immunology

Alan Anson Wanderer, MD, Recognized by Marquis Who's Who for Excellence in Allergy and Immunology and as a Medical Clinical Researcher, Inventor and Author




immunology

Jason Bellak Celebrated for Success in Allergy and Immunology

Dr. Bellak serves as an allergist on behalf of Allergy and Asthma Associates




immunology

Allergy-immunology specialists Dang and Patel named 2024 Castle Connolly Top Doctors

Andrew T. Dang, MD, and Gital K. Patel, MD, have been recognized as 2024 Castle Connolly Top Doctors — the first year for both to receive the prestigious Top Doctor honor.




immunology

Weiss Medical Rebrands to Impact Medical - Allergy, Asthma & Immunology

New Brand Reflects Growth and Dedication to Making a Lasting Impact




immunology

AbbVie's Schizophrenia Failure Disappoints But Analysts Show Confidence In Immunology Portfolio




immunology

Genentech Closes Cancer Immunology Department

Genentech, a leading biotechnology company, recently announced the permanent closing of their Cancer Immunology Department. This announcement comes as a ma




immunology

Development of a novel mammalian display system for selection of antibodies against membrane proteins [Immunology]

Reliable, specific polyclonal and monoclonal antibodies are important tools in research and medicine. However, the discovery of antibodies against their targets in their native forms is difficult. Here, we present a novel method for discovery of antibodies against membrane proteins in their native configuration in mammalian cells. The method involves the co-expression of an antibody library in a population of mammalian cells that express the target polypeptide within a natural membrane environment on the cell surface. Cells that secrete a single-chain fragment variable (scFv) that binds to the target membrane protein thereby become self-labeled, enabling enrichment and isolation by magnetic sorting and FRET-based flow sorting. Library sizes of up to 109 variants can be screened, thus allowing campaigns of naïve scFv libraries to be selected against membrane protein antigens in a Chinese hamster ovary cell system. We validate this method by screening a synthetic naïve human scFv library against Chinese hamster ovary cells expressing the oncogenic target epithelial cell adhesion molecule and identify a panel of three novel binders to this membrane protein, one with a dissociation constant (KD) as low as 0.8 nm. We further demonstrate that the identified antibodies have utility for killing epithelial cell adhesion molecule–positive cells when used as a targeting domain on chimeric antigen receptor T cells. Thus, we provide a new tool for identifying novel antibodies that act against membrane proteins, which could catalyze the discovery of new candidates for antibody-based therapies.




immunology

Inhibition of mitochondrial oxidative metabolism attenuates EMCV replication and protects {beta}-cells from virally mediated lysis [Immunology]

Viral infection is one environmental factor that may contribute to the initiation of pancreatic β-cell destruction during the development of autoimmune diabetes. Picornaviruses, such as encephalomyocarditis virus (EMCV), induce a pro-inflammatory response in islets leading to local production of cytokines, such as IL-1, by resident islet leukocytes. Furthermore, IL-1 is known to stimulate β-cell expression of iNOS and production of the free radical nitric oxide. The purpose of this study was to determine whether nitric oxide contributes to the β-cell response to viral infection. We show that nitric oxide protects β-cells against virally mediated lysis by limiting EMCV replication. This protection requires low micromolar, or iNOS-derived, levels of nitric oxide. At these concentrations nitric oxide inhibits the Krebs enzyme aconitase and complex IV of the electron transport chain. Like nitric oxide, pharmacological inhibition of mitochondrial oxidative metabolism attenuates EMCV-mediated β-cell lysis by inhibiting viral replication. These findings provide novel evidence that cytokine signaling in β-cells functions to limit viral replication and subsequent β-cell lysis by attenuating mitochondrial oxidative metabolism in a nitric oxide–dependent manner.




immunology

The role of uncoupling protein 2 in macrophages and its impact on obesity-induced adipose tissue inflammation and insulin resistance [Immunology]

