diff

'Everyone hopes to have different schedule in 2026'

Chief executive Guy Kinnings says the DP World Tour hopes "to have a different schedule in 2026" as golf's rulers continue to discuss a merger.




diff

Melania Trump, enigmatic first lady who might do it differently this time

Described by some as an "enigma", Mrs Trump is expected to return to her White House duties "on her own terms".




diff

How difficult is Amorim's start at Man Utd?

Monday Night Club's Mark Chapman is joined by Rory Smith to discuss Ruben Amorim's arrival at Manchester United and how difficult his first game will be.




diff

Schools and students face difficult battle to close learning gaps worsened by pandemic

Billions of dollars were funneled to school districts across the U.S. to help them make up for learning loss from the pandemic. But new research shows that even with that extra money, school districts are still struggling to close the gaps in reading, writing and math. Stephanie Sy discussed the findings with Karyn Lewis of the Center for School and Student Progress and a lead researcher at NWEA.




diff

We got married at a luxury resort in Thailand. If I could go back, there are 5 things I'd do differently.

Looking back, Ellie Furuya says her wedding reception in Thailand was too adult-centric. If she could go back, she'd make it more kid-friendly.




diff

Differentiation Done Right: How “Walk to Read” Works

When we’re asked to switch to explicit, systematic instruction, many teachers worry that we’ll no longer be able to tailor our teaching to the students in front of us. Calls for whole-class phonics instruction lasting 30-45 minutes, for example, summon fears that our  students will be bored by concepts they already know or aren’t yet ready for.




diff

Sport | Difference between good and great is handling pressure, says Kaizer Chiefs legend Baloyi

Former Kaizer Chiefs legend Brian Baloyi says that holding the Kaizer Chiefs No 1 jersey requires a hardened mentality, but he is upbeat over Amakhosi's chances this season.





diff

Differential compartmental processing and phosphorylation of pathogenic human tau and native mouse tau in the line 66 model of frontotemporal dementia [Molecular Bases of Disease]

Synapse loss is associated with motor and cognitive decline in multiple neurodegenerative disorders, and the cellular redistribution of tau is related to synaptic impairment in tauopathies, such as Alzheimer's disease and frontotemporal dementia. Here, we examined the cellular distribution of tau protein species in human tau overexpressing line 66 mice, a transgenic mouse model akin to genetic variants of frontotemporal dementia. Line 66 mice express intracellular tau aggregates in multiple brain regions and exhibit sensorimotor and motor learning deficiencies. Using a series of anti-tau antibodies, we observed, histologically, that nonphosphorylated transgenic human tau is enriched in synapses, whereas phosphorylated tau accumulates predominantly in cell bodies and axons. Subcellular fractionation confirmed that human tau is highly enriched in insoluble cytosolic and synaptosomal fractions, whereas endogenous mouse tau is virtually absent from synapses. Cytosolic tau was resistant to solubilization with urea and Triton X-100, indicating the formation of larger tau aggregates. By contrast, synaptic tau was partially soluble after Triton X-100 treatment and most likely represents aggregates of smaller size. MS corroborated that synaptosomal tau is nonphosphorylated. Tau enriched in the synapse of line 66 mice, therefore, appears to be in an oligomeric and nonphosphorylated state, and one that could have a direct impact on cognitive function.




diff

Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans

JM Dietschy
Oct 1, 1993; 34:1637-1659
Reviews




diff

Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein

DL Brasaemle
Nov 1, 1997; 38:2249-2263
Articles




diff

Quantitation of atherosclerosis in murine models: correlation between lesions in the aortic origin and in the entire aorta, and differences in the extent of lesions between sexes in LDL receptor-deficient and apolipoprotein E-deficient mice

RK Tangirala
Nov 1, 1995; 36:2320-2328
Articles




diff

Existence and uniqueness result for reaction-diffusion model of diffusive population dynamics

A. Kh. Khachatryan, Kh. A. Khachatryan and A. Zh. Narimanyan
Trans. Moscow Math. Soc. 83 (), 183-200.
Abstract, references and article information




diff

High-order splitting finite element methods for the subdiffusion equation with limited smoothing property

Buyang Li, Zongze Yang and Zhi Zhou
Math. Comp. 93 (), 2557-2586.
Abstract, references and article information





diff

Compressible Euler limit from Boltzmann equation with complete diffusive boundary condition in half-space

Ning Jiang, Yi-Long Luo and Shaojun Tang
Trans. Amer. Math. Soc. 377 (), 5323-5359.
Abstract, references and article information




diff

Blow-up solutions of fractional diffusion equations with an exponential nonlinearity

