immune

Fever can help the immune system, so what should we do if we have one?

Fever is a pain, quite literally, but new evidence hints at its purpose. Here’s what you need to know




immune

BCG vaccine helps fight infections by boosting immune cell production

The BCG tuberculosis vaccine boosts the production of immune cells and this may explain how it protects newborns from dying of sepsis




immune

Mere Sight of Sick Person May Boost Immune System

Title: Mere Sight of Sick Person May Boost Immune System
Category: Health News
Created: 4/29/2010 4:10:00 PM
Last Editorial Review: 4/30/2010 12:00:00 AM




immune

No Evidence COVID-19 Survivors Are Immune: WHO

Title: No Evidence COVID-19 Survivors Are Immune: WHO
Category: Health News
Created: 4/27/2020 12:00:00 AM
Last Editorial Review: 4/28/2020 12:00:00 AM




immune

A Sustained Immune Response Supports Long-Term Antiviral Immune Priming in the Pacific Oyster, Crassostrea gigas

ABSTRACT

Over the last decade, innate immune priming has been evidenced in many invertebrate phyla. If mechanistic models have been proposed, molecular studies aiming to substantiate these models have remained scarce. We reveal here the transcriptional signature associated with immune priming in the oyster Crassostrea gigas. Oysters were fully protected against Ostreid herpesvirus 1 (OsHV-1), a major oyster pathogen, after priming with poly(I·C), which mimics viral double-stranded RNA. Global analysis through RNA sequencing of oyster and viral genes after immune priming and viral infection revealed that poly(I·C) induces a strong antiviral response that impairs OsHV-1 replication. Protection is based on a sustained upregulation of immune genes, notably genes involved in the interferon pathway and apoptosis, which control subsequent viral infection. This persistent antiviral alert state remains active over 4 months and supports antiviral protection in the long term. This acquired resistance mechanism reinforces the molecular foundations of the sustained response model of immune priming. It further opens the way to applications (pseudovaccination) to cope with a recurrent disease that causes dramatic economic losses in the shellfish farming industry worldwide.

IMPORTANCE In the last decade, important discoveries have shown that resistance to reinfection can be achieved without a functional adaptive immune system, introducing the concept of innate immune memory in invertebrates. However, this field has been constrained by the limited number of molecular mechanisms evidenced to support these phenomena. Taking advantage of an invertebrate species, the Pacific oyster (Crassostrea gigas), in which we evidenced one of the longest and most effective periods of protection against viral infection observed in an invertebrate, we provide the first comprehensive transcriptomic analysis of antiviral innate immune priming. We show that priming with poly(I·C) induced a massive upregulation of immune-related genes, which control subsequent viral infection, and it was maintained for over 4 months after priming. This acquired resistant mechanism reinforces the molecular foundations of the sustained response model of immune priming. It opens the way to pseudovaccination to prevent the recurrent diseases that currently afflict economically or ecologically important invertebrates.




immune

Nucleic Acid-Sensing Toll-Like Receptors Play a Dominant Role in Innate Immune Recognition of Pneumococci

ABSTRACT

Streptococcus pneumoniae (or pneumococcus) is a highly prevalent human pathogen. Toll-like receptors (TLRs) function as immune sensors that can trigger host defenses against this bacterium. Defects in TLR-activated signaling pathways, including deficiency in the adaptor protein myeloid differentiation factor 88 (MyD88), are associated with markedly increased susceptibility to infection. However, the individual MyD88-dependent TLRs predominantly involved in antipneumococcal defenses have not been identified yet. Here we find that triple knockout mice simultaneously lacking TLR7, TLR9, and TLR13, which sense the presence of bacterial DNA (TLR9) and RNA (TLR7 and TLR13) in the phagolysosomes of phagocytic cells, display a phenotype that largely resembles that of MyD88-deficient mice and rapidly succumb to pneumococcal pneumonitis due to defective neutrophil influx into the lung. Accordingly, TLR7/9/13 triple knockout resident alveolar macrophages were largely unable to respond to pneumococci with the production of neutrophil-attracting chemokines and cytokines. Mice with single deficiencies of TLR7, TLR9, or TLR13 showed unaltered ability to control lung infection but were moderately more susceptible to encephalitis, in association with a decreased ability of microglia to mount cytokine responses in vitro. Our data point to a dominant, tissue-specific role of nucleic acid-sensing pathways in innate immune recognition of S. pneumoniae and also show that endosomal TLRs are largely capable of compensating for the absence of each other, which seems crucial to prevent pneumococci from escaping immune recognition. These results may be useful to develop novel strategies to treat infections by antibiotic-resistant pneumococci based on stimulation of the innate immune system.