The development of a chronic, low-grade inflammation originating from adipose tissue in obese subjects is widely recognized to induce insulin resistance, leading to the development of type 2 diabetes. The adipose tissue microenvironment drives specific metabolic reprogramming of adipose tissue macrophages, contributing to the induction of tissue inflammation. Uncoupling protein 2 (UCP2), a mitochondrial anion carrier, is thought to separately modulate inflammatory and metabolic processes in macrophages and is up-regulated in macrophages in the context of obesity and diabetes. Here, we investigate the role of UCP2 in macrophage activation in the context of obesity-induced adipose tissue inflammation and insulin resistance. Using a myeloid-specific knockout of UCP2 (Ucp2ΔLysM), we found that UCP2 deficiency significantly increases glycolysis and oxidative respiration, both unstimulated and after inflammatory conditions. Strikingly, fatty acid loading abolished the metabolic differences between Ucp2ΔLysM macrophages and their floxed controls. Furthermore, Ucp2ΔLysM macrophages show attenuated pro-inflammatory responses toward Toll-like receptor-2 and -4 stimulation. To test the relevance of macrophage-specific Ucp2 deletion in vivo, Ucp2ΔLysM and Ucp2fl/fl mice were rendered obese and insulin resistant through high-fat feeding. Although no differences in adipose tissue inflammation or insulin resistance was found between the two genotypes, adipose tissue macrophages isolated from diet-induced obese Ucp2ΔLysM mice showed decreased TNFα secretion after ex vivo lipopolysaccharide stimulation compared with their Ucp2fl/fl littermates. Together, these results demonstrate that although UCP2 regulates both metabolism and the inflammatory response of macrophages, its activity is not crucial in shaping macrophage activation in the adipose tissue during obesity-induced insulin resistance.




immunology

Murine GFP-Mx1 forms nuclear condensates and associates with cytoplasmic intermediate filaments: Novel antiviral activity against VSV [Immunology]

Type I and III interferons induce expression of the “myxovirus resistance proteins” MxA in human cells and its ortholog Mx1 in murine cells. Human MxA forms cytoplasmic structures, whereas murine Mx1 forms nuclear bodies. Whereas both HuMxA and MuMx1 are antiviral toward influenza A virus (FLUAV) (an orthomyxovirus), only HuMxA is considered antiviral toward vesicular stomatitis virus (VSV) (a rhabdovirus). We previously reported that the cytoplasmic human GFP-MxA structures were phase-separated membraneless organelles (“biomolecular condensates”). In the present study, we investigated whether nuclear murine Mx1 structures might also represent phase-separated biomolecular condensates. The transient expression of murine GFP-Mx1 in human Huh7 hepatoma, human Mich-2H6 melanoma, and murine NIH 3T3 cells led to the appearance of Mx1 nuclear bodies. These GFP-MuMx1 nuclear bodies were rapidly disassembled by exposing cells to 1,6-hexanediol (5%, w/v), or to hypotonic buffer (40–50 mosm), consistent with properties of membraneless phase-separated condensates. Fluorescence recovery after photobleaching (FRAP) assays revealed that the GFP-MuMx1 nuclear bodies upon photobleaching showed a slow partial recovery (mobile fraction: ∼18%) suggestive of a gel-like consistency. Surprisingly, expression of GFP-MuMx1 in Huh7 cells also led to the appearance of GFP-MuMx1 in 20–30% of transfected cells in a novel cytoplasmic giantin-based intermediate filament meshwork and in cytoplasmic bodies. Remarkably, Huh7 cells with cytoplasmic murine GFP-MuMx1 filaments, but not those with only nuclear bodies, showed antiviral activity toward VSV. Thus, GFP-MuMx1 nuclear bodies comprised phase-separated condensates. Unexpectedly, GFP-MuMx1 in Huh7 cells also associated with cytoplasmic giantin-based intermediate filaments, and such cells showed antiviral activity toward VSV.




immunology

Neuro-Immunology: The Promise Of A Differentiated Approach To Neurodegenerative Disease

By Ivana Magovčević-Liebisch, CEO of Vigil Neuroscience, as part of the From The Trenches feature of LifeSciVC In the last decade, our industry has made great strides in combating cancer by harnessing the body’s own immune system. As it was

The post Neuro-Immunology: The Promise Of A Differentiated Approach To Neurodegenerative Disease appeared first on LifeSciVC.




immunology

Kruppel-like factor 3 (KLF3) suppresses NF-{kappa}B-driven inflammation in mice [Immunology]

Bacterial products such as lipopolysaccharides (or endotoxin) cause systemic inflammation, resulting in a substantial global health burden. The onset, progression, and resolution of the inflammatory response to endotoxin are usually tightly controlled to avoid chronic inflammation. Members of the NF-κB family of transcription factors are key drivers of inflammation that activate sets of genes in response to inflammatory signals. Such responses are typically short-lived and can be suppressed by proteins that act post-translationally, such as the SOCS (suppressor of cytokine signaling) family. Less is known about direct transcriptional regulation of these responses, however. Here, using a combination of in vitro approaches and in vivo animal models, we show that endotoxin treatment induced expression of the well-characterized transcriptional repressor Krüppel-like factor 3 (KLF3), which, in turn, directly repressed the expression of the NF-κB family member RELA/p65. We also observed that KLF3-deficient mice were hypersensitive to endotoxin and exhibited elevated levels of circulating Ly6C+ monocytes and macrophage-derived inflammatory cytokines. These findings reveal that KLF3 is a fundamental suppressor that operates as a feedback inhibitor of RELA/p65 and may be important in facilitating the resolution of inflammation.