Anh Tuan Nguyen, Tómas Caraballo and Nguyen Huy Tuan
Proc. Amer. Math. Soc. 152 (), 5175-5189.
Abstract, references and article information




diff

Algebraic solutions of linear differential equations: An arithmetic approach

Alin Bostan, Xavier Caruso and Julien Roques
Bull. Amer. Math. Soc. 61 (), 609-658.
Abstract, references and article information




diff

Doctor’s ‘pizza topping’ trick to tell the difference between hemorrhoids and a sign of colon cancer




diff

‘My Ting Different’ - Tosh Alexander blends R&B and dancehall on new single

Dynamic singer Tosh Alexander has been lighting up the music scene with her latest track, ' My Ting Different', a thrilling collaboration with American rapper and songwriter Lady London. The song fuses R...




diff

ARID4B is critical for mouse embryonic stem cell differentiation towards mesoderm and endoderm, linking epigenetics to pluripotency exit [Developmental Biology]

Distinct cell types emerge from embryonic stem cells through a precise and coordinated execution of gene expression programs during lineage commitment. This is established by the action of lineage specific transcription factors along with chromatin complexes. Numerous studies have focused on epigenetic factors that affect embryonic stem cells (ESC) self-renewal and pluripotency. However, the contribution of chromatin to lineage decisions at the exit from pluripotency has not been as extensively studied. Using a pooled epigenetic shRNA screen strategy, we identified chromatin-related factors critical for differentiation toward mesodermal and endodermal lineages. Here we reveal a critical role for the chromatin protein, ARID4B. Arid4b-deficient mESCs are similar to WT mESCs in the expression of pluripotency factors and their self-renewal. However, ARID4B loss results in defects in up-regulation of the meso/endodermal gene expression program. It was previously shown that Arid4b resides in a complex with SIN3A and HDACS 1 and 2. We identified a physical and functional interaction of ARID4B with HDAC1 rather than HDAC2, suggesting functionally distinct Sin3a subcomplexes might regulate cell fate decisions Finally, we observed that ARID4B deficiency leads to increased H3K27me3 and a reduced H3K27Ac level in key developmental gene loci, whereas a subset of genomic regions gain H3K27Ac marks. Our results demonstrate that epigenetic control through ARID4B plays a key role in the execution of lineage-specific gene expression programs at pluripotency exit.




diff

Peptidoglycan analysis reveals that synergistic deacetylase activity in vegetative Clostridium difficile impacts the host response [Glycobiology and Extracellular Matrices]

Clostridium difficile is an anaerobic and spore-forming bacterium responsible for 15–25% of postantibiotic diarrhea and 95% of pseudomembranous colitis. Peptidoglycan is a crucial element of the bacterial cell wall that is exposed to the host, making it an important target for the innate immune system. The C. difficile peptidoglycan is largely N-deacetylated on its glucosamine (93% of muropeptides) through the activity of enzymes known as N-deacetylases, and this N-deacetylation modulates host–pathogen interactions, such as resistance to the bacteriolytic activity of lysozyme, virulence, and host innate immune responses. C. difficile genome analysis showed that 12 genes potentially encode N-deacetylases; however, which of these N-deacetylases are involved in peptidoglycan N-deacetylation remains unknown. Here, we report the enzymes responsible for peptidoglycan N-deacetylation and their respective regulation. Through peptidoglycan analysis of several mutants, we found that the N-deacetylases PdaV and PgdA act in synergy. Together they are responsible for the high level of peptidoglycan N-deacetylation in C. difficile and the consequent resistance to lysozyme. We also characterized a third enzyme, PgdB, as a glucosamine N-deacetylase. However, its impact on N-deacetylation and lysozyme resistance is limited, and its physiological role remains to be dissected. Finally, given the influence of peptidoglycan N-deacetylation on host defense against pathogens, we investigated the virulence and colonization ability of the mutants. Unlike what has been shown in other pathogenic bacteria, a lack of N-deacetylation in C. difficile is not linked to a decrease in virulence.




diff

N-acetylglucosamine drives myelination by triggering oligodendrocyte precursor cell differentiation [Molecular Bases of Disease]

Myelination plays an important role in cognitive development and in demyelinating diseases like multiple sclerosis (MS), where failure of remyelination promotes permanent neuro-axonal damage. Modification of cell surface receptors with branched N-glycans coordinates cell growth and differentiation by controlling glycoprotein clustering, signaling, and endocytosis. GlcNAc is a rate-limiting metabolite for N-glycan branching. Here we report that GlcNAc and N-glycan branching trigger oligodendrogenesis from precursor cells by inhibiting platelet-derived growth factor receptor-α cell endocytosis. Supplying oral GlcNAc to lactating mice drives primary myelination in newborn pups via secretion in breast milk, whereas genetically blocking N-glycan branching markedly inhibits primary myelination. In adult mice with toxin (cuprizone)-induced demyelination, oral GlcNAc prevents neuro-axonal damage by driving myelin repair. In MS patients, endogenous serum GlcNAc levels inversely correlated with imaging measures of demyelination and microstructural damage. Our data identify N-glycan branching and GlcNAc as critical regulators of primary myelination and myelin repair and suggest that oral GlcNAc may be neuroprotective in demyelinating diseases like MS.




