of

Cadence in Collaboration with Arm Ensures the Software Just Works

The increase in compute and data-intensive applications and the need for lower power consumption have resulted in a rapidly growing number of Arm-based devices in various market segments; this requires fast time to market (TTM) and support for off-t...(read more)





of

The Mechanical Side of Multiphysics System Simulation

Introduction

Multiphysics is an integral part of the concepts around digital twins. In this post, I want to discuss the mechanical aspects of multiphysics in system simulations, which are critical for 3D-IC, multi-die, and chiplet design.

The physical world in which we live is growing ever more electrified. Think of the transformation that the cell phone has brought into our lives, as has the present-day migration to electronic vehicles (EVs). These products are not only feats of electronic engineering but of mechanical as well, as the electronics find themselves in new and novel forms such as foldable phones and flying cars (eVOTLs). Here, engineering domains must co-exist and collaborate to bring about the best end products possible.

Start with the electronics—chips, chiplets, IC packaging, PCB, and modules. But now put these into a new form factor that can be dropped or submerged in water or accelerated along a highway. What about drop testing, aerodynamics, and aeroacoustics? These largely computational fluid dynamics (CFD) and/or mechanical multiphysics phenomena must also be accounted for. And then how does the drop testing impact the electrical performance? The world of electronics and its vast array of end products is pushing us beyond pure electrical engineering to be more broadly minded and develop not only heterogeneous products but heterogeneous engineering teams as well.

Cadence's Unique Expertise

It's at this crossroad of complexity and electronic proliferation that Cadence shines. Let's take, for example, the latest push for higher-performing high-bandwidth memory (HBM) devices and AI data center expansion. These technologies are growing from several layers to 12, and I can't emphasize enough the importance of teamwork and integrated solutions in tackling the challenges of advanced packaging technologies and how collaboration is shaping the future of semiconductor innovation and paving the way for cutting-edge developments in the industry.

These layered electronics are powered, and power creates heat. Heat needs to be understood, and thus, the thermal integrity issues uncovered along the way must be addressed. However, electronic thermal issues are just the first domino in a chain of interdependencies. What about the thermal stress and warpage that can be caused by the powering of these stacked devices? How does that then lend to mechanical stress and even material fatigue as the temperature cycles from high to low and back through the use of the electronic device? This is just one example in a long list of many...

Cadence Multiphysics Analysis Offerings

The confluence of electrical, mechanical, and CFD is exactly why Cadence expanded into multiphysics at a significant rate starting in 2019 with the announcement of the Clarity 3D Solver and Celsius Thermal Solver products for electromagnetic (EM) and thermal multiphysics system simulations. Recent acquisitions of Numeca, Pointwise, and Cascade (now branded within Cadence as the Fidelity CFD Platform) as well as Future Facilities (now the Cadence Reality Digital Twin product line) are all adding CFD expertise. The recent addition of Beta CAE brings mechanical multiphysics to the suite of solutions available from Cadence. The full breadth of these multiphysics system analyses, spanning EM, thermal, signal integrity/power integrity (SI/PI), CFD, and now mechanical, creates a platform for digital twinning across a wide array of applications. You can learn more by viewing Cadence's Reality Digital Twin platform launch on the keynote stage at NVIDIA's GTC in March, as well as this Designed with Cadence video: NV5, NVIDIA, and Cadence Collaboration Optimizes Data Centers.

Conclusion

Ever more sophisticated electronic designs are in demand to fulfill the needs of tomorrow's technologies, driving a convergence of electrical and mechanical aspects of multiphysics in system simulations. To successfully produce the exciting new products of the future, both domains must be able to collaborate effectively and efficiently. Cadence is fully committed to developing and providing our customers with the software products they need to enable this electrical/mechanical evolution. From EM, to thermal, to SI/PI, CFD, and mechanical, Cadence is enabling digital twinning across a wide array of applications that are forging pathways to the future.

For more information on Cadence's multiphysics system analysis offerings, visit our webpage and download our brochure.




of

Aligning Components using Offset Mode in Allegro X APD

Starting SPB 23.1, in Allegro X PCB Editor and Allegro X Advanced Package Designer, you can align components by using offset mode. Earlier only spacing mode was available.

Follow these steps to Align Components using Offset Mode:

  1. Set Application Mode to Placement Edit.
  2. Drag the components that need to be aligned and right-click and choose Align Components.
  3. Now, in the Options tab, you will notice Spacing Section with Equal Offset. You can equally and individually offset the components by using the +/- buttons for increment or decrement.




of

How to add wirebond profile to a die pin?

Starting SPB 23.1, a new pin property, WIREBOND_PROFILE_NAME is introduced. This property can be used to define a wirebond profile to a die pin. When adding a wirebond, the pin will use the profile defined in the WIREBOND_PROFILE_NAME property associated to the die pin.

Assign the WIREBOND_PROFILE_NAME property to the die pin using Edit > Properties and set the desired wirebond profile name in the Value field.

The following image displays the WIREBOND_PROFILE_NAME property assigned to the pin and wire profile of the Wire Bond for that pin.




of

Allegro: Tip of the Week : Push Connectivity

At times, there might arise a condition in the design where you need to push the net of selected pins to all its physically connected objects. For example, a few pins are updated with a new net, and it is required to push the new net to all its connected objects. At times, you might update the die or copy routing to other components, when a portion of routing gets the wrong net.

To propagate the net of the pin to all its physically connected objects, Allegro X APD uses the standalone command, Push Connectivity.

You can call the command through Logic > Push Connectivity.

Alternately, you can use the push connectivity command at the command line. Once the command is active, it lets you select pins or symbols that will be used to push net connectivity to all connected objects.

Presently, dynamic shapes and filled rectangles are not considered as part of connectivity. Static shapes are supported.




of

DFA check space of compont to BGA ball or BGA PAD in APD

Hi,

There are mang components in BGA ball side of flipchip package.

Are there DFA check space of compont body or pin soldermask to BGA ball or BGA PAD or bga  soldermask in allegro APD?

I only find space of compont to compont in APD DFA. 




of

Allegro X APD - Tip of the week: Wondering how to set two adjacent layers as conductor layers! Then this post should help you.

By default, a dielectric must separate each pair of conductor layers in the cross-section of a design. In rare cases, this does not represent the real, manufactured substrate.

If your design requires you to have conductor layers that are not separated by a dielectric (such as, for half-etch designs), there is a variable that needs to be set in Allegro X APD. You must set this by enabling the variable icp_allow_adjacent_conductors. This entry, and its location in the User Preferences Editor, are shown in the following image.