immunology

Affinity maturation, humanization, and co-crystallization of a rabbit anti-human ROR2 monoclonal antibody for therapeutic applications [Immunology]

Antibodies are widely used as cancer therapeutics, but their current use is limited by the low number of antigens restricted to cancer cells. A receptor tyrosine kinase, receptor tyrosine kinase-like orphan receptor 2 (ROR2), is normally expressed only during embryogenesis and is tightly down-regulated in postnatal healthy tissues. However, it is up-regulated in a diverse set of hematologic and solid malignancies, thus ROR2 represents a candidate antigen for antibody-based cancer therapy. Here we describe the affinity maturation and humanization of a rabbit mAb that binds human and mouse ROR2 but not human ROR1 or other human cell-surface antigens. Co-crystallization of the parental rabbit mAb in complex with the human ROR2 kringle domain (hROR2-Kr) guided affinity maturation by heavy-chain complementarity-determining region 3 (HCDR3)-focused mutagenesis and selection. The affinity-matured rabbit mAb was then humanized by complementarity-determining region (CDR) grafting and framework fine tuning and again co-crystallized with hROR2-Kr. We show that the affinity-matured and humanized mAb retains strong affinity and specificity to ROR2 and, following conversion to a T cell–engaging bispecific antibody, has potent cytotoxicity toward ROR2-expressing cells. We anticipate that this humanized affinity-matured mAb will find application for antibody-based cancer therapy of ROR2-expressing neoplasms.




immunology

Polarization of protease-activated receptor 2 (PAR-2) signaling is altered during airway epithelial remodeling and deciliation [Immunology]

Protease-activated receptor 2 (PAR-2) is activated by secreted proteases from immune cells or fungi. PAR-2 is normally expressed basolaterally in differentiated nasal ciliated cells. We hypothesized that epithelial remodeling during diseases characterized by cilial loss and squamous metaplasia may alter PAR-2 polarization. Here, using a fluorescent arrestin assay, we confirmed that the common fungal airway pathogen Aspergillus fumigatus activates heterologously-expressed PAR-2. Endogenous PAR-2 activation in submerged airway RPMI 2650 or NCI–H520 squamous cells increased intracellular calcium levels and granulocyte macrophage–colony-stimulating factor, tumor necrosis factor α, and interleukin (IL)-6 secretion. RPMI 2650 cells cultured at an air–liquid interface (ALI) responded to apically or basolaterally applied PAR-2 agonists. However, well-differentiated primary nasal epithelial ALIs responded only to basolateral PAR-2 stimulation, indicated by calcium elevation, increased cilia beat frequency, and increased fluid and cytokine secretion. We exposed primary cells to disease-related modifiers that alter epithelial morphology, including IL-13, cigarette smoke condensate, and retinoic acid deficiency, at concentrations and times that altered epithelial morphology without causing breakdown of the epithelial barrier to model early disease states. These altered primary cultures responded to both apical and basolateral PAR-2 stimulation. Imaging nasal polyps and control middle turbinate explants, we found that nasal polyps, but not turbinates, exhibit apical calcium responses to PAR-2 stimulation. However, isolated ciliated cells from both polyps and turbinates maintained basolateral PAR-2 polarization, suggesting that the calcium responses originated from nonciliated cells. Altered PAR-2 polarization in disease-remodeled epithelia may enhance apical responses and increase sensitivity to inhaled proteases.




immunology

Section on Allergy and Immunology




immunology

Dr. Denis Bouboulis Celebrated for Dedication to the Field of Immunology

Dr. Bouboulis draws upon more than two and a half decades of medical expertise in his role with Advanced Allergy, Immunology & Asthma, PC




immunology

Cascya Charlot, MD, Recognized for Expertise in Allergy, Asthma and Immunology

Nothing to sneeze at: Dr. Cascya Charlot has won the Patients' Choice Award six years in a row.




immunology

Kruppel-like factor 3 (KLF3) suppresses NF-{kappa}B-driven inflammation in mice [Immunology]