diff

The cation diffusion facilitator protein MamM's cytoplasmic domain exhibits metal-type dependent binding modes and discriminates against Mn2+ [Molecular Biophysics]

Cation diffusion facilitator (CDF) proteins are a conserved family of divalent transition metal cation transporters. CDF proteins are usually composed of two domains: the transmembrane domain, in which the metal cations are transported through, and a regulatory cytoplasmic C-terminal domain (CTD). Each CDF protein transports either one specific metal or multiple metals from the cytoplasm, and it is not known whether the CTD takes an active regulatory role in metal recognition and discrimination during cation transport. Here, the model CDF protein MamM, an iron transporter from magnetotactic bacteria, was used to probe the role of the CTD in metal recognition and selectivity. Using a combination of biophysical and structural approaches, the binding of different metals to MamM CTD was characterized. Results reveal that different metals bind distinctively to MamM CTD in terms of their binding sites, thermodynamics, and binding-dependent conformations, both in crystal form and in solution, which suggests a varying level of functional discrimination between CDF domains. Furthermore, these results provide the first direct evidence that CDF CTDs play a role in metal selectivity. We demonstrate that MamM's CTD can discriminate against Mn2+, supporting its postulated role in preventing magnetite formation poisoning in magnetotactic bacteria via Mn2+ incorporation.




diff

Role of phospholipid synthesis in the development and differentiation of malaria parasites in the blood [Microbiology]

The life cycle of malaria parasites in both their mammalian host and mosquito vector consists of multiple developmental stages that ensure proper replication and progeny survival. The transition between these stages is fueled by nutrients scavenged from the host and fed into specialized metabolic pathways of the parasite. One such pathway is used by Plasmodium falciparum, which causes the most severe form of human malaria, to synthesize its major phospholipids, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. Much is known about the enzymes involved in the synthesis of these phospholipids, and recent advances in genetic engineering, single-cell RNA-Seq analyses, and drug screening have provided new perspectives on the importance of some of these enzymes in parasite development and sexual differentiation and have identified targets for the development of new antimalarial drugs. This Minireview focuses on two phospholipid biosynthesis enzymes of P. falciparum that catalyze phosphoethanolamine transmethylation (PfPMT) and phosphatidylserine decarboxylation (PfPSD) during the blood stages of the parasite. We also discuss our current understanding of the biochemical, structural, and biological functions of these enzymes and highlight efforts to use them as antimalarial drug targets.




diff

COP27: Navigating a difficult road to Sharm El-Sheikh

COP27: Navigating a difficult road to Sharm El-Sheikh Expert comment NCapeling 6 July 2022

Against a backdrop of rising urgency, COP27 in Egypt will bring all aspects of climate action into the spotlight – but especially the role of the host country.

As COP26 drew to a close in Glasgow, Egyptian officials announced their priorities for COP27, emphasizing climate finance and climate adaptation – a new approach given previous COPs mainly focused on mitigation, reducing emissions to limit climate damage.

This was followed by the COP27 presidency outlining its vision at MENA Climate Week 2022 to achieve ‘substantive and equal progress’ on all aspects of the negotiations, and Egypt emphasizing its intention to focus on implementing existing carbon reduction targets rather than pushing for further carbon cuts.

Egypt argues it is hosting COP27 on behalf of African nations and that, while it is promoting the interests of the developing world, it will be an impartial arbiter. However it is also useful to consider its priorities from the Egyptian government’s perspective.

Agenda drivers

Egypt has long prioritized climate finance and adaptation because it remains in need of technical and financial support to adapt, especially in agriculture and tourism.

It plans to expand its access to climate funding and investment, an area in which Egypt has been relatively successful as it currently receives 27 per cent of all multilateral climate finance in the MENA region and has issued the region’s first sovereign green bonds.

With public debt currently 94 per cent of GDP, Egyptian officials have also called for debt relief for Egypt and other developing countries.

Egypt’s Climate Change Strategy reflects this approach, aiming to enhance Egypt’s rank on the Climate Change Performance Index in order to ‘attract more investments and acquire more climate funding’.

