thermal analysis Thermal analysis of a reflection mirror by fluid and solid heat transfer method By journals.iucr.org Published On :: 2024-10-15 High-repetition-rate free-electron lasers impose stringent requirements on the thermal deformation of beamline optics. The Shanghai HIgh-repetition-rate XFEL aNd Extreme light facility (SHINE) experiences high average thermal power and demands wavefront preservation. To deeply study the thermal field of the first reflection mirror M1 at the FEL-II beamline of SHINE, thermal analysis under a photon energy of 400 eV was executed by fluid and solid heat transfer method. According to the thermal analysis results and the reference cooling water temperature of 30 °C, the temperature of the cooling water at the flow outlet is raised by 0.15 °C, and the wall temperature of the cooling tube increases by a maximum of 0.5 °C. The maximum temperature position of the footprint centerline in the meridian direction deviates away from the central position, and this asymmetrical temperature distribution will directly affect the thermal deformation of the mirror and indirectly affect the focus spot of the beam at the sample. Full Article text
thermal analysis μWaveRiders: Thermal Analysis for RF Power Applications By community.cadence.com Published On :: Thu, 22 Sep 2022 08:27:00 GMT Thermal analysis with the Cadence Celsius Thermal Solver integrated within the AWR Microwave Office circuit simulator gives designers an understanding of device operating temperatures related to power dissipation. That temperature information can be introduced into an electrothermal model to predict the impact on RF performance.(read more) Full Article CFD RF Simulation featured Circuit simulation AWR Design Environment awr Cadence Celsius Thermal Analysis microwave office electrothermal models thermal solver
thermal analysis Modern Thermal Analysis Overcomes Complex Design Issues By community.cadence.com Published On :: Wed, 16 Oct 2024 04:20:00 GMT Melika Roshandell, Cadence product marketing director for the Celsius Thermal Solver, recently published an article in Designing Electronics discussing how the use of modern thermal analysis techniques can help engineers meet the challenges of today’s complex electronic designs, which require ever more functionality and performance to meet consumer demand. Today’s modern electronic designs require ever more functionality and performance to meet consumer demand. These requirements make scaling traditional, flat, 2D-ICs very challenging. With the recent introduction of 3D-ICs into the electronic design industry, IC vendors need to optimize the performance and cost of their devices while also taking advantage of the ability to combine heterogeneous technologies and nodes into a single package. While this greatly advances IC technology, 3D-IC design brings about its own unique challenges and complexities, a major one of which is thermal management. To overcome thermal management issues, a thermal solution that can handle the complexity of the entire design efficiently and without any simplification is necessary. However, because of the nature of 3D-ICs, the typical point tool approach that dissects the design space into subsections cannot adequately address this need. This approach also creates a longer turnaround time, which can impact critical decision-making to optimize design performance. A more effective solution is to utilize a solver that not only can import the entire package, PCB, and chiplets but also offers high performance to run the entire analysis in a timely manner. Celsius Thermal Management Solutions Cadence offers the Celsius Thermal Solver, a unique technology integrated with both IC and package design tools such as the Cadence Innovus Implementation System, Allegro PCB Designer, and Voltus IC Power Integrity Solution. The Celsius Thermal Solver is the first complete electrothermal co-simulation solution for the full hierarchy of electronic systems from ICs to physical enclosures. Based on a production-proven, massively parallel architecture, the Celsius Thermal Solver also provides end-to-end capabilities for both in-design and signoff methodologies and delivers up to 10X faster performance than legacy solutions without sacrificing accuracy. By combining finite element analysis (FEA) for solid structures with computational fluid dynamics (CFD) for fluids (both liquid and gas, as well as airflow), designers can perform complete system analysis in a single tool. For PCB and IC packaging, engineering teams can combine electrical and thermal analysis and simulate the flow of both current and heat for a more accurate system-level thermal simulation than can be achieved using legacy tools. In addition, both static (steady-state) and dynamic (transient) electrical-thermal co-simulations can be performed based on the actual flow of electrical power in advanced 3D structures, providing visibility into real-world system behavior. Designers are already co-simulating the Celsius Thermal Solver with Celsius EC Solver (formerly Future Facilities’ 6SigmaET electronics thermal simulation software), which provides state-of-the-art intelligence, automation, and accuracy. The combined workflow that ties Celsius FEA thermal analysis with Celsius EC Solver CFD results in even higher-accuracy models of electronics equipment, allowing engineers to test their designs through thermal simulations and mitigate thermal design risks. Conclusion As systems become more densely populated with heat-dissipating electronics, the operating temperatures of those devices impact reliability (device lifetime) and performance. Thermal analysis gives designers an understanding of device operating temperatures related to power dissipation, and that temperature information can be introduced into an electrothermal model to predict the impact on device performance. The robust capabilities in modern thermal management software enable new system analyses and design insights. This empowers electrical design teams to detect and mitigate thermal issues early in the design process—reducing electronic system development iterations and costs and shortening time to market. To learn more about Cadence thermal analysis products, visit the Celsius Thermal Solver product page and download the Cadence Multiphysics Systems Analysis Product Portfolio. Full Article Celsius Thermal Solver thermal management 3D-IC Celsius EC Solver Thermal Analysis
thermal analysis Modern Thermal Analysis Overcomes Complex Electronic Design Issues By community.cadence.com Published On :: Tue, 13 Sep 2022 14:53:00 GMT By combining finite element analysis with computational fluid dynamics, designers can perform complete thermal system analysis using a single tool.(read more) Full Article in-design analysis Thermal Analysis electronic cooling
thermal analysis Synthesis, crystal structure and Hirshfeld and thermal analysis of bis[benzyl 2-(heptan-4-ylidene)hydrazine-1-carboxylate-κ2N2,O]bis(thiocyanato)nickel(II) By scripts.iucr.org Published On :: 2020-04-07 The title centrosymmetric NiII complex, [Ni(NCS)2(C15H22N2O2)2], crystallizes with one half molecule in the asymmetric unit of the monoclinic unit cell. The complex adopts an octahedral coordination geometry with two mutually trans benzyl-2-(heptan-4-ylidene)hydrazine-1-carboxylate ligands in the equatorial plane with the axial positions occupied by N-bound thiocyanato ligands. The overall conformation of the molecule is also affected by two, inversion-related, intramolecular C—H⋯O hydrogen bonds. The crystal structure features N—H⋯S, C—H⋯S and C—H⋯N hydrogen bonds together with C—H⋯π contacts that stack the complexes along the b-axis direction. The packing was further explored by Hirshfeld surface analysis. The thermal properties of the complex were also investigated by simultaneous TGA–DTA analyses. Full Article text