The Objects on adjacent conductor layers do not electrically connect together, automatically. A via must be used to establish the inter-layer connections.

When enabling this option, it is recommended to exercise caution because excluding dielectric layers from your cross-section can lead to inaccurate calculations, including the calculations for signal integrity and via heights. It is important that your cross-section accurately reflect the finished product to ensure the most accurate results possible. Any dielectric layers present in the manufactured part need to be in the cross-section for accurate extraction, 3D viewing, and so on.

Let us know your comments on the various designs that would require adjacent conductor layers.




of

Allegro X APD : Tip of the Week: ‘Auto-blank other rats’ feature

When working on a complex design, it is common to have very many net ratlines. Quantities like 1000 ratlines are possible. It can result in a cluttered view while routing. Therefore, it is useful to make all other ratlines invisible while routing interactively. You would like to make all ratlines visible again when each route action is completed.

You can easily do this by enabling the Auto-blank other rats option during routing. When enabled, all rats other than the primary ones are suppressed during the Add Connect command.




of

Unveiling the Capabilities of Verisium Manager for Optimized Operations

In SoC development, the verification cycle is a crucial phase that ensures products meet their specifications and function correctly. However, the complexity of modern SoC projects, with their constant data flow, multiple validation teams working in parallel, and tight schedules, presents significant challenges. This article explores these challenges and introduces Verisium Manager as a solution that embodies the 'One Tool Fits All' concept. This means that Verisium Manager is designed to handle all aspects of the verification process for SoC development, from planning to coverage analysis to regression testing, thereby addressing the complex needs of SoC verification.

The Hurdles in Traditional Validation Cycles

 A typical validation process involves planning, coverage analysis, and regression testing. This complexity is compounded by using separate tools for each activity, leading to multiple control environments, APIs, and databases, not to mention the array of tool owners. Such fragmentation results in constant data transfer and translation between systems, from the planning tool to the coverage analysis tool and then to the regression testing tool. This continuous movement of data causes delays, system instability, poor user experiences, and, ultimately, a dip in the quality of the validation process.

The use of multiple platforms leads to inefficiency and reduced productivity. What's needed is a unified system that can streamline the workflow, simplify the verification process, and enhance its effectiveness.

Envisioning the Ideal Solution: Verisium Manager

 The cornerstone of an efficient validation cycle is integration and simplicity. The ideal solution is a singular platform that consolidates planning, coverage analysis, and regression management into one smooth, unified process. Verisium Manager emerges as this much-needed solution, encompassing all the functionalities necessary to streamline the validation process. Its comprehensive nature instills confidence in its ability to handle all aspects of the verification cycle. It can be fully customized to address and enforce any validation methodology and can facilitate smooth integration into any customer environment.

Features that stand out in Verisium Manager include: 

  • Unified Workflow: It acts as a single cockpit from which all activities are orchestrated, ensuring the validation teams' work is uninterrupted and seamlessly integrated.
  • Customization and Integration: Verisium Manager supports customizing test-plan structures and mapping results per project, ensuring a perfect fit for various project requirements. Its ability to smoothly integrate into the project's environment and compute platforms is unparalleled.
  • Support for Continuous Updates and Migration: The tool accommodates constant updates to project data and supports the migration of legacy data, ensuring that no historical data is lost in the transition to a new system.

Addressing Project-Specific Needs

 Verisium Manager recognizes diversity in different projects and offers project-specific solutions, including:

 Enforcing Project Test-Plan Structures and Attributes: It supports and enforces each project's unique test-plan structure and mapping guidelines.

  • Unified Data Views and Measurements: Verisium Manager promotes a unified view of data across all teams and enforces unified measurements, ensuring consistency and clarity in the validation process.
  • Enabling Project-Specific Actions and Integrations: The tool is designed to support project-specific actions directly from its graphical user interface and allows for smooth integration with in-house databases, dashboards, and the project execution stack.

Verisium Manager is the epitome of efficiency in software/hardware validation. Its differentiating features, such as support for customization, unified data view, and comprehensive coverage and regression requirements, make it an indispensable tool for any validation team looking to elevate their workflow.




of

Cadence Fem.AI Summit: A Journey of Inspiration

This year, the Cadence Giving Foundation (CGF) launched Fem.AI to achieve a more inclusive tech sector, and the inaugural Fem.AI Summit that took place on October 1 was a luminary in a world where technology is evolving at an unprecedented pace. The summit not only excelled in its mission to enlighten, empower, and mobilize stakeholders across various industries on the issue of gender disparity in high tech and AI, but was a celebration of innovation, diversity, and empowerment. As we reflect on the moments that made the summit unforgettable, it's clear that the event was more than just a meeting of minds—it was a movement for change! Shaping Tomorrow Together Cadence’s president and CEO, Anirudh Devgan, stated, “Women’s talent and perspectives are crucial to shaping the future of AI.” Devgan’s words epitomized the driving force behind the first-ever Fem.AI Summit which brought together innovators, educators, business leadership, and investors across industries to create an ecosystem that ensures women can fully participate in the AI revolution and burgeoning AI economy. The energy of pioneers ready to collectively disrupt the status quo filled the air, and as the day-long summit began, it became clear that we were part of something truly groundbreaking. The event's lineup of speakers held discussions that went beyond the technical aspects of AI, emphasizing the vital importance of diversity in technology. Such insights were lent by leading voices from MIT, Stanford, and UC Berkeley, who set the stage for inspiring discussions with speakers like Dr. Joy Buolamwini, Founder of the Algorithmic Justice League, and Reshma Saujani, Founder and CEO of Moms First and Girls Who Code. Included in this lineup of leading figures was Dr. Chelsea Clinton, Vice Chair of the Clinton Foundation, who left us with her hopes for the future of women in AI: “I’m hoping because of company-wide commitments like what we’re experiencing here today thanks to Cadence, that the people who will be part of designing [future technologies] will have a different group of people around the proverbial table or the computer screens doing that… and that women will be more integral into the conceptualization and then the actualization of AI-driven enterprises.” The hopes and visions for women in AI cannot manifest in a vacuum, they must be achieved with the support of individuals and systems from education all the way to the upper echelons of leadership. It is with this understanding, that Fem.AI is committed to investing in women at every stage of their STEM journey. Breaking Barriers It is with this ideal that we were honored to hear from women breaking through barriers of gender, race, and class in achieving pinnacles of success in areas of science and technology. Dr. Sarah H. Chen, Postdoctoral Researcher at Stanford and Thriving Stars Scholar at MIT, Niki Karanikola, Machine Learning Engineer and Break Through Tech AI Scholar at MIT, and Katya Echazarreta, NASA’s first Mexican Astronaut, showcased the resilience and determination that drive progress within and beyond our industry. Through their stories of persevering despite all odds, we were reminded that supporting students in STEM can create generational change with impacts beyond the realms of AI and technology. The final speaker at the Cadence Fem.AI Summit, the trailblazing Brandi Chastain, Founder of Bay FC, World Cup Champion, and Olympic Gold Medalist, left us with a powerful reminder that when faced with this opportunity: “Our purpose needs to be intentional” especially in building the future of technology and AI where “diversity is not something to be afraid of, but something to be embraced.” Echoing this sentiment, summit attendees left the event reminded of the crucial role we collectively play in ensuring women are part of this tech revolution. Moving Forward While the summit may have concluded, its impact will continue through individuals, companies, and communities aspiring to achieve an equitable tech sector. This is just the start, and we must take collective action now. We hope that you will join Cadence to ensure that we clear the path and catalyze women's role in the AI revolution! Meet Our Partners Our partners are making Fem.AI’s vision a reality through their important work advancing women in technology, including fostering STEM excellence in higher education, launching STEM careers, and achieving gender diversity in leadership. Learn more about the important work of each of our partners by visiting their pages: Break Through Tech Last Mile Education Fund Fast Forward Generation VC Include Global Semiconductor Alliance Join the Fem.AI Alliance Joining the Fem.AI Alliance signals that your company or institution is committed to evolving the AI workforce. By increasing the representation of women in AI, we aim to broaden the talent pool and the perspective so that AI represents us all. Through the Fem.AI Alliance, companies and institutions can share best practices, guidance, and inspiration. Since its launch, companies like the Equinix Foundation, NetApp, NVIDIA, Unity Technologies, and Workday have joined the Alliance in their commitment to Fem.AI’s work and mission. Visit Fem.AI to get involved today or contact Fem.AI@cadence.com .