Not pushing for more emission reductions at this critical moment risks derailing global decarbonization momentum and undermining global climate action

Limiting the mitigation scope and the focus on finance also echoes Egypt’s own reluctance to make carbon reduction commitments. The Egyptian nationally determined contribution (NDC) – its 2030 pledge under the Paris Agreement – does not include any quantifiable emission reduction targets.

Egypt is one of only a few countries which failed to submit an updated NDC in 2021 and its upcoming update will not include an economy-wide carbon reduction target.

Egypt has also never published a long-term strategy and has no decarbonization plans despite independent estimates it should cut rising emissions by one-quarter by 2030, and by two-thirds by 2050 to be aligned with the Paris Agreement. This partly explains why observers rate Egypt’s climate action as highly insufficient.

Furthermore, Egypt’s championing of ‘moving from pledges to implementation’ without having quantifiable carbon reduction pledges of its own effectively exempts it from both pledging and implementation.

As a developing country, Egypt’s negotiating position is supported by UNFCCC provisions which recognize differentiated responsibilities and respective capabilities of nations.

Its proposal to focus COP27 on the implementation of climate action and finance pledges is important in consolidating progress. But not pushing for more emission reductions at this critical moment risks derailing global decarbonization momentum and undermining global climate action.

According to optimistic estimates, if current climate pledges were implemented the world would still remain on track for 2°C of warming by the end of the century, with far worse impacts than if warming was curbed at 1.5°C.

Under a 2°C scenario, 37 per cent of the global population could regularly be exposed to extreme heat waves compared to 14 per cent in a 1.5°C warmer world, with developing countries expected to be worst-affected.

A 2°C trajectory also runs the risk of tipping points such as the melting of ice sheets in Antarctica and Greenland, triggering runaway climate change. Time to change the warming trajectory is running out as the latest IPCC assessment warns the window of opportunity is now ‘brief and rapidly closing’, and the UN Secretary General recently called for faster carbon cuts by the end of 2022 to avoid a ‘climate catastrophe’.

A different energy transition

Egypt opted not to join any of the voluntary sectoral coalitions at COP26 on reducing methane, clean energy transition, transition to zero-emissions vehicles, or moving beyond oil and gas.

This position is explained by its growing role as an exporter and advocate for fossil gas in the energy transition. Egypt is the second-largest producer of natural gas in Africa and is emerging as a fossil gas hub for the eastern Mediterranean, which is shaping its domestic energy policy.

Egypt is open to dialogue – not just on refining the COP27 agenda but also on reviewing its own climate priorities and leveraging its energy sector for a more ambitious transition

Its 59GW electricity generation capacity is almost double the peak demand and is dominated by gas-powered electricity generation, which currently represents 42 per cent of all Africa’s gas generation.

Egypt’s climate policy is also shaped by fossil gas, and its national Climate Change Strategy encourages the expansion of gas use by promoting a transition to compressed natural gas for vehicles, the expansion of its domestic natural gas network – despite having universal access to electricity – and shifting to a gas-fuelled shipping sector.

Egypt also voiced support for other African countries to extract and deploy fossil gas and oil resources, making it one of the protagonists of the ‘great fossil gas pushback’. These advocates defend the right of developing countries to deploy fossil gas as a ‘transition fuel’ and champion its necessity to solve energy poverty.

But their position is not shared by all African and developing countries, and is rejected by some civil society groups, who argue it risks locking in greenhouse gases and local emissions for decades as well as delaying future development of low carbon energy systems.

Egypt’s huge spare generation capacity has contributed to a slowdown in renewable energy projects over the past two years. With renewables representing just 6GW, Egypt is expected to miss its renewable energy target for 2022, set at 20 per cent of generating capacity.

Engaging Egypt better

But these positions are more malleable than they seem, and Egypt is open to dialogue – not just on refining the COP27 agenda but also on reviewing its own climate priorities and leveraging its energy sector for a more ambitious transition.




diff

International Metabolic Prognostic Index Is Superior to Other Metabolic Tumor Volume-Based Prognostication Methods in a Real-Life Cohort of Diffuse Large B-Cell Lymphoma

Visual Abstract




diff

Novel Proteomic Profiling of Epididymal Extracellular Vesicles in the Domestic Cat Reveals Proteins Related to Sequential Sperm Maturation with Differences Observed between Normospermic and Teratospermic Individuals

Tricia Rowlison
Dec 1, 2020; 19:2090-2103
Research




diff

Interspecies differences in proteome turnover kinetics are correlated with lifespans and energetic demands

Kyle Swovick
Dec 28, 2020; 0:RA120.002301v1-mcp.RA120.002301
Research




diff

Proteomic analyses identify differentially expressed proteins and pathways between low-risk and high-risk subtypes of early-stage lung adenocarcinoma and their prognostic impacts