IMPORTANCE The pneumococcus is a bacterium that frequently causes infections in the lungs, ears, sinus cavities, and meninges. During these infections, body defenses are triggered by tissue-resident cells that use specialized receptors, such as Toll-like receptors (TLRs), to sense the presence of bacteria. We show here that pneumococci are predominantly detected by TLRs that are located inside intracellular vacuoles, including endosomes, where these receptors can sense the presence of nucleic acids released from ingested bacteria. Mice that simultaneously lacked three of these receptors (specifically, TLR7, TLR9, and TLR13) were extremely susceptible to lung infection and rapidly died after inhalation of pneumococci. Moreover, tissue-resident macrophages from these mice were impaired in their ability to respond to the presence of pneumococci by producing inflammatory mediators capable of recruiting polymorphonuclear leucocytes to infection sites. This information may be useful to develop drugs to treat pneumococcal infections, particularly those caused by antibiotic-resistant strains.




immune

Killer Archaea: Virus-Mediated Antagonism to CRISPR-Immune Populations Results in Emergent Virus-Host Mutualism

ABSTRACT

Theory, simulation, and experimental evolution demonstrate that diversified CRISPR-Cas immunity to lytic viruses can lead to stochastic virus extinction due to a limited number of susceptible hosts available to each potential new protospacer escape mutation. Under such conditions, theory predicts that to evade extinction, viruses evolve toward decreased virulence and promote vertical transmission and persistence in infected hosts. To better understand the evolution of host-virus interactions in microbial populations with active CRISPR-Cas immunity, we studied the interaction between CRISPR-immune Sulfolobus islandicus cells and immune-deficient strains that are infected by the chronic virus SSV9. We demonstrate that Sulfolobus islandicus cells infected with SSV9, and with other related SSVs, kill uninfected, immune strains through an antagonistic mechanism that is a protein and is independent of infectious virus. Cells that are infected with SSV9 are protected from killing and persist in the population. We hypothesize that this infection acts as a form of mutualism between the host and the virus by removing competitors in the population and ensuring continued vertical transmission of the virus within populations with diversified CRISPR-Cas immunity.

IMPORTANCE Multiple studies, especially those focusing on the role of lytic viruses in key model systems, have shown the importance of viruses in shaping microbial populations. However, it has become increasingly clear that viruses with a long host-virus interaction, such as those with a chronic lifestyle, can be important drivers of evolution and have large impacts on host ecology. In this work, we describe one such interaction with the acidic crenarchaeon Sulfolobus islandicus and its chronic virus Sulfolobus spindle-shaped virus 9. Our work expands the view in which this symbiosis between host and virus evolved, describing a killing phenotype which we hypothesize has evolved in part due to the high prevalence and diversity of CRISPR-Cas immunity seen in natural populations. We explore the implications of this phenotype in population dynamics and host ecology, as well as the implications of mutualism between this virus-host pair.




immune

Starting Off Right: N-Terminal Acetylation Stabilizes an Immune-Activating Protein




immune

Eosinophils, basophils and type 2 immune microenvironments in COPD-affected lung tissue

Although elevated blood or sputum eosinophils are present in many patients with COPD, uncertainties remain regarding the anatomical distribution pattern of lung-infiltrating eosinophils. Basophils have remained virtually unexplored in COPD. This study mapped tissue-infiltrating eosinophils, basophils and eosinophil-promoting immune mechanisms in COPD-affected lungs.

Surgical lung tissue and biopsies from major anatomical compartments were obtained from COPD patients with severity grades Global Initiative for Chronic Obstructive Lung Disease stages I–IV; never-smokers/smokers served as controls. Automated immunohistochemistry and in situ hybridisation identified immune cells, the type 2 immunity marker GATA3 and eotaxins (CCL11, CCL24).

Eosinophils and basophils were present in all anatomical compartments of COPD-affected lungs and increased significantly in very severe COPD. The eosinophilia was strikingly patchy, and focal eosinophil-rich microenvironments were spatially linked with GATA3+ cells, including type 2 helper T-cell lymphocytes and type 2 innate lymphoid cells. A similarly localised and interleukin-33/ST2-dependent eosinophilia was demonstrated in influenza-infected mice. Both mice and patients displayed spatially confined eotaxin signatures with CCL11+ fibroblasts and CCL24+ macrophages.

In addition to identifying tissue basophilia as a novel feature of advanced COPD, the identification of spatially confined eosinophil-rich type 2 microenvironments represents a novel type of heterogeneity in the immunopathology of COPD that is likely to have implications for personalised treatment.




immune

Worldwide survey of neurologists on approach to autoimmune encephalitis

Objective

To explore practice differences in the diagnosis and management of autoimmune encephalitis (AE), which is complicated by issues with sensitivity/specificity of antibody testing, nonspecific MRI/EEG/CSF findings, and competing differential diagnoses.

Methods

We used a worldwide electronic survey with practice-related demographic questions and clinical questions about 2 cases: (1) a 20-year-old woman with a neuropsychiatric presentation strongly suspicious of AE and (2) a 40-year-old man with new temporal lobe seizures and cognitive impairment. Responses among different groups were compared using multivariable logistic regression.

Results

We received 1,333 responses from 94 countries; 12.0% identified as neuroimmunologists. Case 1: those treating >5 AE cases per year were more likely to send antibodies in both serum and CSF (adjusted odds ratio [aOR] vs 0 per year: 3.29, 95% CI 1.31–8.28, p = 0.011), pursue empiric immunotherapy (aOR: 2.42, 95% CI 1.33–4.40, p = 0.004), and continue immunotherapy despite no response and negative antibodies at 2 weeks (aOR: 1.65, 95% CI 1.02–2.69, p = 0.043). Case 2: neuroimmunologists were more likely to send antibodies in both serum and CSF (aOR: 1.80, 95% CI 1.12–2.90, p = 0.015). Those seeing >5 AE cases per year (aOR: 1.86, 95% CI 1.22–2.86, p = 0.004) were more likely to start immunotherapy without waiting for antibody results.