of

Farmers, Technology and Freedom of Choice: A Tale of Two Satyagrahas

This is the 23rd installment of The Rationalist, my column for the Times of India.

I had a strange dream last night. I dreamt that the government had passed a law that made using laptops illegal. I would have to write this column by hand. I would also have to leave my home in Mumbai to deliver it in person to my editor in Delhi. I woke up trembling and angry – and realised how Indian farmers feel every single day of their lives.

My column today is a tale of two satyagrahas. Both involve farmers, technology and the freedom of choice. One of them began this month – but first, let us go back to the turn of the millennium.

As the 1990s came to an end, cotton farmers across India were in distress. Pests known as bollworms were ravaging crops across the country. Farmers had to use increasing amounts of pesticide to keep them at bay. The costs of the pesticide and the amount of labour involved made it unviable – and often, the crops would fail anyway.

Then, technology came to the rescue. The farmers heard of Bt Cotton, a genetically modified type of cotton that kept these pests away, and was being used around the world. But they were illegal in India, even though no bad effects had ever been recorded. Well, who cares about ‘illegal’ when it is a matter of life and death?

Farmers in Gujarat got hold of Bt Cotton seeds from the black market and planted them. You’ll never guess what happened next. As 2002 began, all cotton crops in Gujarat failed – except the 10,000 hectares that had Bt Cotton. The government did not care about the failed crops. They cared about the ‘illegal’ ones. They ordered all the Bt Cotton crops to be destroyed.

It was time for a satyagraha – and not just in Gujarat. The late Sharad Joshi, leader of the Shetkari Sanghatana in Maharashtra, took around 10,000 farmers to Gujarat to stand with their fellows there. They sat in the fields of Bt Cotton and basically said, ‘Over our dead bodies.’ ¬Joshi’s point was simple: all other citizens of India have access to the latest technology from all over. They are all empowered with choice. Why should farmers be held back?

The satyagraha was successful. The ban on Bt Cotton was lifted.

There are three things I would like to point out here. One, the lifting of the ban transformed cotton farming in India. Over 90% of Indian farmers now use Bt Cotton. India has become the world’s largest producer of cotton, moving ahead of China. According to agriculture expert Ashok Gulati, India has gained US$ 67 billion in the years since from higher exports and import savings because of Bt Cotton. Most importantly, cotton farmers’ incomes have doubled.

Two, GMO crops have become standard across the world. Around 190 million hectares of GMO crops have been planted worldwide, and GMO foods are accepted in 67 countries. The humanitarian benefits have been massive: Golden Rice, a variety of rice packed with minerals and vitamins, has prevented blindness in countless new-born kids since it was introduced in the Philippines.

Three, despite the fear-mongering of some NGOs, whose existence depends on alarmism, the science behind GMO is settled. No harmful side effects have been noted in all these years, and millions of lives impacted positively. A couple of years ago, over 100 Nobel Laureates signed a petition asserting that GMO foods were safe, and blasting anti-science NGOs that stood in the way of progress. There is scientific consensus on this.

The science may be settled, but the politics is not. The government still bans some types of GMO seeds, such as Bt Brinjal, which was developed by an Indian company called Mahyco, and used successfully in Bangladesh. More crucially, a variety called HT Bt Cotton, which fights weeds, is also banned. Weeding takes up to 15% of a farmer’s time, and often makes farming unviable. Farmers across the world use this variant – 60% of global cotton crops are HT Bt. Indian farmers are so desperate for it that they choose to break the law and buy expensive seeds from the black market – but the government is cracking down. A farmer in Haryana had his crop destroyed by the government in May.

On June 10 this year, a farmer named Lalit Bahale in the Akola District of Maharashtra kicked off a satyagraha by planting banned seeds of HT Bt Cotton and Bt Brinjal. He was soon joined by thousands of farmers. Far from our urban eyes, a heroic fight has begun. Our farmers, already victimised and oppressed by a predatory government in countless ways, are fighting for their right to take charge of their lives.

As this brave struggle unfolds, I am left with a troubling question: All those satyagrahas of the past by our great freedom fighters, what were they for, if all they got us was independence and not freedom?

The India Uncut Blog © 2010 Amit Varma. All rights reserved.
Follow me on Twitter.




of

For this Brave New World of cricket, we have IPL and England to thank

This is the 24th installment of The Rationalist, my column for the Times of India.