Bacterial products such as lipopolysaccharides (or endotoxin) cause systemic inflammation, resulting in a substantial global health burden. The onset, progression, and resolution of the inflammatory response to endotoxin are usually tightly controlled to avoid chronic inflammation. Members of the NF-κB family of transcription factors are key drivers of inflammation that activate sets of genes in response to inflammatory signals. Such responses are typically short-lived and can be suppressed by proteins that act post-translationally, such as the SOCS (suppressor of cytokine signaling) family. Less is known about direct transcriptional regulation of these responses, however. Here, using a combination of in vitro approaches and in vivo animal models, we show that endotoxin treatment induced expression of the well-characterized transcriptional repressor Krüppel-like factor 3 (KLF3), which, in turn, directly repressed the expression of the NF-κB family member RELA/p65. We also observed that KLF3-deficient mice were hypersensitive to endotoxin and exhibited elevated levels of circulating Ly6C+ monocytes and macrophage-derived inflammatory cytokines. These findings reveal that KLF3 is a fundamental suppressor that operates as a feedback inhibitor of RELA/p65 and may be important in facilitating the resolution of inflammation.




immunology

Polarization of protease-activated receptor 2 (PAR-2) signaling is altered during airway epithelial remodeling and deciliation [Immunology]

Protease-activated receptor 2 (PAR-2) is activated by secreted proteases from immune cells or fungi. PAR-2 is normally expressed basolaterally in differentiated nasal ciliated cells. We hypothesized that epithelial remodeling during diseases characterized by cilial loss and squamous metaplasia may alter PAR-2 polarization. Here, using a fluorescent arrestin assay, we confirmed that the common fungal airway pathogen Aspergillus fumigatus activates heterologously-expressed PAR-2. Endogenous PAR-2 activation in submerged airway RPMI 2650 or NCI–H520 squamous cells increased intracellular calcium levels and granulocyte macrophage–colony-stimulating factor, tumor necrosis factor α, and interleukin (IL)-6 secretion. RPMI 2650 cells cultured at an air–liquid interface (ALI) responded to apically or basolaterally applied PAR-2 agonists. However, well-differentiated primary nasal epithelial ALIs responded only to basolateral PAR-2 stimulation, indicated by calcium elevation, increased cilia beat frequency, and increased fluid and cytokine secretion. We exposed primary cells to disease-related modifiers that alter epithelial morphology, including IL-13, cigarette smoke condensate, and retinoic acid deficiency, at concentrations and times that altered epithelial morphology without causing breakdown of the epithelial barrier to model early disease states. These altered primary cultures responded to both apical and basolateral PAR-2 stimulation. Imaging nasal polyps and control middle turbinate explants, we found that nasal polyps, but not turbinates, exhibit apical calcium responses to PAR-2 stimulation. However, isolated ciliated cells from both polyps and turbinates maintained basolateral PAR-2 polarization, suggesting that the calcium responses originated from nonciliated cells. Altered PAR-2 polarization in disease-remodeled epithelia may enhance apical responses and increase sensitivity to inhaled proteases.




immunology

Kruppel-like factor 3 (KLF3) suppresses NF-{kappa}B-driven inflammation in mice [Immunology]

Bacterial products such as lipopolysaccharides (or endotoxin) cause systemic inflammation, resulting in a substantial global health burden. The onset, progression, and resolution of the inflammatory response to endotoxin are usually tightly controlled to avoid chronic inflammation. Members of the NF-κB family of transcription factors are key drivers of inflammation that activate sets of genes in response to inflammatory signals. Such responses are typically short-lived and can be suppressed by proteins that act post-translationally, such as the SOCS (suppressor of cytokine signaling) family. Less is known about direct transcriptional regulation of these responses, however. Here, using a combination of in vitro approaches and in vivo animal models, we show that endotoxin treatment induced expression of the well-characterized transcriptional repressor Krüppel-like factor 3 (KLF3), which, in turn, directly repressed the expression of the NF-κB family member RELA/p65. We also observed that KLF3-deficient mice were hypersensitive to endotoxin and exhibited elevated levels of circulating Ly6C+ monocytes and macrophage-derived inflammatory cytokines. These findings reveal that KLF3 is a fundamental suppressor that operates as a feedback inhibitor of RELA/p65 and may be important in facilitating the resolution of inflammation.




immunology

Affinity maturation, humanization, and co-crystallization of a rabbit anti-human ROR2 monoclonal antibody for therapeutic applications [Immunology]