Juntuo Zhou
Nov 30, 2020; 0:RA120.002384v1-mcp.RA120.002384
Research




diff

AMPK{beta}1 and AMPK{beta}2 define an isoform-specific gene signature in human pluripotent stem cells, differentially mediating cardiac lineage specification [Cell Biology]

AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism that phosphorylates a wide range of proteins to maintain cellular homeostasis. AMPK consists of three subunits: α, β, and γ. AMPKα and β are encoded by two genes, the γ subunit by three genes, all of which are expressed in a tissue-specific manner. It is not fully understood, whether individual isoforms have different functions. Using RNA-Seq technology, we provide evidence that the loss of AMPKβ1 and AMPKβ2 lead to different gene expression profiles in human induced pluripotent stem cells (hiPSCs), indicating isoform-specific function. The knockout of AMPKβ2 was associated with a higher number of differentially regulated genes than the deletion of AMPKβ1, suggesting that AMPKβ2 has a more comprehensive impact on the transcriptome. Bioinformatics analysis identified cell differentiation as one biological function being specifically associated with AMPKβ2. Correspondingly, the two isoforms differentially affected lineage decision toward a cardiac cell fate. Although the lack of PRKAB1 impacted differentiation into cardiomyocytes only at late stages of cardiac maturation, the availability of PRKAB2 was indispensable for mesoderm specification as shown by gene expression analysis and histochemical staining for cardiac lineage markers such as cTnT, GATA4, and NKX2.5. Ultimately, the lack of AMPKβ1 impairs, whereas deficiency of AMPKβ2 abrogates differentiation into cardiomyocytes. Finally, we demonstrate that AMPK affects cellular physiology by engaging in the regulation of hiPSC transcription in an isoform-specific manner, providing the basis for further investigations elucidating the role of dedicated AMPK subunits in the modulation of gene expression.




diff

Nuclear translocation ability of Lipin differentially affects gene expression and survival in fed and fasting Drosophila

Stephanie E. Hood
Dec 1, 2020; 61:1720-1732
Research Articles




diff

Problem Notes for SAS®9 - 66511: A Russian translation shows the same value for two different variables in the Define Value dialog box for the Reply node in SAS Customer Intelligence Studio

In SAS Customer Intelligence Studio,  when you add  Reply- node variable values in the Define Value dialog box, you might notice that two identically labeled data-grid variables are




diff

Different rates of flux through the biosynthetic pathway for long-chain versus very-long-chain sphingolipids [Research Articles]

The backbone of all sphingolipids (SLs) is a sphingoid long-chain base (LCB) to which a fatty acid is N-acylated. Considerable variability exists in the chain length and degree of saturation of both of these hydrophobic chains, and recent work has implicated ceramides with different LCBs and N-acyl chains in distinct biological processes; moreover, they may play different roles in disease states and possibly even act as prognostic markers. We now demonstrate that the half-life, or turnover rate, of ceramides containing diverse N-acyl chains is different. By means of a pulse-labeling protocol using stable-isotope, deuterated free fatty acids, and following their incorporation into ceramide and downstream SLs, we show that very-long-chain (VLC) ceramides containing C24:0 or C24:1 fatty acids turn over much more rapidly than long-chain (LC) ceramides containing C16:0 or C18:0 fatty acids due to the more rapid metabolism of the former into VLC sphingomyelin and VLC hexosylceramide. In contrast, d16:1 and d18:1 ceramides show similar rates of turnover, indicating that the length of the sphingoid LCB does not influence the flux of ceramides through the biosynthetic pathway. Together, these data demonstrate that the N-acyl chain length of SLs may not only affect membrane biophysical properties but also influence the rate of metabolism of SLs so as to regulate their levels and perhaps their biological functions.




diff

Nuclear translocation ability of Lipin differentially affects gene expression and survival in fed and fasting Drosophila [Research Articles]

Lipins are eukaryotic proteins with functions in lipid synthesis and the homeostatic control of energy balance. They execute these functions by acting as phosphatidate phosphatase enzymes in the cytoplasm and by changing gene expression after translocation into the cell nucleus, in particular under fasting conditions. Here, we asked whether nuclear translocation and the enzymatic activity of Drosophila Lipin serve essential functions and how gene expression changes, under both fed and fasting conditions, when nuclear translocation is impaired. To address these questions, we created a Lipin null mutant, a mutant expressing Lipin lacking a nuclear localization signal (LipinNLS), and a mutant expressing enzymatically dead Lipin. Our data support the conclusion that the enzymatic but not nuclear gene regulatory activity of Lipin is essential for survival. Notably, adult LipinNLS flies were not only viable but also exhibited improved life expectancy. In contrast, they were highly susceptible to starvation. Both the improved life expectancy in the fed state and the decreased survival in the fasting state correlated with changes in metabolic gene expression. Moreover, increased life expectancy of fed flies was associated with a decreased metabolic rate. Interestingly, in addition to metabolic genes, genes involved in feeding behavior and the immune response were misregulated in LipinNLS flies. Altogether, our data suggest that the nuclear activity of Lipin influences the genomic response to nutrient availability with effects on life expectancy and starvation resistance. Thus, nutritional or therapeutic approaches that aim at lowering nuclear translocation of lipins in humans may be worth exploring.




