a USB4-compatible design, you can reduce the risk of adopting new technology by using our proven and mature USB4 Verification IP. Please contact your Cadence local account team, for more details.




pe

BoardSurfers: Optimizing RF Routing and Impedance Using Allegro X PCB Editor

Achieving optimal power transfer in RF PCBs hinges on meticulously routed traces that meet specific impedance requirements. Impedance matching is essential to ensure that traces have the same impedance to prevent signal reflection and inefficient pow...(read more)




pe

DesignCon Best Paper 2024: Addressing Challenges in PDN Design

Explore Impacts of Finite Interconnect Impedance on PDN Characterization

Over the past few decades, many details have been worked out in the power distribution network (PDN) in the frequency and time domains. We have simulation tools that can analyze the physical structure from DC to very high frequencies, including spatial variations of the behavior. We also have frequency- and time-domain test methods to measure the steady-state and transient behavior of the built-up systems.

All of these pieces in our current toolbox have their own assumptions, limitations, and artifacts, and they constantly raise the challenging question that designers need to answer: How to select the design process, simulation, measurement tools, and processes so that we get reasonable answers within a reasonable time frame with a reasonable budget.

Read this award-winning DesignCon 2024 paper titled “Impact of Finite Interconnect Impedance Including Spatial and Domain Comparison of PDN Characterization.” Led by Samtec’s Istvan Novak and written with a team of nine authors from Cadence, Amazon, and Samtec, the paper discusses a series of continually evolving challenges with PDN requirements for cutting-edge designs.

Read the full paper now: “Impact of Finite Interconnect Impedance Including Spatial and Domain Comparison of PDN Characterization.”




pe

How to export and import symbols and component properties through Die Text wizards

Starting SPB 23.1, Allegro X APD lets you import/export the symbol and component properties by using Die Text-In/Out wizards. 

Exporting the symbol 

You can export the symbol by using File > Export > Die Text-Out Wizard. 

In the Die Text-Out Wizard window, you can see the newly added options, that is, Component Properties and Symbol Properties. 

This entire information including the properties will be saved in a text file. 

 

Importing the symbol 

You can import the same text file in Allegro X APD by using Die Text-In Wizard. 

Choose the text file you want to import. 

Symbol properties added in the text file will be visible in the Die Text-In Wizard window. 

 




pe

How to avoid adding degassing holes to a particular shape

In a package design, designers often need to perform degassing. This is typically done at the end of the design process before sending the design to the manufacturer.

Degassing is a process where you perforate power planes, voltage planes, and filled shapes in your design. Degassing holes let the gas escape from beneath the metal during manufacturing of the substrate. The perforations or holes for degassing are generally small, having a specified size and shape, and are spaced regularly across the surface of the plane. If the degassing process is not done, it may result in the formation of gas bubbles under the metal, which may cause the surface of the metal to become uneven. After you degas the design, it is recommended to perform electrical verification.

Allegro X APD has degassing features that allow users to automate the process and place holes in the entire shape.

In today’s topic, we will talk about how to avoid adding  degassing holes on a particular shape.

Sometimes, a designer may need to avoid adding degassing holes to a particular shape on a layer. All other shapes on the layer can have degassing holes but not this shape. Using the Layer Based Degassing Parameters option, the designer can set the degassing parameters for all shapes on the layer. Now, the designer would like to defer adding degassing holes for this particular shape.

You may wonder if there is an easy way to achieve this. We will now see how this can be done with the tool.

Once the degassing parameters are set, performing Display > Element on any of the shapes on that layer will show the degassing parameters set.

You can apply the Degas_Not_Allowed property to a shape to specify that degassing should not be performed on this shape, even if the degassing requirements are met. Select the shape and add the property as shown below.

Switch to Shape Edit application mode (Setup > Application mode > Shape Edit) and window-select all shapes on the layer. Then, right-click and select Deferred Degassing > All Off.

Now, all shapes on the layer will have degassing holes except for the shape which has the Degas_Not_Allowed property attached to it.




pe

Maximizing Display Performance with Display Stream Compression (DSC)

Display Stream Compression (DSC) is a lossless or near-lossless image compression standard developed by the Video Electronics Standards Association (VESA) for reducing the bandwidth required to transmit high-resolution video and images. DSC compresses video streams in real-time, allowing for higher resolutions, refresh rates, and color depths while minimizing the data load on transmission interfaces such as DisplayPort, HDMI, and embedded display interfaces.

Why Is DSC Needed?