Conclusions

Our results highlight the heterogeneous management of AE. Neuroimmunologists and those treating more AE cases generally take a more proactive approach to testing and immunotherapy than peers. Results highlight the need for higher-quality cohorts and trials to guide empiric immunotherapy, and evidence-based guidelines aimed at both experts and nonexperts. Because the average AE patient is unlikely to be first seen by a neuroimmunologist, ensuring greater uniformity in our approach to suspected cases is essential to ensure that patients are appropriately managed.




immune

Leishmania donovani Subverts Host Immune Response by Epigenetic Reprogramming of Macrophage M(Lipopolysaccharides + IFN-{gamma})/M(IL-10) Polarization [INFECTIOUS DISEASE AND HOST RESPONSE]

Key Points

  • L. donovani induces histone lysine methyltransferases/demethylases in the host.

  • L. donovani–induced epigenetic enzymes induce host M(IL-10) polarization.

  • Knockdown of epigenetic enzymes inhibited parasite multiplication in infected host.




    immune

    GRASP55 Is Dispensable for Normal Hematopoiesis but Necessary for Myc-Dependent Leukemic Growth [IMMUNE SYSTEM DEVELOPMENT]

    Key Points

  • Golgi morphology and Grasp55 expression are regulated during hematopoiesis.

  • Hematopoiesis is not affected in Grasp55-deficient mice.

  • Grasp55 regulates Myc-transformed leukemic cell survival.




    immune

    Innate-like CD27+CD45RBhigh {gamma}{delta} T Cells Require TCR Signaling for Homeostasis in Peripheral Lymphoid Organs [IMMUNE SYSTEM DEVELOPMENT]

    Key Points

  • E4 is an enhancer element that regulates transcriptions of TCR genes.

  • E4–/– mice have fewer CD27+CD45RBhigh V2+ T cells in peripheral organs.

  • Attenuation of TCR signal impairs homeostasis of T cells in peripheral organs.




    immune

    IRAK-M Regulates Monocyte Trafficking to the Lungs in Response to Bleomycin Challenge [IMMUNE REGULATION]

    Key Points

  • TLR signaling pathway regulates expression of monocyte chemoattractant CCR2.

  • IRAK-M is an important regulator of monocyte trafficking to the lung in fibrosis.




    immune

    Immune Profile of the Nasal Mucosa in Patients with Cutaneous Leishmaniasis [Fungal and Parasitic Infections]

    Localized skin lesions are characteristic of cutaneous leishmaniasis (CL); however, Leishmania (Viannia) species, which are responsible for most CL cases in the Americas, can spread systemically, sometimes resulting in mucosal disease. Detection of Leishmania has been documented in healthy mucosal tissues (conjunctiva, tonsils, and nasal mucosa) and healthy skin of CL patients and in individuals with asymptomatic infection in areas of endemicity of L. (V.) panamensis and L. (V.) braziliensis transmission. However, the conditions and mechanisms that favor parasite persistence in healthy mucosal tissues are unknown. In this descriptive study, we compared the cell populations of the nasal mucosa (NM) of healthy donors and patients with active CL and explored the immune gene expression signatures related to molecular detection of Leishmania in this tissue in the absence of clinical signs or symptoms of mucosal disease. The cellular composition and gene expression profiles of NM samples from active CL patients were similar to those of healthy volunteers, with a predominance of epithelial over immune cells, and within the CD45+ cell population, a higher frequency of CD66b+ followed by CD14+ and CD3+ cells. In CL patients with molecular evidence of Leishmania persistence in the NM, genes characteristic of an anti-inflammatory and tissue repair responses (IL4R, IL5RA, POSTN, and SATB1) were overexpressed relative to NM samples from CL patients in which Leishmania was not detected. Here, we report the first immunological description of subclinically infected NM tissues of CL patients and provide evidence of a local anti-inflammatory environment favoring parasite persistence in the NM.




    immune

    Induction of Protective Antiplague Immune Responses by Self-Adjuvanting Bionanoparticles Derived from Engineered Yersinia pestis [Microbial Immunity and Vaccines]

    A Yersinia pestis mutant synthesizing an adjuvant form of lipid A (monophosphoryl lipid A, MPLA) displayed increased biogenesis of bacterial outer membrane vesicles (OMVs). To enhance the immunogenicity of the OMVs, we constructed an Asd-based balanced-lethal host-vector system that oversynthesized the LcrV antigen of Y. pestis, raised the amounts of LcrV enclosed in OMVs by the type II secretion system, and eliminated harmful factors like plasminogen activator (Pla) and murine toxin from the OMVs. Vaccination with OMVs containing MPLA and increased amounts of LcrV with diminished toxicity afforded complete protection in mice against subcutaneous challenge with 8 x 105 CFU (80,000 50% lethal dose [LD50]) and intranasal challenge with 5 x 103 CFU (50 LD50) of virulent Y. pestis. This protection was significantly superior to that resulting from vaccination with LcrV/alhydrogel or rF1-V/alhydrogel. At week 4 postimmunization, the OMV-immunized mice showed more robust titers of antibodies against LcrV, Y. pestis whole-cell lysate (YPL), and F1 antigen and more balanced IgG1:IgG2a/IgG2b-derived Th1 and Th2 responses than LcrV-immunized mice. Moreover, potent adaptive and innate immune responses were stimulated in the OMV-immunized mice. Our findings demonstrate that self-adjuvanting Y. pestis OMVs provide a novel plague vaccine candidate and that the rational design of OMVs could serve as a robust approach for vaccine development.