diff

Solvent accessibility changes in a Na+-dependent C4-dicarboxylate transporter suggest differential substrate effects in a multistep mechanism [Membrane Biology]

The divalent anion sodium symporter (DASS) family (SLC13) plays critical roles in metabolic homeostasis, influencing many processes, including fatty acid synthesis, insulin resistance, and adiposity. DASS transporters catalyze the Na+-driven concentrative uptake of Krebs cycle intermediates and sulfate into cells; disrupting their function can protect against age-related metabolic diseases and can extend lifespan. An inward-facing crystal structure and an outward-facing model of a bacterial DASS family member, VcINDY from Vibrio cholerae, predict an elevator-like transport mechanism involving a large rigid body movement of the substrate-binding site. How substrate binding influences the conformational state of VcINDY is currently unknown. Here, we probe the interaction between substrate binding and protein conformation by monitoring substrate-induced solvent accessibility changes of broadly distributed positions in VcINDY using a site-specific alkylation strategy. Our findings reveal that accessibility to all positions tested is modulated by the presence of substrates, with the majority becoming less accessible in the presence of saturating concentrations of both Na+ and succinate. We also observe separable effects of Na+ and succinate binding at several positions suggesting distinct effects of the two substrates. Furthermore, accessibility changes to a solely succinate-sensitive position suggests that substrate binding is a low-affinity, ordered process. Mapping these accessibility changes onto the structures of VcINDY suggests that Na+ binding drives the transporter into an as-yet-unidentified conformational state, involving rearrangement of the substrate-binding site–associated re-entrant hairpin loops. These findings provide insight into the mechanism of VcINDY, which is currently the only structurally characterized representative of the entire DASS family.




diff

Differential Complex Formation via Paralogs in the Human Sin3 Protein Interaction Network [Research]

Despite the continued analysis of HDAC inhibitors in clinical trials, the heterogeneous nature of the protein complexes they target limits our understanding of the beneficial and off-target effects associated with their application. Among the many HDAC protein complexes found within the cell, Sin3 complexes are conserved from yeast to humans and likely play important roles as regulators of transcriptional activity. The presence of two Sin3 paralogs in humans, SIN3A and SIN3B, may result in a heterogeneous population of Sin3 complexes and contributes to our poor understanding of the functional attributes of these complexes. Here, we profile the interaction networks of SIN3A and SIN3B to gain insight into complex composition and organization. In accordance with existing data, we show that Sin3 paralog identity influences complex composition. Additionally, chemical cross-linking MS identifies domains that mediate interactions between Sin3 proteins and binding partners. The characterization of rare SIN3B proteoforms provides additional evidence for the existence of conserved and divergent elements within human Sin3 proteins. Together, these findings shed light on both the shared and divergent properties of human Sin3 proteins and highlight the heterogeneous nature of the complexes they organize.




diff

MSstatsTMT: Statistical Detection of Differentially Abundant Proteins in Experiments with Isobaric Labeling and Multiple Mixtures [Technological Innovation and Resources]

Tandem mass tag (TMT) is a multiplexing technology widely-used in proteomic research. It enables relative quantification of proteins from multiple biological samples in a single MS run with high efficiency and high throughput. However, experiments often require more biological replicates or conditions than can be accommodated by a single run, and involve multiple TMT mixtures and multiple runs. Such larger-scale experiments combine sources of biological and technical variation in patterns that are complex, unique to TMT-based workflows, and challenging for the downstream statistical analysis. These patterns cannot be adequately characterized by statistical methods designed for other technologies, such as label-free proteomics or transcriptomics. This manuscript proposes a general statistical approach for relative protein quantification in MS- based experiments with TMT labeling. It is applicable to experiments with multiple conditions, multiple biological replicate runs and multiple technical replicate runs, and unbalanced designs. It is based on a flexible family of linear mixed-effects models that handle complex patterns of technical artifacts and missing values. The approach is implemented in MSstatsTMT, a freely available open-source R/Bioconductor package compatible with data processing tools such as Proteome Discoverer, MaxQuant, OpenMS, and SpectroMine. Evaluation on a controlled mixture, simulated datasets, and three biological investigations with diverse designs demonstrated that MSstatsTMT balanced the sensitivity and the specificity of detecting differentially abundant proteins, in large-scale experiments with multiple biological mixtures.