Back in the last decade, I was a cricket journalist for a few years. Then, around 12 years ago, I quit. I was jaded as hell. Every game seemed like déjà vu, nothing new, just another round on the treadmill. Although I would remember her fondly, I thought me and cricket were done.

And then I fell in love again. Cricket has changed in the last few years in glorious ways. There have been new ways of thinking about the game. There have been new ways of playing the game. Every season, new kinds of drama form, new nuances spring up into sight. This is true even of what had once seemed the dullest form of the game, one-day cricket. We are entering into a brave new world, and the team leading us there is England. No matter what happens in the World Cup final today – a single game involves a huge amount of luck – this England side are extraordinary. They are the bridge between eras, leading us into a Golden Age of Cricket.

I know that sounds hyperbolic, so let me stun you further by saying that I give the IPL credit for this. And now, having woken up you up with such a jolt on this lovely Sunday morning, let me explain.

Twenty20 cricket changed the game in two fundamental ways. Both ended up changing one-day cricket. The first was strategy.

When the first T20 games took place, teams applied an ODI template to innings-building: pinch-hit, build, slog. But this was not an optimal approach. In ODIs, teams have 11 players over 50 overs. In T20s, they have 11 players over 20 overs. The equation between resources and constraints is different. This means that the cost of a wicket goes down, and the cost of a dot ball goes up. Critically, it means that the value of aggression rises. A team need not follow the ODI template. In some instances, attacking for all 20 overs – or as I call it, ‘frontloading’ – may be optimal.

West Indies won the T20 World Cup in 2016 by doing just this, and England played similarly. And some sides began to realise was that they had been underestimating the value of aggression in one-day cricket as well.

The second fundamental way in which T20 cricket changed cricket was in terms of skills. The IPL and other leagues brought big money into the game. This changed incentives for budding cricketers. Relatively few people break into Test or ODI cricket, and play for their countries. A much wider pool can aspire to play T20 cricket – which also provides much more money. So it makes sense to spend the hundreds of hours you are in the nets honing T20 skills rather than Test match skills. Go to any nets practice, and you will find many more kids practising innovative aggressive strokes than playing the forward defensive.

As a result, batsmen today have a wider array of attacking strokes than earlier generations. Because every run counts more in T20 cricket, the standard of fielding has also shot up. And bowlers have also reacted to this by expanding their arsenal of tricks. Everyone has had to lift their game.

In one-day cricket, thus, two things have happened. One, there is better strategic understanding about the value of aggression. Two, batsmen are better equipped to act on the aggressive imperative. The game has continued to evolve.

Bowlers have reacted to this with greater aggression on their part, and this ongoing dialogue has been fascinating. The cricket writer Gideon Haigh once told me on my podcast that the 2015 World Cup featured a battle between T20 batting and Test match bowling.

This England team is the high watermark so far. Their aggression does not come from slogging. They bat with a combination of intent and skills that allows them to coast at 6-an-over, without needing to take too many risks. In normal conditions, thus, they can coast to 300 – any hitting they do beyond that is the bonus that takes them to 350 or 400. It’s a whole new level, illustrated by the fact that at one point a few days ago, they had seven consecutive scores of 300 to their name. Look at their scores over the last few years, in fact, and it is clear that this is the greatest batting side in the history of one-day cricket – by a margin.

There have been stumbles in this World Cup, but in the bigger picture, those are outliers. If England have a bad day in the final and New Zealand play their A-game, England might even lose today. But if Captain Morgan’s men play their A-game, they will coast to victory. New Zealand does not have those gears. No other team in the world does – for now.

But one day, they will all have to learn to play like this.

The India Uncut Blog © 2010 Amit Varma. All rights reserved.
Follow me on Twitter.




of

Virtuoso Studio: Simplified Review of Operating Point Parameter Values

Read on to know about the Operating Point Parameters Summary window that gives you a one-stop view of the categorized and tabulated details on all operating point parameters in your design. This window improves your review cycle with its many benefits.(read more)



  • Analog Design Environment
  • Operating point summary window
  • Virtuoso Studio
  • Operating Point Information
  • Virtuoso Analog Design Environment
  • Custom IC Design
  • Virtuoso ADE Explorer
  • Virtuoso ADE Assembler
  • IC23.1

of

How Do You Ensure the Reliability of Your Design in Virtuoso Studio?

Designers have long recognized the need to analyze the reliability of ICs. Two commonly used approaches for performing reliability analysis include calculating the change in device degradation and relying on safe operating checks in circuit simulators. 

With the advent of the ever-increasing use of ICs in mission-critical applications, the need for reliable reliability analysis has become of paramount importance. Over the years, you have been using reliability analysis in Virtuoso ADE Assembler and Virtuoso ADE Explorer to measure and review aging effects, such as device characteristic degradations, model parameter changes, self-heating effects, and so on.

Reliability analysis can be performed using two modes: Spectre native and RelXpert. The reliability analysis analyzes the effect of time on circuit performance drift and predicts the reliability of designs in terms of performance. In ADE Assembler, you can run the reliability simulation for fresh test (when time is zero), stress test (to generate degradation data), and aged test (at specific intervals, such as one year, three years, or 10 years). In the stress test, extreme environmental conditions are used to stress devices before aging analysis.

The following figure shows the reliability simulation flow.

 

 

The Reliability Options form has the following four tabs: 

  • Basic: Enables you to specify analysis type, aging options, start and stop time of reliability simulation, and options related to device masking, degradation ratio, and lifetime calculation. 
  • Modeling: Enables you to choose the modeling type you want to use during reliability simulation. 
  • Degradation: Enables you to specify the options to print device and subcircuit degradation information into a .bt0 file. 
  • Output: Enables you to specify the degradation reports to be generated and methods to filter degradation results in the reports.

While the Basic and the Output tabs are used by design engineers, the Modeling and the Degradation tabs are primarily used by model developers.

 

Reviewing degradation reports in text or XML formats can be a tiresome exercise because degradation data can be large and can contain a large number of instances due to advanced technology nodes and post-layout simulations. For you to work effectively and interactively with these reports, the new reliability report is based on the SQLite database, which adds the benefit of improved performance and capabilities of sorting and filtering reliability data using SQLite operators.

 

As they say, watching this in action might help you more than reading about it, so please take a look at our Training Bytes video channel, which offers many helpful videos on how to run Reliability Analysis in Virtuoso Studio.

All the related videos are linked together in a channel so that you can easily access and watch as many as you like.