    immune

    Starvation and antimetabolic therapy promote cytokine release and recruitment of immune cells [Immunology and Inflammation]

    Cellular starvation is typically a consequence of tissue injury that disrupts the local blood supply but can also occur where cell populations outgrow the local vasculature, as observed in solid tumors. Cells react to nutrient deprivation by adapting their metabolism, or, if starvation is prolonged, it can result in cell...




    immune

    Experimental facilitation of heat loss affects work rate and innate immune function in a breeding passerine bird [RESEARCH ARTICLE]

    Fredrik Andreasson, Arne Hegemann, Andreas Nord, and Jan-Ake Nilsson

    The capacity to get rid of excess heat produced during hard work is a possible constraint on parental effort during reproduction [heat dissipation limit (HDL) theory]. We released hard-working blue tits (Cyanistes caeruleus) from this constraint by experimentally removing ventral plumage. We then assessed whether this changed their reproductive effort (feeding rate and nestling size) and levels of self-maintenance (change in body mass and innate immune function). Feather-clipped females reduced the number of feeding visits and increased levels of constitutive innate immunity compared with unclipped females but did not fledge smaller nestlings. Thus, they increased self-maintenance without compromising current reproductive output. In contrast, feather clipping did not affect the number of feeding visits or innate immune function in males, despite increased heat loss rate. Our results show that analyses of physiological parameters, such as constitutive innate immune function, can be important when trying to understand sources of variation in investment in self-maintenance versus reproductive effort and that risk of overheating can influence innate immune function during reproduction.




    immune

    Reduced immune responsiveness contributes to winter energy conservation in an Arctic bird [RESEARCH ARTICLE]

    Andreas Nord, Arne Hegemann, and Lars P. Folkow

    Animals in seasonal environments must prudently manage energy expenditure to survive the winter. This may be achieved through reductions in the allocation of energy for various purposes (e.g. thermoregulation, locomotion, etc.). We studied whether such trade-offs also include suppression of the innate immune response, by subjecting captive male Svalbard ptarmigan (Lagopus muta hyperborea) to bacterial lipopolysaccharide (LPS) during exposure to either mild temperature (0°C) or cold snaps (acute exposure to –20°C), in constant winter darkness when birds were in energy-conserving mode, and in constant daylight in spring. The innate immune response was mostly unaffected by temperature. However, energy expenditure was below baseline when birds were immune challenged in winter, but significantly above baseline in spring. This suggests that the energetic component of the innate immune response was reduced in winter, possibly contributing to energy conservation. Immunological parameters decreased (agglutination, lysis, bacteriostatic capacity) or did not change (haptoglobin/PIT54) after the challenge, and behavioural modifications (anorexia, mass loss) were lengthy (9 days). While we did not study the mechanisms explaining these weak, or slow, responses, it is tempting to speculate they may reflect the consequences of having evolved in an environment where pathogen transmission rate is presumably low for most of the year. This is an important consideration if climate change and increased exploitation of the Arctic would alter pathogen communities at a pace outwith counter-adaption in wildlife.




    immune

    The metabolic response to an immune challenge in a viviparous snake, Sistrurus miliarius [RESEARCH ARTICLE]

    C. M. Lind, J. Agugliaro, and T. M. Farrell

    Mounting an immune response may be energetically costly and require the diversion of resources away from other physiological processes. Yet, both the metabolic cost of immune responses and the factors that impact investment priorities remain poorly described in many vertebrate groups. For example, although viviparity has evolved many times in vertebrates, the relationship between immune function and pregnancy has been disproportionately studied in placental mammals. To examine the energetic costs of immune activation and the modulation of immune function during pregnancy in a non-mammalian vertebrate, we elicited an immune response in pregnant and non-pregnant pygmy rattlesnakes, Sistrurus miliarius, using lipopolysaccharide (LPS). Resting metabolic rate (RMR) was measured using flow-through respirometry. Immune function was examined using bactericidal assays and leukocyte counts. The RMR of pygmy rattlesnakes increased significantly in response to LPS injection. There was no statistically significant difference in the metabolic response of non-reproductive and pregnant snakes to LPS. Mean metabolic increments for pregnant females, non-reproductive females, and males were 13%, 18%, and 26%, respectively. The ratio of heterophils to lymphocytes was elevated in response to LPS across reproductive categories; however, LPS did not impact plasma bactericidal ability in non-reproductive snakes. Although pregnant females had significantly higher plasma bactericidal ability compared to non-reproductive snakes prior to manipulation, their bactericidal ability declined in response to LPS. LPS administration also significantly reduced several litter characteristics, particularly when administrated relatively early in pregnancy. Our results indicate that immune performance is energetically costly, altered during pregnancy, and that immune activation during pregnancy may result in tradeoffs that affect offspring in a viviparous reptile.




    immune

    SerpinB2 Regulates Immune Response in Kidney Injury and Aging

    Background

    Expression of SerpinB2, a regulator of inflammatory processes, has been described in the context of macrophage activation and cellular senescence. Given that mechanisms for these processes interact and can shape kidney disease, it seems plausible that SerpinB2 might play a role in renal aging, injury, and repair.

    Methods

    We subjected SerpinB2 knockout mice to ischemia-reperfusion injury or unilateral ureteral obstruction. We performed phagocyte depletion to study SerpinB2’s role beyond the effects of macrophages and transplanted bone marrow from knockout mice to wild-type mice and vice versa to dissect cell type–dependent effects. Primary tubular cells and macrophages from SerpinB2 knockout and wild-type mice were used for functional studies and transcriptional profiling.