In the ever-evolving landscape of display technology, the pursuit of higher resolutions and better visual quality is relentless. As display capabilities advance, so do the challenges of managing the immense amounts of data required to drive these high-performance screens. This is where DSC steps in. DSC is designed to address the challenges of transmitting ultra-high-definition content without sacrificing quality or performance. As displays grow in resolution and capability, the amount of data they need to transmit increases exponentially. DSC addresses these issues by compressing video streams in real-time, significantly reducing the bandwidth needed while preserving image quality.
 

DSC Use in End-to-end System

DSC Key Features

  • Encoding tools:
    • Modified Median-Adaptive Prediction (MMAP)
    • Block Prediction (BP)
    • Midpoint Prediction (MPP)
    • Indexed color history (ICH)
    • Entropy coding using delta size unit-variable length coding (DSU-VLC)
  • The DSC bitstream and decoding process are designed to facilitate the decoding of 3 pixels/clock in practical hardware decoder implementations. Hardware encoder implementations are possible at 1 pixel/clock.
  • DSC uses an intra-frame, line-based coding algorithm, which results in very low latency for encoding and decoding.

DSC encoding algorithm
 

  • Compression can be done to a fractional bpp. The compressed bits per pixel ranges from 6 to 63.9375.
  • For validation/compliance certification of DSC compression and decompression engines, cyclic redundancy checks (CRCs) are used to verify the correctness of the bitstream and the reconstructed image.
  • DSC supports more color bit depths, including 8, 10, 12, 14, and 16 bpc.
  • DSC supports RGB and YCbCr input format, supporting 4:4:4, 4:2:2, and 4:2:0 sampling.
  • Maximum decompressor-supported bits/pixel values are as listed in the Maximum Allowed Bit Rate column in the table below

  • DP DSC Source device shall program the bit rate within the range of Minimum Allowed Bit Rate column in the table:

          


Summary

Display Stream Compression (DSC) is a technology used in DisplayPort to enable higher resolutions and refresh rates while maintaining high image quality. It works by compressing the video data transmitted from the source to the display, effectively reducing the bandwidth required. DSC uses a visually lossless algorithm, meaning that the compression is designed to be imperceptible to the human eye, preserving the fidelity of the image. This technology allows for smoother, more detailed visuals at higher resolutions, such as 4K or 8K, without requiring a significant increase in data bandwidth.

More Information

  • Cadence has a very mature Verification IP solution. Verification over many different configurations can be used with DisplayPort 2.1 and DisplayPort 1.4 designs, so you can choose the best version for your specific needs.
  • The DisplayPort VIP provides a full-stack solution for Sink and Source devices with a comprehensive coverage model, protocol checkers, and an extensive test suite.
  • More details are available on the DisplayPort Verification IP product page, Simulation VIP pages.
  • If you have any queries, feel free to contact us at talk_to_vip_expert@cadence.com




pe

Jasper Formal Fundamentals 2403 Course for Starting Formal Verification

The course "Jasper Formal Fundamentals v24.03" introduces formal analysis to those who want to use formal analysis for design or verification. 

To optimally benefit from this course, you must already have sufficient knowledge of the System Verilog assertions to be capable of writing properties for formal verification. Hence, this training provides a module on formal analysis to help cover this essential background. 

In this course, you will learn how to code efficient SVA Properties for formal analysis, understand formal complexity and how to overcome it, and learn the basics of formal coverage.

After completing this course, you will be able to:

  • Define reusable, functionally correct SVA properties that are efficient for formal tools. These shall use abstract auxiliary code to simplify descriptions, make code maintenance easier, reduce debug time, and reduce tool-proof runtime.
  • Set up, run, and analyze results from formal analysis.
  • Identify designs upon which formal is likely to be successful while understanding formal complexity issues and how to identify and overcome them.
  • Use a systematic property development process to approach a completely new verification problem.
  • Understand the basics of formal coverage.

 The most recently updated release includes new modules on:

  • "Basic complexity handling" which discusses the complexity in formal and how to identify and handle them.
  • "Complexity reduction methods” which discusses the complexity reduction methods and which is suitable for which type of complexity problem.
  • “Coverage in formal” which discusses the basics of coverage in formal verification and how coverage can be used in formal.   

Take this course to learn the basics of formal verification. 

What's Next? 

You can check out the complete training: Jasper Formal Fundamentals. There is a free online version of the training available 24/7 for all customers with a Cadence Learning and Support Portal account. If you are interested in an instructor-led version of the training, please contact Cadence Training. And don't forget to obtain your digital badge after completing the training!