Reliability Analysis in Virtuoso Studio

 

Want to Learn More?

For lab instructions and a downloadable design, enroll for the online training courses of your interest on

Reliability Analysis in Virtuoso Studio vIC23.1 (Online)

 Training is also available as "Blended" or "live" class.

Digital Badge Available

You can become Cadence Certified once you complete the course (s) and share your knowledge and certifications on social media channels. Go straight to the course exam at the Learning and Support Portal.

Note: Some of the above links are accessible only to Cadence customers who have a valid login ID for the Cadence Learning and Support Portal.

Do You Have Access to the Cadence Support Portal?

If not, follow the steps below to create your account.

  • On the Cadence Support portal, select Register Now and provide the requested information on the Registration page.
  • You will need an email address and host ID in order to sign up.
  • If you need help with registration, contact support@cadence.com.

To stay up-to-date with the latest news and information about Cadence training and webinars, subscribe to the Cadence Training emails.

If you have questions about courses, schedules, online, public, or live onsite training, reach out to us at Cadence Training.

Related Resources

  Training Bytes (Videos)

Virtuoso ADE Explorer Graphical User Interface

What is the need for Reliability Analysis? (Video)

  Blogs

Come Join Us and Learn from the Cadence Training Offerings

It’s the Digital Era; Why Not Showcase Your Brand Through a Digital Badge!

  Online Course

Reliability Analysis in Virtuoso Studio vIC23.1 (Online)

 

About Knowledge Booster Training Bytes

Knowledge Booster Training Bytes is an online journal that relays information about Cadence Training videos, online courses, and upcoming webinars that are available in the Learning section of the Cadence Learning and Support portal. This blog category brings you direct links to these videos, courses, and other related material on a regular basis.

Niyati Singh

On behalf of the Cadence Training team




of

Doc Assistant A-Z: Making the Most of the Cadence Cloud-Based Help Viewer: Pt. 2

At a bustling Cadence event, we met Adrian, an intern at a startup who immerses himself in Cadence tools for his research and work.

Adrian was enthusiastic about the innovative technologies at his disposal but faced a significant challenge: internet access was limited to a single machine for new joiners, forcing interns to wait in line for their turn to use online resources.

Adrian's excitement soared when he discovered a game-changing solution: Doc Assistant. The cloud-based help viewer, Doc Assistant, ships with all Cadence tools, enabling Adrian to access help resources offline from any machine equipped with the software. This meant Adrian could continue his research and work seamlessly, irrespective of internet availability!

Meeting Cadence users and customers at such events has given us the opportunity to showcase how they can benefit from the diverse features that Doc Assistant offers.

With that note, welcome back to our Doc Assistant A-Z blog series! In Part 1, we explored key features and benefits that our innovative viewer brings to the table. Today, in Part 2, we'll dive deeper into the advanced functionalities and customization options that make Doc Assistant indispensable for its users.

Whether you're looking to streamline your workflow or enhance your user experience, this blog will provide the insights you need to fully leverage the capabilities of our documentation viewer. Let’s get started!

What Makes Doc Assistant Stand Out?

Here are a few (more) cool features of Doc Assistant!

History and Bookmarks: Want to refer to the topic you read last week? Of course, you can! Doc Assistant stores your browsing activity as History. You can also bookmark topics and revisit them later.

Indexing Capabilities: Looking for seamless search capabilities? The advanced indexing capabilities of Doc Assistant enhance the accessibility and manageability of documents. Doc Assistant automatically creates a search index if it is missing or broken.

Jump Links: Worried about scrolling through lengthy topics? Fret no more! Use the jump links in each topic to quickly navigate to different sections within the same topic or across topics. Jump links reduce the need for excessive scrolling and let you access relevant content swiftly.

Just-in-Time Notifications: Looking for alerts and messages? That’s supported. Doc Assistant displays notifications about important events, including errors, warnings, information, and success messages.

Keyword-Based Search Suggestions: You somewhat know your search keyword, but not quite sure? No worries. Just start typing what you know. Keyword and page suggestions are displayed dynamically as you type, providing a more sophisticated and intuitive search experience.

Library-Switch Support: Want to view documents from other libraries? Doc Assistant, by default, displays documents for the currently active release in your machine. You can access documents from other releases by configuring the associated documentation libraries.

Multimedia Support: Want to view product demos? Multimedia support in Doc Assistant lets you play videos, listen to audio, and view images without opening any external application.

Navigation Made Easy: Worried that you’ll get lost in an infinite doc loop? Not at all. The intuitive navigation controls in Doc Assistant are designed to provide you with a fluid and efficient experience. The Doc Assistant user interface is clean and logically organized, with easy-to-access documentation links.

That's not all. We have more coming your way. Until next time, take care and stay tuned for our next edition!

Want to Know More?

Here's a video about Doc Assistant
Visit the Doc Assistant web page
Read the Doc Assistant FAQ document

For any questions or general feedback, write to docassistant.support@cadence.com.

Subscribe to receive email notifications about our latest Custom IC Design blog posts.

Happy reading!

-Priya Sriram, on behalf of the Doc Assistant Team




of

Doc Assistant A-Z: Making the Most of the Cadence Cloud-Based Help Viewer Part 3

Welcome back to the Doc Assistant A-Z blog series!

Since the launch of Doc Assistant, we've been gathering feedback and input from our customers regarding their experiences with our latest documentation viewer. My interaction with Ralf was particularly useful and interesting.

Ralf is a design engineer who works on complex schematics and intricate layouts. For each release, he is challenged with the task of verifying the tool and feature changes across multiple releases. He shared with me that he has been using Doc Assistant’s capabilities to help him achieve this.

Ralf explained that he utilizes Doc Assistant to open and compare documents from different releases side-by-side, seamlessly tracking updates across multiple releases and verifying those updates in his Cadence tools. Additionally, in Doc Assistant’s online mode, he compares documents across previous tool versions, ensuring a thorough review of any changes. Finally, he was happy to share with me that Doc Assistant features have helped him significantly reduce the time he spends on identifying such changes.

You, of course, can also achieve such productivity gains using several Doc Assistant features designed to help simplify such tasks!

In previous editions of this blog series, we looked at some key features and benefits of Doc Assistant. If you've missed these editions, I would highly recommend that you read them:

In this third installment, we're diving into some more of Doc Assistant's key capabilities.

Open Multiple Documents

Want to refer to multiple docs at the same time? That’s easy!