    Results

    Cultured senescent tubular cells, kidneys of aged mice, and renal stress models exhibited upregulation of SerpinB2 expression. Functionally, lack of SerpinB2 in aged knockout mice had no effect on the magnitude of senescence markers but associated with enhanced kidney damage and fibrosis. In stress models, inflammatory cell infiltration was initially lower in knockout mice but later increased, leading to an accumulation of significantly more macrophages. SerpinB2 knockout tubular cells showed significantly reduced expression of the chemokine CCL2. Macrophages from knockout mice exhibited reduced phagocytosis and enhanced migration. Macrophage depletion and bone marrow transplantation experiments validated the functional relevance of these cell type–specific functions of SerpinB2.

    Conclusions

    SerpinB2 influences tubule-macrophage crosstalk by supporting tubular CCL2 expression and regulating macrophage phagocytosis and migration. In mice, SerpinB2 expression seems to be needed for coordination and timely resolution of inflammation, successful repair, and kidney homeostasis during aging. Implications of SerpinB2 in human kidney disease deserve further exploration.




    immune

    Clinical and imaging features of children with autoimmune encephalitis and MOG antibodies

    Objective

    To describe the presentations, radiologic features, and outcomes of children with autoimmune encephalitis associated with myelin oligodendrocyte glycoprotein antibodies (MOG abs).

    Methods

    Identification of children fulfilling the diagnostic criteria for possible autoimmune encephalitis (AE) and testing positive for serum MOG abs. Chart review and comprehensive analysis of serum MOG abs using live cell assays and rat brain immunohistochemistry.

    Results

    Ten children (4 girls, 6 boys) with AE and serum MOG abs were identified. The median age at onset was 8.0 years (range: 4–16 years). Children presented with a combination of encephalopathy (10/10), headache (7/10), focal neurologic signs (7/10), or seizures (6/10). CSF pleocytosis was common (9/10, median 80 white cell count/μL, range: 21–256). Imaging showed cortical and deep gray matter involvement in all in addition to juxtacortical signal alterations in 6/10 children. No involvement of other white matter structures or contrast enhancement was noted. MOG abs were detected in all children (median titer 1:640; range: 1:320–1:10,540). Nine children had a favorable outcome at discharge (modified Rankin scale of < 2). Five of 10 children had up to 3 additional demyelinating relapses associated with persisting MOG abs. One child had NMDA receptor (NMDAR) abs at initial presentation. A second child had a third demyelinating episode with MOG abs with overlapping NMDAR encephalitis.

    Discussion

    AE associated with serum MOG abs represents a distinct form of autoantibody-mediated encephalitis in children. We therefore recommend including MOG abs testing in the workup of children with suspected AE.




    immune

    Clinical approach to the diagnosis of autoimmune encephalitis in the pediatric patient




    immune

    Complete characterization of the human immune cell transcriptome using accurate full-length cDNA sequencing [METHOD]

    The human immune system relies on highly complex and diverse transcripts and the proteins they encode. These include transcripts encoding human leukocyte antigen (HLA) receptors as well as B cell and T cell receptors (BCR and TCR). Determining which alleles an individual possesses for each HLA gene (high-resolution HLA typing) is essential to establish donor–recipient compatibility in organ and bone marrow transplantations. In turn, the repertoires of millions of unique BCR and TCR transcripts in each individual carry a vast amount of health-relevant information. Both short-read RNA-seq-based HLA typing and BCR/TCR repertoire sequencing (AIRR-seq) currently rely on our incomplete knowledge of the genetic diversity at HLA and BCR/TCR loci. Here, we generated over 10,000,000 full-length cDNA sequences at a median accuracy of 97.9% using our nanopore sequencing-based Rolling Circle Amplification to Concatemeric Consensus (R2C2) protocol. We used this data set to (1) show that deep and accurate full-length cDNA sequencing can be used to provide isoform-level transcriptome analysis for more than 9000 loci, (2) generate accurate sequences of HLA alleles, and (3) extract detailed AIRR data for the analysis of the adaptive immune system. The HLA and AIRR analysis approaches we introduce here are untargeted and therefore do not require prior knowledge of the composition or genetic diversity of HLA and BCR/TCR loci.




    immune

    Every Fifth Individual With Type 1 Diabetes Suffers From an Additional Autoimmune Disease: A Finnish Nationwide Study

    OBJECTIVE

    The aim of this study was to quantify the excess risk of autoimmune hypothyroidism and hyperthyroidism, Addison disease, celiac disease, and atrophic gastritis in adults with type 1 diabetes (T1D) compared with nondiabetic individuals in Finland.

    RESEARCH DESIGN AND METHODS

    The study included 4,758 individuals with T1D from the Finnish Diabetic Nephropathy (FinnDiane) Study and 12,710 nondiabetic control individuals. The autoimmune diseases (ADs) were identified by linking the data with the Finnish nationwide health registries from 1970 to 2015.