You can also check Jasper University page for more materials on formal analysis and Jasper apps. 

Related Trainings 

Jasper Formal Expert Training Course | Cadence

Verilog Language and Application Training Course | Cadence

SystemVerilog for Design and Verification Training Course | Cadence

SystemVerilog Assertions Training Course | Cadence

Related Training Bytes 

Jasper Formal Property Verification (FPV) App: Basic Usage Demo (Video)

Jasper Formal Methodology playlist

Related Training Blogs

It’s the Digital Era; Why Not Showcase Your Brand Through a Digital Badge!

Training Insights: Introducing the C++ Course for All Your C++ Learning Needs!

Training Insights: Reaching Your Verification Closure Using Verisium Manager

Training Insights - Free Online Courses on Cadence Learning and Support Portal




pe

Unveiling the Capabilities of Verisium Manager for Optimized Operations

In SoC development, the verification cycle is a crucial phase that ensures products meet their specifications and function correctly. However, the complexity of modern SoC projects, with their constant data flow, multiple validation teams working in parallel, and tight schedules, presents significant challenges. This article explores these challenges and introduces Verisium Manager as a solution that embodies the 'One Tool Fits All' concept. This means that Verisium Manager is designed to handle all aspects of the verification process for SoC development, from planning to coverage analysis to regression testing, thereby addressing the complex needs of SoC verification.

The Hurdles in Traditional Validation Cycles

 A typical validation process involves planning, coverage analysis, and regression testing. This complexity is compounded by using separate tools for each activity, leading to multiple control environments, APIs, and databases, not to mention the array of tool owners. Such fragmentation results in constant data transfer and translation between systems, from the planning tool to the coverage analysis tool and then to the regression testing tool. This continuous movement of data causes delays, system instability, poor user experiences, and, ultimately, a dip in the quality of the validation process.

The use of multiple platforms leads to inefficiency and reduced productivity. What's needed is a unified system that can streamline the workflow, simplify the verification process, and enhance its effectiveness.

Envisioning the Ideal Solution: Verisium Manager

 The cornerstone of an efficient validation cycle is integration and simplicity. The ideal solution is a singular platform that consolidates planning, coverage analysis, and regression management into one smooth, unified process. Verisium Manager emerges as this much-needed solution, encompassing all the functionalities necessary to streamline the validation process. Its comprehensive nature instills confidence in its ability to handle all aspects of the verification cycle. It can be fully customized to address and enforce any validation methodology and can facilitate smooth integration into any customer environment.

Features that stand out in Verisium Manager include: 

  • Unified Workflow: It acts as a single cockpit from which all activities are orchestrated, ensuring the validation teams' work is uninterrupted and seamlessly integrated.
  • Customization and Integration: Verisium Manager supports customizing test-plan structures and mapping results per project, ensuring a perfect fit for various project requirements. Its ability to smoothly integrate into the project's environment and compute platforms is unparalleled.
  • Support for Continuous Updates and Migration: The tool accommodates constant updates to project data and supports the migration of legacy data, ensuring that no historical data is lost in the transition to a new system.

Addressing Project-Specific Needs

 Verisium Manager recognizes diversity in different projects and offers project-specific solutions, including:

 Enforcing Project Test-Plan Structures and Attributes: It supports and enforces each project's unique test-plan structure and mapping guidelines.

  • Unified Data Views and Measurements: Verisium Manager promotes a unified view of data across all teams and enforces unified measurements, ensuring consistency and clarity in the validation process.
  • Enabling Project-Specific Actions and Integrations: The tool is designed to support project-specific actions directly from its graphical user interface and allows for smooth integration with in-house databases, dashboards, and the project execution stack.

Verisium Manager is the epitome of efficiency in software/hardware validation. Its differentiating features, such as support for customization, unified data view, and comprehensive coverage and regression requirements, make it an indispensable tool for any validation team looking to elevate their workflow.




pe

A Brief on Message Bus Interface in PIPE

PHY Interface for the PCI Express (PCIe), SATA, USB, DisplayPort, and USB4 Architectures (PIPE) enables the development of the Physical Layer (PHY) and Media Access Layer (MAC) design separately, providing a standard communication interface between these two components in the system.

In recent years, the PIPE interface specification has incorporated many enhancements to support new features and advancements happening in the supported protocols. As the supported features increase, so does the count of signals on PIPE interface. To address the issue of increasing signal count, the message bus interface was introduced in PIPE 4.4 and utilized for PCIe lane margining at the receiver and elastic buffer depth control.