diff

Novel Proteomic Profiling of Epididymal Extracellular Vesicles in the Domestic Cat Reveals Proteins Related to Sequential Sperm Maturation with Differences Observed between Normospermic and Teratospermic Individuals [Research]

Extracellular vesicles (EVs) secreted by the epididymal epithelium transfer to spermatozoa key proteins that are essential in promoting motility and subsequent fertilization success. Using the domestic cat model, the objectives were to (1) characterize and compare protein content of EVs between segments of the epididymis, and (2) compare EV protein compositions between normo- and teratospermic individuals (producing >60% of abnormal spermatozoa). Epididymal EVs from adult cats were isolated and assessed via liquid chromatography tandem MS. Both male types shared 3008 proteins in total, with 98 and 20 EV proteins unique to normospermic and teratospermic males, respectively. Expression levels of several proteins changed between epididymal segments in both male types. Several proteins in both groups were related to sperm motility (e.g. hexokinase 1, adenylate kinase isoenzyme) and zona pellucida or oolemma binding (e.g. disintegrin and metalloproteinase domain proteins, zona binding proteins 1 and 2). Interestingly, seven cauda-derived EV proteins trended downward in teratospermic compared with normospermic males, which may relate to poor sperm quality. Collective results revealed, for the first time, EV proteins related to sequential sperm maturation with differences observed between normospermic and teratospermic individuals.




diff

Proteomic analyses identify differentially expressed proteins and pathways between low-risk and high-risk subtypes of early-stage lung adenocarcinoma and their prognostic impacts [Research]

The histopathological subtype of lung adenocarcinoma (LUAD) is closely associated with prognosis. Micropapillary or solid predominant LUAD tends to relapse after surgery at an early stage, whereas lepidic pattern shows a favorable outcome. However, the molecular mechanism underlying this phenomenon remains unknown. Here, we recruited 31 lepidic predominant LUADs (LR: low-risk subtype group) and 28 micropapillary or solid predominant LUADs (HR: high-risk subtype group). Tissues of these cases were obtained and label-free quantitative proteomic and bioinformatic analyses were performed. Additionally, prognostic impact of targeted proteins was validated using The Cancer Genome Atlas databases (n=492) and tissue microarrays composed of early-stage LUADs (n=228). A total of 192 differentially expressed proteins were identified between tumor tissues of LR and HR and three clusters were identified via hierarchical clustering excluding eight proteins. Cluster 1 (65 proteins) showed a sequential decrease in expression from normal tissues to tumor tissues of LR and then to HR and was predominantly enriched in pathways such as tyrosine metabolism and ECM-receptor interaction, and increased matched mRNA expression of 18 proteins from this cluster predicted favorable prognosis. Cluster 2 (70 proteins) demonstrated a sequential increase in expression from normal tissues to tumor tissues of LR and then to HR and was mainly enriched in pathways such as extracellular organization, DNA replication and cell cycle, and high matched mRNA expression of 25 proteins indicated poor prognosis. Cluster 3 (49 proteins) showed high expression only in LR, with high matched mRNA expression of 20 proteins in this cluster indicating favorable prognosis. Furthermore, high expression of ERO1A and FEN1 at protein level predicted poor prognosis in early-stage LUAD, supporting the mRNA results. In conclusion, we discovered key differentially expressed proteins and pathways between low-risk and high-risk subtypes of early-stage LUAD. Some of these proteins could serve as potential biomarkers in prognostic evaluation.




diff

Interspecies differences in proteome turnover kinetics are correlated with lifespans and energetic demands [Research]

Cells continually degrade and replace damaged proteins. However, the high energetic demand of protein turnover generates reactive oxygen species (ROS) that compromise the long-term health of the proteome. Thus, the relationship between aging, protein turnover and energetic demand remains unclear. Here, we used a proteomic approach to measure rates of protein turnover within primary fibroblasts isolated from a number of species with diverse lifespans including the longest-lived mammal, the bowhead whale. We show that organismal lifespan is negatively correlated with turnover rates of highly abundant proteins. In comparison to mice, cells from long-lived naked mole rats have slower rates of protein turnover, lower levels of ATP production and reduced ROS levels. Despite having slower rates of protein turnover, naked mole rat cells tolerate protein misfolding stress more effectively than mouse cells. We suggest that in lieu of rapid constitutive turnover, long-lived species may have evolved more energetically efficient mechanisms for selective detection and clearance of damaged proteins.