    RESULTS

    The median age of the FinnDiane individuals at the end of follow-up in 2015 was 51.4 (interquartile range 42.6–60.1) years, and the median duration of diabetes was 35.5 (26.5–44.0) years. Of individuals with T1D, 22.8% had at least one additional AD, which included 31.6% of women and 14.9% of men. The odds ratios for hypothyroidism, hyperthyroidism, celiac disease, Addison disease, and atrophic gastritis were 3.43 (95% CI 3.09–3.81), 2.98 (2.27–3.90), 4.64 (3.71–5.81), 24.13 (5.60–104.03), and 5.08 (3.15–8.18), respectively, in the individuals with T1D compared with the control individuals. The corresponding ORs for women compared with men were 2.96 (2.53–3.47), 2.83 (1.87–4.28), 1.52 (1.15–2.02), 2.22 (0.83–5.91), and 1.36 (0.77–2.39), respectively, in individuals with T1D. Late onset of T1D and aging increased the risk of hypothyroidism, whereas young age at onset of T1D increased the risk of celiac disease.

    CONCLUSIONS

    This is one of the largest studies quantifying the risk of coexisting AD in adult individuals with T1D in the country with the highest incidence of T1D in the world. The results highlight the importance of continuous screening for other ADs in individuals with T1D.




    immune

    Bariatric Surgery in Patients With Obesity and Latent Autoimmune Diabetes in Adults (LADA)




    immune

    Severe treatment-refractory T-cell-mediated immune skin toxicities observed with obinutuzumab/rituximab-atezo-pola in two patients with follicular lymphoma




    immune

    GITR Agonism Triggers Antitumor Immune Responses through IL21-Expressing Follicular Helper T Cells

    Although treatment with the glucocorticoid-induced tumor necrosis factor receptor–related protein (GITR) agonistic antibody (DTA-1) has shown antitumor activity in various tumor models, the underlying mechanism is not fully understood. Here, we demonstrate that interleukin (IL)-21–producing follicular helper T (Tfh) cells play a crucial role in DTA-1–induced tumor inhibition. The administration of DTA-1 increased IL21 expression by Tfh cells in an antigen-specific manner, and this activation led to enhanced antitumor cytotoxic T lymphocyte (CTL) activity. Mice treated with an antibody that neutralizes the IL21 receptor exhibited decreased antitumor activity when treated with DTA-1. Tumor growth inhibition by DTA-1 was abrogated in Bcl6fl/flCd4Cre mice, which are genetically deficient in Tfh cells. IL4 was required for optimal induction of IL21-expressing Tfh cells by GITR costimulation, and c-Maf mediated this pathway. Thus, our findings identify GITR costimulation as an inducer of IL21-expressing Tfh cells and provide a mechanism for the antitumor activity of GITR agonism.




    immune

    IL1{alpha} Antagonizes IL1{beta} and Promotes Adaptive Immune Rejection of Malignant Tumors

    We assessed the contribution of IL1 signaling molecules to malignant tumor growth using IL1β–/–, IL1α–/–, and IL1R1–/– mice. Tumors grew progressively in IL1R–/– and IL1α–/– mice but were often absent in IL1β–/– mice. This was observed whether tumors were implanted intradermally or injected intravenously and was true across multiple distinct tumor lineages. Antibodies to IL1β prevented tumor growth in wild-type (WT) mice but not in IL1R1–/– or IL1α–/– mice. Antibodies to IL1α promoted tumor growth in IL1β–/– mice and reversed the tumor-suppressive effect of anti-IL1β in WT mice. Depletion of CD8+ T cells and blockade of lymphocyte mobilization abrogated the IL1β–/– tumor suppressive effect, as did crossing IL1β–/– mice to SCID or Rag1–/– mice. Finally, blockade of IL1β synergized with blockade of PD-1 to inhibit tumor growth in WT mice. These results suggest that IL1β promotes tumor growth, whereas IL1α inhibits tumor growth by enhancing T-cell–mediated antitumor immunity.




    immune

    Deciphering the Immunomodulatory Capacity of Oncolytic Vaccinia Virus to Enhance the Immune Response to Breast Cancer

    Vaccinia virus (VACV) is a double-stranded DNA virus that devotes a large portion of its 200 kbp genome to suppressing and manipulating the immune response of its host. Here, we investigated how targeted removal of immunomodulatory genes from the VACV genome impacted immune cells in the tumor microenvironment with the intention of improving the therapeutic efficacy of VACV in breast cancer. We performed a head-to-head comparison of six mutant oncolytic VACVs, each harboring deletions in genes that modulate different cellular pathways, such as nucleotide metabolism, apoptosis, inflammation, and chemokine and interferon signaling. We found that even minor changes to the VACV genome can impact the immune cell compartment in the tumor microenvironment. Viral genome modifications had the capacity to alter lymphocytic and myeloid cell compositions in tumors and spleens, PD-1 expression, and the percentages of virus-targeted and tumor-targeted CD8+ T cells. We observed that while some gene deletions improved responses in the nonimmunogenic 4T1 tumor model, very little therapeutic improvement was seen in the immunogenic HER2/neu TuBo model with the various genome modifications. We observed that the most promising candidate genes for deletion were those that interfere with interferon signaling. Collectively, this research helped focus attention on the pathways that modulate the immune response in the context of VACV oncolytic virotherapy. They also suggest that the greatest benefits to be obtained with these treatments may not always be seen in "hot tumors."




    immune

    Single-Cell Immune Competency Signatures Associate with Survival in Phase II GVAX and CRS-207 Randomized Studies in Patients with Metastatic Pancreatic Cancer