Antibodies are widely used as cancer therapeutics, but their current use is limited by the low number of antigens restricted to cancer cells. A receptor tyrosine kinase, receptor tyrosine kinase-like orphan receptor 2 (ROR2), is normally expressed only during embryogenesis and is tightly down-regulated in postnatal healthy tissues. However, it is up-regulated in a diverse set of hematologic and solid malignancies, thus ROR2 represents a candidate antigen for antibody-based cancer therapy. Here we describe the affinity maturation and humanization of a rabbit mAb that binds human and mouse ROR2 but not human ROR1 or other human cell-surface antigens. Co-crystallization of the parental rabbit mAb in complex with the human ROR2 kringle domain (hROR2-Kr) guided affinity maturation by heavy-chain complementarity-determining region 3 (HCDR3)-focused mutagenesis and selection. The affinity-matured rabbit mAb was then humanized by complementarity-determining region (CDR) grafting and framework fine tuning and again co-crystallized with hROR2-Kr. We show that the affinity-matured and humanized mAb retains strong affinity and specificity to ROR2 and, following conversion to a T cell–engaging bispecific antibody, has potent cytotoxicity toward ROR2-expressing cells. We anticipate that this humanized affinity-matured mAb will find application for antibody-based cancer therapy of ROR2-expressing neoplasms.




immunology

Affinity maturation, humanization, and co-crystallization of a rabbit anti-human ROR2 monoclonal antibody for therapeutic applications [Immunology]

Antibodies are widely used as cancer therapeutics, but their current use is limited by the low number of antigens restricted to cancer cells. A receptor tyrosine kinase, receptor tyrosine kinase-like orphan receptor 2 (ROR2), is normally expressed only during embryogenesis and is tightly down-regulated in postnatal healthy tissues. However, it is up-regulated in a diverse set of hematologic and solid malignancies, thus ROR2 represents a candidate antigen for antibody-based cancer therapy. Here we describe the affinity maturation and humanization of a rabbit mAb that binds human and mouse ROR2 but not human ROR1 or other human cell-surface antigens. Co-crystallization of the parental rabbit mAb in complex with the human ROR2 kringle domain (hROR2-Kr) guided affinity maturation by heavy-chain complementarity-determining region 3 (HCDR3)-focused mutagenesis and selection. The affinity-matured rabbit mAb was then humanized by complementarity-determining region (CDR) grafting and framework fine tuning and again co-crystallized with hROR2-Kr. We show that the affinity-matured and humanized mAb retains strong affinity and specificity to ROR2 and, following conversion to a T cell–engaging bispecific antibody, has potent cytotoxicity toward ROR2-expressing cells. We anticipate that this humanized affinity-matured mAb will find application for antibody-based cancer therapy of ROR2-expressing neoplasms.




immunology

Surfactant Protein-A Protects against IL-13-Induced Inflammation in Asthma [MUCOSAL IMMUNOLOGY]

Key Points

  • SP-A is a collectin and plays a key role in innate immunity in the lung.

  • SP-A modulates inflammation in airway epithelial cells from patients with asthma.

  • SP-A modulates IL-13–induced inflammation through downstream IL-6/STAT3 signaling.




    immunology

    Role of V-ATPase a3-Subunit in Mouse CTL Function [MOLECULAR AND STRUCTURAL IMMUNOLOGY]

    Key Points

  • The a3-subunit of V-ATPase acidifies cytotoxic granules in mouse CD8+ T lymphocytes.

  • Neutralization of luminal pH leads to altered morphology of cytotoxic granules.

  • Knockdown of a3-subunit disturbs trafficking of cytotoxic granules.




    immunology

    IRAK1 Is a Critical Mediator of Inflammation-Induced Preterm Birth [CLINICAL AND HUMAN IMMUNOLOGY]

    Key Points

  • IRAK1 is hyperactivated in human preterm birth and in mouse and rhesus IUI models.

  • IRAK1 deletion and inhibition reduces preterm birth.