In PIPE 5.0, all the legacy PIPE signals without critical timing requirements were mapped into message bus registers so that their associated functionality could be accessed via the message bus interface instead of implementing dedicated signals. It was decided that any new feature added in the new version of PIPE specification will be available only via message bus accesses unless they have critical timing requirements that need dedicated signals.

Message Bus Interface

The message bus interface provides a way to initiate and participate in non-latency-sensitive PIPE operations using a small number of wires. It also enables future PIPE operations to be added without adding additional wires. The use of this interface requires the device to be in a power state with PCLK running.

Control and status bits used for PIPE operations are mapped into 8-bit registers that are hosted in 12-bit address spaces in the PHY and the MAC. The registers are accessed using read-and-write commands driven over the signals M2P_MessageBus[7:0] and P2M_MessageBus[7:0]. These signals are synchronous with the PCLK and are reset with Reset#.

Message Bus Interface Commands

The 4-bit commands are used for accessing the PIPE registers across the message bus. A transaction consists of a command and any associated address and data.

All the following are time multiplexed over the bus from MAC and PHY:

  1. Commands (write_uncommitted, write_committed, read, read completion, write_ack)
  2. 12-bit address used for all types and read and writes
  3. 8-bit data, either read or written

There can be cases where multiple PIPE interface signals can change on the same PCLK. To address such cases, the concept of write_uncommitted and write_committed is introduced.

The uncommitted write should be saved into a write buffer, and its associated data values are updated into the relevant PIPE register at a future time when a write_committed is received, taking effect during the same PCLK cycle. Once a write_committed is sent, no new writes, whether committed or uncommitted, and any read command may be sent until a write_ack is received. Also, it is allowed to send NOP commands between write uncommitted and write committed. 

A simple timing demonstration of message bus:

Message Address Space

MAC and PHY each implement unique 12-bit address spaces. These address spaces will host registers associated with the PIPE operations. MAC accesses PHY registers using M2P_MessageBus[7:0], and PHY accesses the MAC registers using the M2P_MessageBus[7:0].

The MAC and PHY access specific bits in the registers to: initiate operations, Initiate handshakes, and Indicate status.

Each 12-bit address space is divided into four main regions: the receiver address region, the transmitter address region, the common address region, and the vendor-specific address region.

Each register field has an attribute description of either level or 1-cycle assertion. When a level field is written, the value written is maintained by the hardware until the next write to that field or until a reset occurs. When a 1-cycle field is written to assert the value high, the hardware maintains the assertion for only a single cycle and then automatically resets the value to zero on the next cycle.

Cadence has a mature Verification IP solution for the verification of various aspects and topologies of PIPE PHY design. For more details, you may refer to the Simulation VIP for PIPE PHY | Cadence page, or you may send an email to support@cadence.com.




pe

BETA CAE Systems Is Now Cadence: Join Our 2024 China Open Meeting

This November, the engineering and simulation community is set to converge in China for an event that promises to be nothing short of revolutionary. The 2024 BETA CAE Systems China Open Meeting, taking place in the vibrant cities of Beijing and Shanghai on November 5 and 7 , respectively, is a must-attend for anyone looking to stay at the forefront of technological innovation in simulation solutions. Prepare to be inspired by Ben Gu , the visionary Corporate VP of Research and Development at Cadence. He will lead both meetings in Beijing and Shanghai with his keynote on " A New Millennium in Multiphysics System Analysis ." This thought-provoking keynote is expected to provide attendees with a glimpse into the future of engineering simulation and analysis. What sets the BETA CAE Systems Open Meetings apart is not just the high caliber of speakers but also the hands-on training sessions designed to enhance your technical expertise with the BETA CAE software suite. Whether you are an inexperienced individual seeking to acquire fundamental knowledge or an accomplished professional endeavoring to hone your expertise, these training sessions following the open meetings are meticulously tailored to meet your needs. Join Us at the BETA CAE Systems Open Meeting in Beijing The BETA CAE Systems Open Meeting in Beijing will feature a keynote speech by Peng Qiao , Senior Engineer at Great Wall Motors Co., Ltd, on Multidisciplinary Optimization Techniques for Automotive Control Arms . ( View detailed agenda for Beijing. ) When: November 5, 2024 Where: Grand Metropark Hotel Beijing If this sounds interesting, register today for the BETA CAE Systems Beijing Open Meeting by clicking the button below. Don't Miss Out on the BETA CAE Systems Open Meeting in Shanghai After the BETA CAE Systems Open Meeting in Beijing, the next meeting in China will be in Shanghai. During this event, Liu Deping, CAE Engineer from Zhejiang Geely Automobile Research Institute Co., Ltd, will deliver a keynote speech on the Application of ANSA in the Simulation Development Cycle . ( View detailed agenda for Shanghai. ) When: November 7, 2024 Where: InterContinental Shanghai Jing'an Following the open meeting on November 7 will be an exclusive training day on November 8. This session will provide attendees with practical experience using the BETA CAE software to improve their technical skills and provide hands-on knowledge of the software. If you find this intriguing, register now for the BETA CAE Systems Shanghai Open Meeting by clicking the button below. Why Attend? Gain firsthand insights into the latest developments in simulation technology Learn from real-world applications and success stories from various industries Connect and exchange ideas with experts in a collaborative environment Mark your calendars for this unparalleled opportunity to explore the forefront of simulation technology. Whether you're aiming to broaden your knowledge, enhance your technical skills, or connect with industry leaders, the BETA CAE Systems Open Meetings are your gateway to the future of engineering. Join us and be part of shaping the next wave of innovation in the simulation world.