    The identification of biomarkers for patient stratification is fundamental to precision medicine efforts in oncology. Here, we identified two baseline, circulating immune cell subsets associated with overall survival in patients with metastatic pancreatic cancer who were enrolled in two phase II randomized studies of GVAX pancreas and CRS-207 immunotherapy. Single-cell mass cytometry was used to simultaneously measure 38 cell surface or intracellular markers in peripheral blood mononuclear cells obtained from a phase IIa patient subcohort (N = 38). CITRUS, an algorithm for identification of stratifying subpopulations in multidimensional cytometry datasets, was used to identify single-cell signatures associated with clinical outcome. Patients with a higher abundance of CD8+CD45ROCCR7CD57+ cells and a lower abundance of CD14+CD33+CD85j+ cells had improved overall survival [median overall survival, range (days) 271, 43–1,247] compared with patients with a lower abundance of CD8+CD45ROCCR7CD57+ cells and higher abundance of CD14+CD33+CD85j+ cells (77, 24–1,247 days; P = 0.0442). The results from this prospective–retrospective biomarker analysis were validated by flow cytometry in 200 patients with pancreatic cancer enrolled in a phase IIb study (P = 0.0047). The identified immune correlates provide potential prognostic or predictive signatures that could be employed for patient stratification.




    immune

    Immune Cell Profiling and Risk Stratification: Cast a Wider Net




    immune

    In Situ Immune Profiling of Heart Transplant Biopsies Improves Diagnostic Accuracy and Rejection Risk Stratification

    Recognizing that guideline-directed histologic grading of endomyocardial biopsy tissue samples for rejection surveillance has limited diagnostic accuracy, quantitative, in situ characterization was performed of several important immune cell types in a retrospective cohort of clinical endomyocardial tissue samples. Differences between cases were identified and were grouped by histologic grade versus clinical rejection trajectory, with significantly increased programmed death ligand 1+, forkhead box P3+, and cluster of differentiation 68+ cells suppressed in clinically evident rejections, especially cases with marked clinical-histologic discordance. Programmed death ligand 1+, forkhead box P3+, and cluster of differentiation 68+ cell proportions are also significantly higher in "never-rejection" when compared with "future-rejection." These findings suggest that in situ immune modulators regulate the severity of cardiac allograft rejection.




    immune

    Neoantigens Elicit Protumorigenic Immune Responses in Pancreatic Cancer [Pancreatic Cancer]

    Neoantigen-expressing pancreatic cancers had hastened progression and poor immunotherapy response.




    immune

    Retinoic Acid Mediates Monocyte Differentiation and Immune Response [Immunology]

    Tumor-derived retinoic acid promotes monocyte differentiation into immunosuppressive macrophages.




    immune

    Tumoral and immune heterogeneity in an anti-PD-1-responsive glioblastoma: a case study [RESEARCH REPORT]

    Clinical benefit of immune checkpoint blockade in glioblastoma (GBM) is rare, and we hypothesize that tumor clonal evolution and the immune microenvironment are key determinants of response. Here, we present a detailed molecular characterization of the intratumoral and immune heterogeneity in an IDH wild-type, MGMT-negative GBM patient who plausibly benefited from anti-PD-1 therapy with an unusually long 25-mo overall survival time. We leveraged multiplex immunohistochemistry, RNA-seq, and whole-exome data from the primary tumor and three resected regions of recurrent disease to survey regional tumor-immune interactions, genomic instability, mutation burden, and expression profiles. We found significant regional heterogeneity in the neoantigenic and immune landscape, with a differential T-cell signature among recurrent sectors, a uniform loss of focal amplifications in EGFR, and a novel subclonal EGFR mutation. Comparisons with recently reported correlates of checkpoint blockade in GBM and with TCGA-GBM revealed appreciable intratumoral heterogeneity that may have contributed to a differential PD-1 blockade response.




    immune

    Circulating Immune Cell Composition and Cancer Risk: A Prospective Study Using Epigenetic Cell Count Measures

    Although ample evidence indicates that immune cell homeostasis is an important prognostic outcome determinant in patients with cancer, few studies have examined whether it also determines cancer risk among initially healthy individuals. We performed a case–cohort study including incident cases of breast (n = 207), colorectal (n = 111), lung (n = 70), and prostate (n = 201) cancer as well as a subcohort (n = 465) within the European Prospective Investigation into Cancer and Nutrition-Heidelberg cohort. Relative counts of neutrophils, monocytes, and lymphocyte sublineages were measured by qRT-PCR. HRs and 95% confidence intervals were used to measure the associations between relative counts of immune cell and cancer risks. When relative counts of immune cell types were taken individually, a significant positive association was observed between relative counts of FOXP3+ regulatory T cells (Tregs) and lung cancer risk, and significant inverse associations were observed between relative CD8+ counts and risks of lung and breast cancer (overall and ER+ subtype). Multivariable models with mutual adjustments across immune markers showed further significant positive associations between higher relative FOXP3+ T-cell counts and increased risks of colorectal and breast cancer (overall and ER− subtype). No associations were found between immune cell composition and prostate cancer risk. These results affirm the relevance of elevated FOXP3+ Tregs and lower levels of cytotoxic (CD8+) T cells as risk factors for tumor development.Significance:This epidemiologic study supports a role for both regulatory and cytotoxic T cells in determining cancer risk among healthy individuals.See related commentary by Song and Tworoger, p. 1801




