neuroinflammation The co-fermentation of whole-grain black barley and quinoa improves murine cognitive impairment induced by a high-fat diet via altering gut microbial ecology and suppressing neuroinflammation By pubs.rsc.org Published On :: Food Funct., 2024, Advance ArticleDOI: 10.1039/D4FO02704C, PaperFenfen Wei, Huibin Jiang, Chuang Zhu, Lingyue Zhong, Zihan Lin, Yan Wu, Lihua SongA high-fat diet (HFD) is associated with various adverse health outcomes, including cognitive impairment and an elevated risk of neurodegenerative conditions.To cite this article before page numbers are assigned, use the DOI form of citation above.The content of this RSS Feed (c) The Royal Society of Chemistry Full Article
neuroinflammation Ergothioneine improves cognitive function by ameliorating mitochondrial damage and decreasing neuroinflammation in a D-galactose-induced aging model By pubs.rsc.org Published On :: Food Funct., 2024, Advance ArticleDOI: 10.1039/D4FO02321H, PaperFangyang Chen, Botao Wang, Xin Sun, Yage Wang, Ruiyan Wang, Kaikai LiEGT intervention significantly improved D-galactose induced oxidative stress, neuroinflammation, and mitochondrial function, resulting in the alleviation of memory injury.To cite this article before page numbers are assigned, use the DOI form of citation above.The content of this RSS Feed (c) The Royal Society of Chemistry Full Article
neuroinflammation Roles of the DOCK-D family proteins in a mouse model of neuroinflammation [Neurobiology] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 The DOCK-D (dedicator of cytokinesis D) family proteins are atypical guanine nucleotide exchange factors that regulate Rho GTPase activity. The family consists of Zizimin1 (DOCK9), Zizimin2 (DOCK11), and Zizimin3 (DOCK10). Functions of the DOCK-D family proteins are presently not well-explored, and the role of the DOCK-D family in neuroinflammation is unknown. In this study, we generated three mouse lines in which DOCK9 (DOCK9−/−), DOCK10 (DOCK10−/−), or DOCK11 (DOCK11−/−) had been deleted and examined the phenotypic effects of these gene deletions in MOG35–55 peptide-induced experimental autoimmune encephalomyelitis, an animal model of the neuroinflammatory disorder multiple sclerosis. We found that all the gene knockout lines were healthy and viable. The only phenotype observed under normal conditions was a slightly smaller proportion of B cells in splenocytes in DOCK10−/− mice than in the other mouse lines. We also found that the migration ability of macrophages is impaired in DOCK10−/− and DOCK11−/− mice and that the severity of experimental autoimmune encephalomyelitis was ameliorated only in DOCK10−/− mice. No apparent phenotype was observed for DOCK9−/− mice. Further investigations indicated that lipopolysaccharide stimulation up-regulates DOCK10 expression in microglia and that microglial migration is decreased in DOCK10−/− mice. Up-regulation of C–C motif chemokine ligand 2 (CCL2) expression induced by activation of Toll-like receptor 4 or 9 signaling was reduced in DOCK10−/− astrocytes compared with WT astrocytes. Taken together, our findings suggest that DOCK10 plays a role in innate immunity and neuroinflammation and might represent a potential therapeutic target for managing multiple sclerosis. Full Article
neuroinflammation Lipid rafts in glial cells: role in neuroinflammation and pain processing [Thematic Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Activation of microglia and astrocytes secondary to inflammatory processes contributes to the development and perpetuation of pain with a neuropathic phenotype. This pain state presents as a chronic debilitating condition and affects a large population of patients with conditions like rheumatoid arthritis and diabetes, or after surgery, trauma, or chemotherapy. Here, we review the regulation of lipid rafts in glial cells and the role they play as a key component of neuroinflammatory sensitization of central pain signaling pathways. In this context, we introduce the concept of an inflammaraft (i-raft), enlarged lipid rafts harboring activated receptors and adaptor molecules and serving as an organizing platform to initiate inflammatory signaling and the cellular response. Characteristics of the inflammaraft include increased relative abundance of lipid rafts in inflammatory cells, increased content of cholesterol per raft, and increased levels of inflammatory receptors, such as toll-like receptor (TLR)4, adaptor molecules, ion channels, and enzymes in lipid rafts. This inflammaraft motif serves an important role in the membrane assembly of protein complexes, for example, TLR4 dimerization. Operating within this framework, we demonstrate the involvement of inflammatory receptors, redox molecules, and ion channels in the inflammaraft formation and the regulation of cholesterol and sphingolipid metabolism in the inflammaraft maintenance and disruption. Strategies for targeting inflammarafts, without affecting the integrity of lipid rafts in noninflammatory cells, may lead to developing novel therapies for neuropathic pain states and other neuroinflammatory conditions. Full Article