Open each doc on a separate tab in Doc Assistant. 

Personalized Content Recommendations

Is it a hassle to navigate through all docs each time? You don’t have to.

You can tailor your Doc Assistant preferences to match your content requirements.

PDF Support

Do you prefer downloading and reading a PDF instead of an HTML?

That’s also supported.

Quick Access to Relevant Search Results

Are you pressed for time, and yet want to run a comprehensive doc search? You’re covered.

In online mode, search runs on all available product documentation, and the results are listed from multiple sources.

Resource Links

Looking for more information about a topic you’ve just read? That’s handy.

Look out for content recommendations!

Share Content

Want to share a useful doc with the rest of your team? That’s easy.

With a single click, Doc Assistant lets you share content with one or more readers.

Submit Feedback

Your feedback is important to us. Use the Submit Feedback feature to share your comments and inputs.

To learn more about how to use the above features, check out the Doc Assistant User Guide.

These are just a few of the productivity gain features in Doc Assistant. We’ll cover more in the next blog in the series.

Want to Know More?

Here's a video about Doc Assistant
Visit the Doc Assistant web page
Read the Doc Assistant FAQ document

If you have any feedback on Doc Assistant or would like to request more information or a demo, please contact docassistant.support@cadence.com.

Subscribe to receive email notifications about our latest Custom IC Design blog posts.

Happy reading!

Priya Sriram, on behalf of the Doc Assistant Team




of

datasheets for difference of Allegro PCB and OrCAD Professional

Hi All

I am looking for the functions which are different about OrCAD Professional and Allegro tier.

is there any resource?

regard




of

The default location of orCAD Capture library Pin Number is incorrect

The default position of the pin number is incorrect.




of

Allegro part of DPI does not support scaling above 150%

Allegro part of DPI does not support scaling above 150%




of

UI issues of PCB Environment Editor 17.4

Hi,

I found that under the Dark Theme of PCB Environment Editor 17.4,

the window background is not all dark, resulting in unclear text display。

As shown in the figure below:




of

How to get maximum value of s11 Trace

Hello

i did a sp-Analysis and now i want to extract the maximum value of the s11 trace and the corresponding frequency.

I already tried ymax() in the calculator but i am suspecting it only works on transient Signals.




of

Characterization of Full adder that use transmission gates using liberate

Hello,
I'm trying to characterize a full adder that use transmission gate.
Unfortunately, the power calculation are wrong for the cell are always negative.
Is there any method or commands that can can help in power calculation or add the power consumption by the input pins to the power calculation ?
Another question, Is liberate support the characterization or transmission gate cells as standard cells or I should use liberate AMS for these type of cells ?
Thanks in advance,
Tareq 




of

How to Set Up a Config View to Easily Switch Between Schematic and Calibre of DUT for Multiple Testbenches?

Hello everyone,

I hope you're all doing well. I’ve set up two testbenches (TB1 and TB2) for my Design Under Test (DUT) using Cadence IC6.1.8-64b.500.21 tools, as shown in the attached figure. The DUT has multiple views available: schematic, Calibre, Maestro, and Symbol, and each testbench uses the same DUT in different scenarios. Currently, I have to manually switch between these views, but I would like to streamline this process.

My goal is to use a single config view that allows me to switch between the schematic and the extracted (Calibre) views. Ideally, I would like to have a configuration file where making changes once would update both testbenches (TB1 and TB2) automatically. In other words, when I modify one config, both testbenches should reflect this update for a single simulation run.

I would really appreciate it if you could guide me on the following:

  1. How to create a config view for my DUT that can be used to easily switch between the schematic and extracted views, impacting both TB1 and TB2.
  2. Where to specify view priorities or other settings to control which view is used during simulation.
  3. Best practices for using a config file in this scenario, so that it ensures consistency across multiple testbenches.

Please refer to the attached figure to get a better understanding of the setup I’m using, where both TB1 and TB2 include the same DUT with multiple available views.

Thank you so much for your time and assistance!




of

incorrect output of multiplication in jaspergold

I want to use jaspergold to formally verify functionality of my custom multiplier. I am computing the expected result using A*B to check against output of my multiplier. Here, A and B are two logic signed operands. However, jaspergold is performing the operation A*B incorrectly.

I have reproduced this issue using the attached example. JasperGold compiles and elaborates the module and subsequently runs a formal proof. The tool raises a counterexample to assertion whose screenshot is attached below:

I simulated the same example using xrun and it was giving the correct product output in simvision waveform. Please help me resolve this issue. I am using 2023.03 version of Jasper Apps.

Thanks and regards

Anubhav Agarwal




of

"How to disable toggle coverage of unused logic"

I'm currently work in coverage analysis. In my design certain register bits remain unused, which could potentially lower toggle coverage. Specifically, I'd like to know how to disable coverage for specific unused register bits within a 32-bit register. For instance, I want to deactivate coverage for bit 17 and bit 20 in a 32-bit register to optimize toggle coverage. Could you please provide guidance on how to accomplish this?




of

Xcelium: dump coverage information in the middle of a simulation

Hi, I'm using the xcelium simulator to simulate a testbench, in which I first stimulate my design to do something (part "A") and then do a direct follow-up test on the design (part "B").

I need two things from this testbench: the results of the test (part "B", passed/failed) and coverage information, but the coverage information should only include part A and explicitly not part B.

I could do the following: run the testbench with part A and B, get the "passed/failed" result of the test and then follow up another simulator run with another testbench, that only includes part A and get the coverage information from that simulation run.

Is there a way to force xcelium to give me the coverage information of only a part of the simulation? Ideally, I would like to write the verilog code of my testbench to look something like this:

  • do A
  • dump coverage information
  • do B

But maybe there is another way to tell xcelium to consider only part of the testbench for the coverage information. I did have a look at the manual, but was not able to find something useful for this problem. Any ideas?




of

Archive of Tools Classification Analysis (Xcelium)

Hi,

Current and valid TCAs for Functional Safety are readily available at the FuSa "one-stop shop".

But I have not been able to find any archive repository for access to the obsoleted versions.

I would need to have also v1.4 of Xcelum TCA to investigate exact changes wrt previous projects.

Anyone knows how to find it?