pe

Solutions to Maximize Data Center Performance Featured at OCP Global Summit 2024

The demand for higher compute performance, energy efficiency, and faster time-to-market drove the conversations at this year's Open Compute Project (OCP) Global Summit in San Jose, California. It was the scene of showcasing groundbreaking innovations, expert-led sessions, and networking opportunities to drive the future of data center technology. For those who didn't get to attend or stop by our booth, here's a recap of Cadence's comprehensive solutions that enable next-generation compute technology, AI data center design, analysis, and optimization. Optimized Data Center Design and Operations As the data center community increasingly faces demands for enhanced efficiency, thermal management, sustainability, and performance optimization, data center operators, IT managers, and executives are looking for solutions to these challenges. At the Cadence booth, attendees explored the Cadence Reality Digital Twin Platform and Celsius EC Solver. These technologies are pivotal in achieving high-performance standards for AI data centers, providing advanced digital twin modeling capabilities that redefine next-generation data center design and operation. The Celsius EC Solver demonstration showed how it solves challenging thermal and electronics cooling management problems with precision and speed. CadenceCONNECT: Take the Heat Out of Your AI Data Center Cadence hosted a networking reception on October 16 titled "Take the Heat Out of Your AI Data Center." In today's AI era, managing the heat generated by high-density computing environments is more critical than ever. This reception offered insights into current and emerging data center technologies, digital twin cooling strategies that deliver energy-saving operations, and a chance to engage with industry leaders, Cadence experts, and peers to explore the latest cooling, AI, and GPU acceleration advancements. Here's a recap: Researcher, author, and entrepreneur Dr. Jon Koomey highlighted the inefficiency of data centers in his talk "The Rise of Zombie Data Centers," noting that 20-30% of their capacity is stranded and unused. He advocated for organizational changes and technological solutions like digital twins to reduce wasted energy and improve computational effectiveness as AI deployments increase. In "A New Millennium in Multiphysics System Analysis," Cadence Corporate VP Ben Gu explained the company's significant strides in multiphysics system analysis, evolving from chip simulation to a broader application of computational software for simulating various physical systems, including entire data centers. He noted that the latest Cadence venture, a digital twin platform for data center optimization, opened the opportunity to use simulation technology to optimize the efficiency of data centers. Senior Software Engineering Group Director Albert Zeng highlighted the Cadence Reality DC suite's ability to transform data center operations through simulation, emphasizing its multi-phase engine for optimal thermal performance and the integration of AI capabilities for enhanced design and management. A panel discussion titled "Turning AI Factory Blueprints into Reality at the Speed of Light" featured industry experts from NVIDIA, Norman Wright Precision Environmental and Power, NV5, Switch Data Centers, and Cadence, who explored the evolving requirements and multidimensional challenges of AI factories, emphasizing the need for collaboration across the supply chain to achieve high-performing and sustainable data centers. Watch the highlights. Transforming Designs from Chips to Data Centers The OCP Global Summit 2024 has reaffirmed its status as a pivotal event for data center professionals seeking to stay at the forefront of technological advancements. Cadence's contributions, from groundbreaking digital twin technologies to innovative cooling strategies, have shed light on the path forward for efficient, sustainable data centers. For data center professionals, IT managers, and engineers, the insights gained at this summit are invaluable in navigating the challenges and opportunities presented by the burgeoning AI era. Partnering with Arm Arm Total Design Cadence is a member of the Arm Total Design program. At an invitation-only special Arm event, Cadence's VP of Research and Development, Lokesh Korlipara, delivered a presentation focusing on data center challenges and design solutions with Arm Neoverse Compute Subsystem (CSS). The session highlighted: Efficient integration of Arm Neoverse CSS into system on chips (SoCs) with pre-integrated connectivity IP Performance analysis and verification of the Neoverse CSS integration into the SoC through Cadence's System VIP verification suite and automated testbench creation, enhancing both quality and productivity Jumpstarting designs through Cadence's collaboration with Arm for 3D-IC system planning, chiplets, and interposers Design Services readiness and global scale to support and/or deliver the most demanding Arm Neoverse CSS-based SoC design projects Cadence Supports Arm CSS in Arm Booth During the event, Cadence conducted a demo in the Arm booth that showcased the Cadence System VIP verification suite. The demo highlighted automated testbench creation and performance analysis for integrating the Arm CSS into SoCs while enhancing verification quality and productivity. Summary Cadence offers data center solutions for designing everything from the compute and networking chips to the board, racks, data centers, and campuses. Stay connected with Cadence and other industry leaders to continue exploring the innovations set to redefine the future of data centers. Learn More Cadence Joins Arm Total Design Cadence Arm-Based Solutions Cadence Reality Digital Twin Platform