    immune

    Glial TIM-3 Modulates Immune Responses in the Brain Tumor Microenvironment

    T-cell immunoglobulin and mucin domain–containing molecule 3 (TIM-3), a potential immunotherapeutic target for cancer, has been shown to display diverse characteristics in a context-dependent manner. Thus, it would be useful to delineate the precise functional features of TIM-3 in a given situation. Here, we report that glial TIM-3 shows distinctive properties in the brain tumor microenvironment. TIM-3 was expressed on both growing tumor cells and their surrounding cells including glia and T cells in an orthotopic mouse glioma model. The expression pattern of TIM-3 was distinct from those of other immune checkpoint molecules in tumor-exposed and tumor-infiltrating glia. Comparison of cells from tumor-bearing and contralateral hemispheres of a glioma model showed that TIM-3 expression was lower in tumor-infiltrating CD11b+CD45mid glial cells but higher in tumor-infiltrating CD8+ T cells. In TIM-3 mutant mice with intracellular signaling defects and Cre-inducible TIM-3 mice, TIM-3 affected the expression of several immune-associated molecules including iNOS and PD-L1 in primary glia-exposed conditioned media (CM) from brain tumors. Further, TIM-3 was cross-regulated by TLR2, but not by TLR4, in brain tumor CM- or Pam3CSK4-exposed glia. In addition, following exposure to tumor CM, IFNγ production was lower in T cells cocultured with TIM-3–defective glia than with normal glia. Collectively, these findings suggest that glial TIM-3 actively and distinctively responds to brain tumor, and plays specific intracellular and intercellular immunoregulatory roles that might be different from TIM-3 on T cells in the brain tumor microenvironment.Significance:TIM-3 is typically thought of as a T-cell checkpoint receptor. This study demonstrates a role for TIM-3 in mediating myeloid cell responses in glioblastoma.




    immune

    Systemic Immune Response and Cancer Risk: Filling the Missing Piece of Immuno-Oncology

    While immuno-oncology has made significant advances in activating local tumor immune responses, leading to improved outcomes, the role of systemic immunity in cancer incidence remains poorly understood. Le Cornet and colleagues prospectively studied circulating immune cells quantified by DNA methylation markers in relation to incidence of breast, colorectal, lung, and prostate cancer among initially healthy individuals. A positive association with cancer risk was observed for higher FOXP3+ T-cell–mediated immune tolerance and lower CD8+ T-cell–mediated cytotoxicity. Further studies of systemic immunity in cancer development are crucial to identify novel prediction markers and interventional targets for cancer immunoprevention.See related article by Le Cornet et al., p. 1885




    immune

    How to fight infection by turning back your immune system's clock

    Your immune system ages too, weakening as you get older and making you more susceptible to infections. Fortunately, we are discovering plenty of things you can do to turn back the clock and stay healthy




    immune

    Fever can help the immune system, so what should we do if we have one?

    Fever is a pain, quite literally, but new evidence hints at its purpose. Here’s what you need to know




    immune

    BCG vaccine helps fight infections by boosting immune cell production

    The BCG tuberculosis vaccine boosts the production of immune cells and this may explain how it protects newborns from dying of sepsis




    immune

    Newly discovered cell type plays crucial role in immune response to respiratory infections

    With a discovery that could rewrite the immunology textbooks, an international group of scientists have identified a new type of antigen-presenting immune cell.




    immune

    How herpes simplex virus can evade the immune response to infect the brain

    A research team has discovered a molecular mechanism that helps Herpes simplex virus (HSV1) evade the innate immune system and infect the brain causing a rare disease with high mortality. The study from Aarhus University, University of Oxford, and University of Gothenburg, led by first author Chiranjeevi Bodda in Søren Paludan's lab, will be published May 8 in the Journal of Experimental Medicine (JEM).




    immune

    Newly discovered cell type plays crucial role in immune response to respiratory infections

    With a discovery that could rewrite the immunology textbooks, an international group of scientists, including the teams of Bart Lambrecht, Martin Guilliams, Hamida Hammad, and Charlotte Scott (all from the VIB-UGent Center for Inflammation Research) identified a new type of antigen-presenting immune cell.




    immune

    Immune system discovery paves way to lengthen organ transplant survival

    A new discovery in mice shows the innate immune system has 'memory,' previously thought to be a unique feature of the adaptive immune system. Blocking this memory prevented transplanted organs from being rejected, providing a way to more specific drugs that could lengthen organ transplant survival.




    immune

    COVID-19 on the brain? Here are eight vitamins to get your immune system in shape


    Certain vitamins, minerals and other supplements can support your immune system as a whole, even though they haven’t been researched for their impact on COVID-19 specifically.




    immune

    Ventus Launches With $60M to Shine Light on Innate Immune System Drugs

    The innate immune system has become a hot area for drug development, and for good reason. As the body’s first line of defense, its function (or dysfunction) plays a role in many diseases. The problem, says Ventus Therapeutics CEO Marcelo Bigal, is that drug developers have been working in the dark. Scientists don’t know the […]




    immune

    Probi's Largest Clinical Trial Confirms the Immune Enhancing Impact of Probi Defendum®

    Probi's largest clinical trial ever, focused on probiotic immune health, has recently been completed.




    immune

    ‘Overwhelming evidence’ supports Vitamin D’s immune function benefits

    There is an âindisputable relation between vitamin D and the immune systemâ, says a new review that shows that avoiding vitamin D deficiency has clear benefits for immune health.