Best regards,  Lars




of

Quickchat Video Interview: Introducing Cadence Optimality and OnCloud for Systems Analysis and Signoff

Microwaves & RF's David Maliniak interviews Sherry Hess of Cadence about recently announced products of Optimality and OnCloud.(read more)




of

EVM and constellation of mixer

Hello,

I am trying to design an RF mixer for a TX.
Assume my input IF signal is at 1 GHz, my LO at 2 GHz and I want my RF at 3 GHz, and assume that the mixer fully works after testing it with HB.
How to simply set the envelope analysis to check the EVM ?
I read through the documentation but I couldn't get it (I couldn't fully understand the settings of the source, probe, analysis.)
Which source and probe to use? I want custom modulation with custom bandwidth and center frequency.
Is there some examples for the ENVLP analysis ?

I am using IC23.1 and spectre 20.1.354.




of

IIP3 of Gilbert cell mixer

Hi

I'm learning Hb analysis for the IIP3 simulation of a gilbert mixer. My f_RF=5GHz, f_LO=4GHz and f_IF=1GHz . I'm a bit confused about setting the 1st order and 3rd order harmonic at the Direct plot form. I have set 1st order harmonic = 1GHz and 3rd order harminic = 2*f_LO-f_RF = 3GHz and it gives me the following results.

This is my 1dB compression point result

Hb analysis window

Direct plot window

Please let me know if my harmonic selection is correct and whether I'm getting a correct IIP3 and P1db curve




of

Getting error while adding element in AWR software

While adding an element created from a netlist file in AWR, I am getting the error 'The element type being dropped is not compatible with the window it is being dropped into'. The netlist file in AWR has the following contents:

.subckt BFG520W base collector emitter npn
.model BFG520W NPN(IS=1.016E-15 NF=1.000 BF=220.1 IKF=510E-3 VAF=48.06
+ ISE=2.83E-13 NE=2.035 NR=0.988 BR=100.7 IKR=2.352E-3
+ VAR=1.692 ISC=24.48E-18 NC=1.022 RB=10.00 RE=0.7753
+ RC=2.21 CJC=447.6E-15 MJC=0.07 VJC=0.1892
+ CJE=1.245E-12 TF=8.616E-12 TR=5.437E-12 mfg=NXP)

I have attached screenshots of the element BFG520W2 created due to the above netlist and the error I am getting while adding this element.


 




of

Figures missing in the RF Design Blogs article of "Measuring Fmax for MOS Transistors"

Hi I noticed that some figures from the old posts in the cadence blogs have been missing.

I think this problem happened before and Andrew Beckett asked the original author to fix the issue:

 Figures missing in the RF Design Blogs article of "Measuring Fmax for MOS Transistors" 

Some of these posts are quite valuable, and would be nice to have access to the figures, which are a very important part of some posts,

Thanks

Leandro




of

How to perform the reflection and crosstalk using the OrCAD X Professional

Dear Community,

I have created a PCB layout with multiple high-speed nets, I want to check the SI like how signals are reflected and taken to each other.

I have the OrCAD X Professional, how to check the reflection and crosstalk using the OrCAD X Professional software version 24.1.

I want to create a topology flow to the PCB layout and perform the reflection and crosstalk.

Regards,

Rohit Rohan




of

How to resolve the impedance issue using the OrCAD X Professional

Dear Community,

I have created a PCB board and let's say I have found some parts of the PCB board where there are impedance issues, then how to resolve that impedance issue using the OrCAD X Professional.

Regards,

Rohit Rohan




of

Allegro PCB Router quit unexpectedly with an exit code of -1073741701. Also, nothing is logged in log file.

Has anyone experienced the same situation?




of

Socionext Accelerates SoC Design Breakthroughs with Cadence Signoff Tools

Socionext, a leader in SoC design, recently made significant strides in enhancing its design efficiency for a complex billion-gate project. Faced with the initial challenges of lengthy eight-day iterations and a protracted two-month timing signoff process, the objective was to reduce the iteration cycle to just three days. By integrating Cadence's cutting-edge solutions—Certus Closure Solution, Tempus Timing Solution, and Quantus Extraction Solution—Socionext achieved remarkable improvements.

Notably, the Tempus DSTA tool dramatically cut timing closure time by 73%, outperforming conventional single-machine STA methods. This achievement, combined with the synergistic use of Cadence's Certus Closure and Tempus Timing solutions, allowed Socionext to meet their ambitious three-day iteration target and double productivity. Additionally, integrating these solutions significantly decreased both human and machine resource needs, slashing memory and disk costs by up to 90% and halving engineering resources during the optimization and signoff phases.

For more on this collaboration, check out the "Designed with Cadence" success story video on Cadence's website and YouTube channel.

Also, don't miss the on-demand webinar "Fast, Accurate STA for Large-Scale Design Challenges," which provides a deeper dive into Socionext's breakthroughs and the innovative solutions that powered their success.




of

Unlocking the Concepts of IEEE 1801 Standard for Efficient Power Management

Power efficiency is a critical factor in the fast-evolving world of semiconductor design.

The IEEE 1801 standard, also known as UPF (Unified Power Format), was developed by the IEEE to address the intricate challenges associated with power management in contemporary semiconductor designs. This standard offers a uniform framework for defining power domains, power states, and power intent, ensuring consistency across diverse tools and phases of the design process. By utilizing UPF, you can precisely model and regulate power consumption, a critical aspect for battery-operated devices, high-performance computing, and energy-efficient designs.

The key concepts of IEEE 1801 are:

  1. Power domains
  2. Power states
  3. Power gating and isolation
  4. Power switches
  5. Level shifters, isolation, and retention cells
  6. Macro model

Based on these building blocks, you write the power intent of the design.

The power intent for the design includes identifying/implementing low-power strategies that provide a clear description of the power architecture of a design.

The power definitions can effectively manage power consumption and ensure the chip meets its power and performance requirements.

You can start by creating the Power Supply Network, which defines how power is supplied to the design's various power domains and logic cells.

What's the next step to build the file? How do you understand the various concepts related to IEEE 1801? How do you complete the rest of the power intent file?

Relax!

Gear up to attend the training class created just for you to dive deep into the entire format and explore this exciting power specification method/format with hands-on labs in one day!

Training

Fundamentals of IEEE 1801 Low-Power Specification Format Training

This course is a complete tutorial for understanding the fundamentals of IEEE 1801 low-power specification format concepts. You learn about IEEE 1801 power supply networks, ground ports and nets, creating and connecting supply ports/nets, power domain, power switch, power states, defining isolation and level shifter strategies, hierarchical IEEE 1801, and various versions of the IEEE 1801. You also explore how power intent information can be used for a design across various flow stages, such as functional verification, synthesis, logic equivalency checking, place-and-route, test, timing signoff, power integrity, and so forth, using Cadence® tools.