  • IRAK1 induces preterm birth by upregulating COX-2.




    immunology

    The Journal of Immunology




    immunology

    A genome-wide association study identifies key modulators of complement factor H binding to malondialdehyde-epitopes [Immunology and Inflammation]

    Genetic variants within complement factor H (CFH), a major alternative complement pathway regulator, are associated with the development of age-related macular degeneration (AMD) and other complementopathies. This is explained with the reduced binding of CFH or its splice variant factor H-like protein 1 (FHL-1) to self-ligands or altered self-ligands (e.g.,...




    immunology

    Starvation and antimetabolic therapy promote cytokine release and recruitment of immune cells [Immunology and Inflammation]

    Cellular starvation is typically a consequence of tissue injury that disrupts the local blood supply but can also occur where cell populations outgrow the local vasculature, as observed in solid tumors. Cells react to nutrient deprivation by adapting their metabolism, or, if starvation is prolonged, it can result in cell...




    immunology

    Polarization of protease-activated receptor 2 (PAR-2) signaling is altered during airway epithelial remodeling and deciliation [Immunology]

    Protease-activated receptor 2 (PAR-2) is activated by secreted proteases from immune cells or fungi. PAR-2 is normally expressed basolaterally in differentiated nasal ciliated cells. We hypothesized that epithelial remodeling during diseases characterized by cilial loss and squamous metaplasia may alter PAR-2 polarization. Here, using a fluorescent arrestin assay, we confirmed that the common fungal airway pathogen Aspergillus fumigatus activates heterologously-expressed PAR-2. Endogenous PAR-2 activation in submerged airway RPMI 2650 or NCI–H520 squamous cells increased intracellular calcium levels and granulocyte macrophage–colony-stimulating factor, tumor necrosis factor α, and interleukin (IL)-6 secretion. RPMI 2650 cells cultured at an air–liquid interface (ALI) responded to apically or basolaterally applied PAR-2 agonists. However, well-differentiated primary nasal epithelial ALIs responded only to basolateral PAR-2 stimulation, indicated by calcium elevation, increased cilia beat frequency, and increased fluid and cytokine secretion. We exposed primary cells to disease-related modifiers that alter epithelial morphology, including IL-13, cigarette smoke condensate, and retinoic acid deficiency, at concentrations and times that altered epithelial morphology without causing breakdown of the epithelial barrier to model early disease states. These altered primary cultures responded to both apical and basolateral PAR-2 stimulation. Imaging nasal polyps and control middle turbinate explants, we found that nasal polyps, but not turbinates, exhibit apical calcium responses to PAR-2 stimulation. However, isolated ciliated cells from both polyps and turbinates maintained basolateral PAR-2 polarization, suggesting that the calcium responses originated from nonciliated cells. Altered PAR-2 polarization in disease-remodeled epithelia may enhance apical responses and increase sensitivity to inhaled proteases.




    immunology

    Development of an Extended-Specificity Multiplex Immunoassay for Detection of Streptococcus pneumoniae Serotype-Specific Antigen in Urine by Use of Human Monoclonal Antibodies [Diagnostic Laboratory Immunology]

    Current pneumococcal vaccines cover the 10 to 23 most common serotypes of the 92 presently described. However, with the increased usage of pneumococcal-serotype-based vaccines, the risk of serotype replacement and an increase in disease caused by nonvaccine serotypes remains. Serotype surveillance of pneumococcal infections relies heavily on culture techniques, which are known to be insensitive, particularly in cases of noninvasive disease. Pneumococcal-serotype-specific urine assays offer an alternative method of serotyping for both invasive and noninvasive disease. However, the assays described previously cover mainly conjugate vaccine serotypes, give little information about circulating nonvaccine serotypes, and are currently available only in one or two specialist laboratories. Our laboratory has developed a Luminex-based extended-range antigen capture assay to detect pneumococcal-serotype-specific antigens in urine samples. The assay targets 24 distinct serotypes/serogroups plus the cell wall polysaccharide (CWP) and some cross-reactive serotypes. We report that the assay is capable of detecting all the targeted serotypes and the CWP at 0.1 ng/ml, while some serotypes are detected at concentrations as low as 0.3 pg/ml. The analytical serotype specificity was determined to be 98.4% using a panel of polysaccharide-negative urine specimens spiked with nonpneumococcal bacterial antigens. We also report clinical sensitivities of 96.2% and specificities of 89.9% established using a panel of urine specimens from patients diagnosed with community-acquired pneumonia or pneumococcal disease. This assay can be extended for testing other clinical samples and has the potential to greatly improve serotype-specific surveillance in the many cases of pneumococcal disease in which a culture is never obtained.




    immunology

    Identification of Novel Antigens Recognized by Serum Antibodies in Bovine Tuberculosis [Diagnostic Laboratory Immunology]