pe

Matlab cannot open Pspice, to prompt orCEFSimpleUI.exe that it has stopped working!

Cadence_SPB_17.4-2019 + Matlab R2019a

请参考本文档中的步骤进行操作

1,打开BJT_AMP.opj

2,设置Matlab路径

3,打开BJT_AMP_SLPS.slx

4,打开后,设置PSpiceBlock,出现或CEFSimpleUI.exe停止工作

5,添加模块

6,相同

7,打开pspsim.slx

8,相同

9,打开C: Cadence Cadence_SPB_17.4-2019 tools bin

orCEFSimpleUI.exe和orCEFSimple.exe

 

10,相同

我想问一下如何解决,非常感谢!




pe

Virtuoso Studio: Simplified Review of Operating Point Parameter Values

Read on to know about the Operating Point Parameters Summary window that gives you a one-stop view of the categorized and tabulated details on all operating point parameters in your design. This window improves your review cycle with its many benefits.(read more)



  • Analog Design Environment
  • Operating point summary window
  • Virtuoso Studio
  • Operating Point Information
  • Virtuoso Analog Design Environment
  • Custom IC Design
  • Virtuoso ADE Explorer
  • Virtuoso ADE Assembler
  • IC23.1

pe

Spectre 24.1 Release Now Available

The SPECTRE 24.1 release is now available for download at Cadence Downloads. For information on supported platforms and other release compatibility information, see the README.txt file in the installation hierarchy.(read more)




pe

Create bounding shape for arcs

When using Shape > Create Bounding Shape on an arc, the outer side works well, but on the inner side it just draws a straight line from the begging to the end of the curve.  Is anyone aware of a fix for this?

I'm attaching  a picture as an example, it works great on lines.




pe

Noise summary data per sub-block in Maestro output expressions

Hi,

I have a question about printing noise summary via maestro output expressions.

How can I print noise data using output expressions, for multiple levels of the hierarchy?

I have found this article which describe the procedure using ocnGenNoiseSummary() functionhttps://support.cadence.com/apex/ArticleAttachmentPortal?id=a1Od0000007MViHEAW&pageName=ArticleContent

I see also Andrew Beckett referring to the above mentioned article as a solution to a similar question: community.cadence.com/.../noise-summary-per-instance

However, this seems to work only if I'm to extract noise data from a single level of hierarchy.

If I have the output expression "ocnGenNoiseSummary(2 ?result 'hbnoise)", it will generate a "noisesummary" directory under results directory for a hierarchy level of 2.

If I am to extract data from various hierarchy levels, I should be able to generate multiple noise summary directories, such as noisesummary1, noisesummary2 where they correspond to "ocnGenNoiseSummary(1 ?result 'hbnoise)" & "ocnGenNoiseSummary(2 ?result 'hbnoise)", respectively. However this does not seem to be possible.

Can you please advice? Thanks.

My Cadence version: IC23.1-64b.ISR7.27

BR,

Denizhan Karaca