Labs

We ensure that your learning journey is smooth with hands-on labs covering various design scenarios.

Lab Videos

Now, the exciting part is that to help you further, we have created engaging videos of the training labs. You can refer to the lab module's instructions in demo format at https://support.cadence.com.

Lab DemoChecking Power Supply Network in IEEE 1801 format and Running IEEE 1801 Quality Checks using Conformal Low Power

Lab Demo: Checking Power Intent for The Macro Connections in IEEE 1801 Format And Running IEEE 1801 Quality Checks using Conformal Low Power 

Online Class

Here is the course link.

Get ready for the most thrilling experience with Accelerated Learning!

The more you know, the faster you go!

Grab the cycle  or hike it, based on your existing knowledge.

Take the quiz and increase your learning pace!!

What's Next?

Grab your Badge after finishing the training and flaunt the expertise you have built up. 😊

Ready to take a tour of this power specification world? Let's help you enroll in this course.

We organize this training for you as a "Blended" or "Live" training. Please reach out to Cadence Training for further information. If you want to ensure you are always the first to know about anything new in training, you can use the SUBSCRIBE button on the landing page to sign up for our regular training newsletters.

Related Short Training Bytes/Videos

Enhance the learning experience with short videos:

Genus Synthesis Solution: Video Library

 Joules RTL Power Solution: Video Library

Related Training

 Low-Power Synthesis Flow with Genus Synthesis Solution

Genus Low-Power Synthesis Flow with IEEE 1801

Related Blogs

It's the Digital Era; Why Not Showcase Your Brand Through a Digital Badge! - Digital Design - Cadence Blogs - Cadence Community

Relax in Summer with Cooler IC chips and Ice-Cream! Do you want to Explore the Recipe? - Digital Design - Cadence Blogs - Cadence Community

Power Is HOT and Touches Everything and Everybody! But the Challenge Is To Deal With Low Power During Design Synthesis; How? - Digital Design - Cadence Blogs - Cadence Community

Binge on Chip Design Concepts this Weekend! - Digital Design - Cadence Blogs - Cadence Community




of

Here Is the Recording of the RTL-to-GDSII Flow FrontEnd Webinar!

In this recent Training Webinar, we explore the concepts of RTL design, design verification, and coverage analysis while unveiling the exciting world of front-end design flow by guiding you through essential steps involved in creating integrated circuits—the building blocks of modern electronics.

We’ll break down the process into manageable stages, from defining the chip’s functionality to its physical realization. We’ll investigate the front-end part of the RTL-to-GDSII flow—from specification to functional verification and design coverage—and explore:

  • Key concepts of specifying chip behavior and performance
  • How to translate ideas into a digital blueprint and transform that into a design
  • How to ensure your design is free of errors

Watch the Training Webinar recording from September 18, 2024: A Beginner’s Guide to RTL-to-GDSII Front-End Flow

Want to Learn More?

This link gives you more information about this RTL-to-GDSII Flow, the related training course, and a link to enroll:

Cadence RTL-to-GDSII Flow Training

The course includes slides with audio and downloadable laboratory exercises designed to emphasize the topics covered in the lecture. There is also a Digital Badge available for the training.

 Also, take this opportunity to register for the free Online Training related to this Webinar Topic.

Cadence RTL-to-GDSII Flow

Xcelium Simulator

Verilog Language and Application

Learning Maps

The online class is free for all Cadence customers with a Cadence Learning and Support Portal account. For instructor-led training sessions "Live" or "Blended" please contact Cadence Training.

Related Training Bytes

What is RTL Coding In VLSI Design?

What is Digital Verification?

What Is Synthesis in VLSI Design?

What Is Logic Equivalence Checking in VLSI Design?

What Is DFT in VLSI Design?

What is Digital Implementation?

What is Power Planning?

What are DRC and LVS in Physical Verification?

What are On-Chip Variations?

Related Blogs

Did You Miss the RTL-to-GDSII Webinar? No Worries, the Recording Is Available!

Training Insights – Why Is RTL Translated into Gate-Level Netlist?

Training Bytes: They May Be Shorter, But the Impact Is Stronger!

Cadence Support - A Round-the-Clock Problem Solver, Webinar Recording Available!




of

Island Economies of the Future 2019/20 – the results

Cyprus is ranked first in fDi’s Island Economies of the Future rankings, followed by the Dominican Republic and Sri Lanka. Cathy Mullan and Naomi Davies detail the results.




of

American Cities of the Future 2019/20 - the winners

New York continues to reign as leader of fDi’s American Cities of the Future 2019/20 ranking. San Francisco retains second place with Toronto rising to third. Naomi Davies reports.




of

American Cities of the Future 2019/20 – FDI strategy

A more detailed look at fDi's judges’ top five American Cities of the Future 2019/20 for FDI strategy. Naomi Davies reports.




of

Fintech Locations of the Future 2019/20: London tops first ranking

London has been named fDi’s inaugural Fintech Location of the Future for 2019/20, followed by Singapore and Belfast. 




of

Asia-Pacific Cities of the Future 2019/20 – the winners

Singapore has retained its place at the top of fDi's Asia-Pacific Cities of the Future ranking, with Shanghai and Tokyo completing the top three list. 




of

fDi’s Global Free Zones of the Year 2019 – the winners

The UAE's DMCC takes home the top prize in fDi’s Global Free Zones of the Year for a fifth consecutive year. 




of

Tourism Locations of the Future 2019/20 – FDI Strategy

Australia tops the FDI Strategy category of fDi's Tourism Locations of the Future 2019/20 rankings, followed by Costa Rica and Azerbaijan.




of

Free zones offer safe haven to investors

The chief executive of Ras Al Khaimah Economic Zone (RAKEZ), shares his views over the perks of free zones in emerging markets. 




of

UK regions fight for a share of inward investment

The UK’s prime minister has pledged to rebalance the UK economy away from a dominant London. However, this might require greater incentives for foreign investment in the regions outside of the capital, which are underperforming. 




of

fDi’s European Cities and Regions of the Future 2020/21 – Winners

In spite of the uncertainty caused by Brexit, London retains its position as fDi's European City of the Future for 2020/21, while Paris keeps the regional crown.




of

fDi’s European Cities of the Future 2020/21 – London maintains European pre-eminence

London has retained its position as fDi’s European City of the Future, while Paris has climbed to second place, knocking Dublin into the third spot.