diff

Correction: Functional domain and motif analyses of androgen receptor coregulator ARA70 and its differential expression in prostate cancer. [Additions and Corrections]

VOLUME 279 (2004) PAGES 33438–33446For Fig. 1B, the second, third, and fifth panels were mistakenly duplicated during article preparation as no yeast colonies were observed in these conditions. The corrected images are presented in the revised Fig. 1B. This correction does not affect the results or conclusions of the work. The authors apologize for the error.jbc;295/50/17382/F1F1F1Figure 1B.




diff

Scarlett McNally: Preventing obesity is different from curing it—and even more urgent




diff

Dual Somatostatin Receptor/18F-FDG PET/CT Imaging in Patients with Well-Differentiated, Grade 2 and 3 Gastroenteropancreatic Neuroendocrine Tumors

Our purpose was to prospectively assess the distribution of NETPET scores in well-differentiated (WD) grade 2 and 3 gastroenteropancreatic (GEP) neuroendocrine tumors (NETs) and to determine the impact of the NETPET score on clinical management. Methods: This single-arm, institutional ethics review board–approved prospective study included 40 patients with histologically proven WD GEP NETs. 68Ga-DOTATATE PET and 18F-FDG PET were performed within 21 d of each other. NETPET scores were evaluated qualitatively by 2 reviewers, with up to 10 marker lesions selected for each patient. The quantitative parameters that were evaluated included marker lesion SUVmax for each tracer; 18F-FDG/68Ga-DOTATATE SUVmax ratios; functional tumor volume (FTV) and metabolic tumor volume (MTV) on 68Ga-DOTATATE and 18F-FDG PET, respectively; and FTV/MTV ratios. The treatment plan before and after 18F-FDG PET was recorded. Results: There were 22 men and 18 women (mean age, 60.8 y) with grade 2 (n = 24) or grade 3 (n = 16) tumors and a mean Ki-67 index of 16.1%. NETPET scores of P0, P1, P2A, P2B, P3B, P4B, and P5 were documented in 2 (5%), 5 (12.5%), 5 (12.5%) 20 (50%), 2 (5%), 4 (10%), and 2 (5%) patients, respectively. No association was found between the SUVmax of target lesions on 68Ga-DOTATATE and the SUVmax of target lesions on 18F-FDG PET (P = 0.505). 18F-FDG/68Ga-DOTATATE SUVmax ratios were significantly lower for patients with low (P1–P2) primary NETPET scores than for those with high (P3–P5) primary NETPET scores (mean ± SD, 0.20 ± 0.13 and 1.68 ± 1.44, respectively; P < 0.001). MTV on 18F-FDG PET was significantly lower for low primary NETPET scores than for high ones (mean ± SD, 464 ± 601 cm3 and 66 ± 114 cm3, respectively; P = 0.005). A change in the type of management was observed in 42.5% of patients after 18F-FDG PET, with the most common being a change from systemic therapy to peptide receptor radionuclide therapy and from debulking surgery to systemic therapy. Conclusion: There was a heterogeneous distribution of NETPET scores in patients with WD grade 2 and 3 GEP NETs, with more than 1 in 5 patients having a high NETPET score and a frequent change in management after 18F-FDG PET. Quantitative parameters including 18F-FDG/68Ga-DOTATATE SUVmax ratios in target lesions and FTV/MTV ratios can discriminate between patients with high and low NETPET scores.




diff

People Have Very Different Understandings of Even the Simplest Words

Distinctive meanings for a word like “risk” can have a big impact on public messaging, especially when it comes to issues like climate change





diff

Why do some bodies respond differently to disease? | Erika Moore

TED Fellow and equity bioengineer Erika Moore investigates how cells controlling inflammation behave differently depending on a patient's background. By focusing on the "who" behind the disease, Moore is uncovering why certain diseases disproportionately affect certain ethnicities, paving the way for more inclusive and effective health care.




diff

Cultural Frame Switching: Different Language, Different Personality

Bilingual individuals demonstrate different personality characteristics when speaking different languages. Marketers making media and language decisions when addressing multilingual markets should add this finding to their list of influencing factors.

The post Cultural Frame Switching: Different Language, Different Personality appeared first on Neuromarketing.




diff

What are The Different Phases of EMDR Therapy?

EMDR therapy, also known as Eye Movement Desensitization and Reprocessing therapy, is an integrative and all-inclusive psychotherapy model used to treat mental conditions and trauma. This approach has been researched extensively in recent years and confirmed to be an effective way to tackle mental challenges. EMDR therapy was reportedly developed in the 1980’s by an […]

The post What are The Different Phases of EMDR Therapy? first appeared on What is Psychology?.