    Bovine tuberculosis (TB), caused by Mycobacterium bovis, remains an important zoonotic disease posing a serious threat to livestock and wildlife. The current TB tests relying on cell-mediated and humoral immune responses in cattle have performance limitations. To identify new serodiagnostic markers of bovine TB, we screened a panel of 101 recombinant proteins, including 10 polyepitope fusions, by a multiantigen print immunoassay (MAPIA) with well-characterized serum samples serially collected from cattle with experimental or naturally acquired M. bovis infection. A novel set of 12 seroreactive antigens was established. Evaluation of selected proteins in the dual-path platform (DPP) assay showed that the highest diagnostic accuracy (~95%) was achieved with a cocktail of five best-performing antigens, thus demonstrating the potential for development of an improved and more practical serodiagnostic test for bovine TB.




    immunology

    Kinetics, Longevity, and Cross-Reactivity of Antineuraminidase Antibody after Natural Infection with Influenza A Viruses [Clinical Immunology]

    The kinetics, longevity, and breadth of antibodies to influenza virus neuraminidase (NA) in archival, sequential serum/plasma samples from influenza A virus (IAV) H5N1 infection survivors and from patients infected with the 2009 pandemic IAV (H1N1) virus were determined using an enzyme-linked lectin-based assay. The reverse-genetics-derived H4N1 viruses harboring a hemagglutinin (HA) segment from A/duck/Shan Tou/461/2000 (H4N9) and an NA segment derived from either IAV H5N1 clade 1, IAV H5N1 clade 2.3.4, the 2009 pandemic IAV (H1N1) (H1N1pdm), or A/Puerto Rico/8/1934 (H1N1) virus were used as the test antigens. These serum/plasma samples were also investigated by microneutralization (MN) and/or hemagglutination inhibition (HI) assays. Neuraminidase-inhibiting (NI) antibodies against N1 NA of both homologous and heterologous viruses were observed in H5N1 survivors and H1N1pdm patients. H5N1 survivors who were never exposed to H1N1pdm virus developed NI antibodies to H1N1pdm NA. Seroconversion of NI antibodies was observed in 65% of the H1N1pdm patients at day 7 after disease onset, but an increase in titer was not observed in serum samples obtained late in infection. On the other hand, an increase in seroconversion rate with the HI assay was observed in the follow-up series of sera obtained on days 7, 14, 28, and 90 after infection. The study also showed that NI antibodies are broadly reactive, while MN and HI antibodies are more strain specific.




    immunology

    High-Resolution Epitope Positioning of a Large Collection of Neutralizing and Nonneutralizing Single-Domain Antibodies on the Enzymatic and Binding Subunits of Ricin Toxin [Clinical Immunology]

    We previously produced a heavy-chain-only antibody (Ab) VH domain (VHH)-displayed phage library from two alpacas that had been immunized with ricin toxoid and nontoxic mixtures of the enzymatic ricin toxin A subunit (RTA) and binding ricin toxin B subunit (RTB) (D. J. Vance, J. M. Tremblay, N. J. Mantis, and C. B. Shoemaker, J Biol Chem 288:36538–36547, 2013, https://doi.org/10.1074/jbc.M113.519207). Initial and subsequent screens of that library by direct enzyme-linked immunosorbent assay (ELISA) yielded more than two dozen unique RTA- and RTB-specific VHHs, including 10 whose structures were subsequently solved in complex with RTA. To generate a more complete antigenic map of ricin toxin and to define the epitopes associated with toxin-neutralizing activity, we subjected the VHH-displayed phage library to additional "pannings" on both receptor-bound ricin and antibody-captured ricin. We now report the full-length DNA sequences, binding affinities, and neutralizing activities of 68 unique VHHs: 31 against RTA, 33 against RTB, and 4 against ricin holotoxin. Epitope positioning was achieved through cross-competition ELISAs performed with a panel of monoclonal antibodies (MAbs) and verified, in some instances, with hydrogen-deuterium exchange mass spectrometry. The 68 VHHs grouped into more than 20 different competition bins. The RTA-specific VHHs with strong toxin-neutralizing activities were confined to bins that overlapped two previously identified neutralizing hot spots, termed clusters I and II. The four RTB-specific VHHs with potent toxin-neutralizing activity grouped within three adjacent bins situated at the RTA-RTB interface near cluster II. These results provide important insights into epitope interrelationships on the surface of ricin and delineate regions of vulnerability that can be exploited for the purpose of vaccine and therapeutic development.




    immunology

    Development of a High-Throughput Respiratory Syncytial Virus Fluorescent Focus-Based Microneutralization Assay [Diagnostic Laboratory Immunology]

    Neutralizing antibodies specific for respiratory syncytial virus (RSV) represent a major protective mechanism against RSV infection, as demonstrated by the efficacy of the immune-prophylactic monoclonal antibody palivizumab in preventing RSV-associated lower respiratory tract infections in premature infants. Accordingly, the RSV neutralization assay has become a key functional method to assess the neutralizing activity of serum antibodies in preclinical animal models, epidemiology studies, and clinical trials. In this study, we qualified a 24-h, fluorescent focus-based microneutralization (RSVA FFA-MN) method that requires no medium exchange or pre- or postinfection processing to detect green fluorescent protein-expressing RSV strain A2 (RSVA-GFP)-infected cells, using a high-content imaging system for automated image acquisition and focus enumeration. The RSVA FFA-MN method was shown to be sensitive, with a limit of detection (LOD) and limit of quantitation (LOQ) of 1:10, or 3.32 log2; linear over a range of 4.27 to 9.65 log2 50% inhibitory concentration (IC50); and precise, with intra- and interassay coefficients of variation of <21%. This precision allowed the choice of a statistically justified 3-fold-rise seroresponse cutoff criterion. The repeatability and robustness of this method were demonstrated by including a pooled human serum sample in every assay as a positive control (PC). Over 3 years of testing between two laboratories, this PC generated data falling within 2.5 standard deviations of the mean 98.7% of the time (n = 1,720). This high-throughput and reliable RSV microneutralization assay has proven useful for testing sera from preclinical vaccine candidate evaluation studies, epidemiology studies, and both pediatric and adult vaccine clinical trials.




    immunology

    Cancer Immunology Research




    immunology

    A Previously Unknown Dendritic Cell Type Reduces Antitumor Response [Immunology]

    A cluster of dendritic cells (termed mregDCs), observed in humans and mice, restricted antitumor immunity.




    immunology

    Increased B-cell ICOSL Expression Improves Chemotherapy Response [Immunology]

    A chemotherapy-induced shift to ICOSL+ B cells in breast tumors correlated with better survival.




    immunology

    Retinoic Acid Mediates Monocyte Differentiation and Immune Response [Immunology]

    Tumor-derived retinoic acid promotes monocyte differentiation into immunosuppressive macrophages.




    immunology

    Engagement of T Cell-Expressed PD-L1 Weakens Antitumor Immunity [Immunology]

    T cell–expressed PD-L1 exerts tolerogenic effects on tumor immunity in pancreatic cancer.




    immunology

    Cellular & Molecular Immunology




    immunology

    Thank you to all 2019 Mucosal Immunology Reviewers




    immunology

    Mucosal Immunology




    immunology

    Nature Immunology




    immunology

    Philosophy of Immunology

    [Revised entry by Bartlomiej Swiatczak and Alfred I. Tauber on May 7, 2020. Changes to: Main text, Bibliography] Philosophy of immunology is a subfield of philosophy of biology dealing with ontological and epistemological issues related to the studies of the immune system. While speculative investigations and abstract analyses have always been part of immune theorizing, until recently philosophers have largely ignored immunology. Yet the implications for understanding the philosophical basis of organismal functions framed by immunity offer new perspectives on fundamental questions of biology and medicine. Developed in the context of history...




    immunology

    Haematology and immunology [Electronic book] / Olivia Vanbergen, Gus Redhouse White ; edited by Matthew Helbert, Vikramajit Singh.

    Amsterdam : Elsevier, 2018.




    immunology

    Exercise immunology / edited by Mike Gleeson, Nicolette Bishop, and Neil Walsh




    immunology

    Immunology & serology in laboratory medicine / Mary Louise Turgeon

    Turgeon, Mary Louise




    immunology

    Hematology and immunology : quality in laboratory diagnosis / Adam C. Seegmiller, MD, PhD, Assistant Professor of Pathology, Microbiology, and Immunology, Director of Hematopathology, Vanderbilt University School of Medicine, Medical Director of Hematopat

    Seegmiller, Adam C., author




    immunology

    Manual of molecular and clinical laboratory immunology / edited by Barbara Detrick, John L. Schmitz, Robert G. Hamilton




    immunology

    Clinical immunology and serology : a laboratory perspective / Christine Dorresteyn Stevens, EdD, MT(ASCP), Professor Emeritus of Clinical Laboratory Science, Western Carolina University, Cullowhee, North Carolina, Linda E. Miller, PhD, I, ḾBCM(ASCP)Si, P

    Stevens, Christine Dorresteyn, author