neuroinflammation Lipid rafts in glial cells: role in neuroinflammation and pain processing [Thematic Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Activation of microglia and astrocytes secondary to inflammatory processes contributes to the development and perpetuation of pain with a neuropathic phenotype. This pain state presents as a chronic debilitating condition and affects a large population of patients with conditions like rheumatoid arthritis and diabetes, or after surgery, trauma, or chemotherapy. Here, we review the regulation of lipid rafts in glial cells and the role they play as a key component of neuroinflammatory sensitization of central pain signaling pathways. In this context, we introduce the concept of an inflammaraft (i-raft), enlarged lipid rafts harboring activated receptors and adaptor molecules and serving as an organizing platform to initiate inflammatory signaling and the cellular response. Characteristics of the inflammaraft include increased relative abundance of lipid rafts in inflammatory cells, increased content of cholesterol per raft, and increased levels of inflammatory receptors, such as toll-like receptor (TLR)4, adaptor molecules, ion channels, and enzymes in lipid rafts. This inflammaraft motif serves an important role in the membrane assembly of protein complexes, for example, TLR4 dimerization. Operating within this framework, we demonstrate the involvement of inflammatory receptors, redox molecules, and ion channels in the inflammaraft formation and the regulation of cholesterol and sphingolipid metabolism in the inflammaraft maintenance and disruption. Strategies for targeting inflammarafts, without affecting the integrity of lipid rafts in noninflammatory cells, may lead to developing novel therapies for neuropathic pain states and other neuroinflammatory conditions. Full Article
neuroinflammation TSPO Versus P2X7 as a Target for Neuroinflammation: An In Vitro and In Vivo Study By jnm.snmjournals.org Published On :: 2020-04-01T06:00:28-07:00 Neuroinflammation is important in amyotrophic lateral sclerosis (ALS). The P2X7 receptor (P2X7R) is a promising target for neuroinflammation. The objective of this study was to compare 18F-DPA714, a second-generation translocator protein tracer, with 11C-JNJ717, a novel P2X7R tracer, in vitro and in vivo in ALS. Methods: For the in vitro portion of the study, autoradiography with 18F-DPA714 and 11C-JNJ717 was performed on human ALS brain sections in comparison to immunofluorescence with Iba1 and GFAP. For the in vivo portion, 3 male patients with early-stage ALS (59.3 ± 7.2 y old) and 6 healthy volunteers (48.2 ± 16.5 y old, 2 men and 4 women) underwent dynamic PET/MR scanning with 18F-DPA714 and 11C-JNJ717. Volume-of-distribution images were calculated using Logan plots and analyzed on a volume-of-interest basis. Results: Autoradiography showed no difference in 11C-JNJ717 binding but did show increased 18F-DPA714 binding in the motor cortex correlating with Iba1 expression (glial cells). Similar findings were observed in vivo, with a 13% increase in 18F-DPA714 binding in the motor cortex. Conclusion: In symptomatic ALS patients, 18F-DPA714 showed increased signal whereas 11C-JNJ717 was not elevated. Full Article
neuroinflammation Neuroinflammation and schizophrenia By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030391416 (electronic bk.) Full Article
neuroinflammation Lipid rafts in glial cells: role in neuroinflammation and pain processing [Thematic Reviews] By www.jlr.org Published On :: 2020-05-01T00:05:27-07:00 Activation of microglia and astrocytes secondary to inflammatory processes contributes to the development and perpetuation of pain with a neuropathic phenotype. This pain state presents as a chronic debilitating condition and affects a large population of patients with conditions like rheumatoid arthritis and diabetes, or after surgery, trauma, or chemotherapy. Here, we review the regulation of lipid rafts in glial cells and the role they play as a key component of neuroinflammatory sensitization of central pain signaling pathways. In this context, we introduce the concept of an inflammaraft (i-raft), enlarged lipid rafts harboring activated receptors and adaptor molecules and serving as an organizing platform to initiate inflammatory signaling and the cellular response. Characteristics of the inflammaraft include increased relative abundance of lipid rafts in inflammatory cells, increased content of cholesterol per raft, and increased levels of inflammatory receptors, such as toll-like receptor (TLR)4, adaptor molecules, ion channels, and enzymes in lipid rafts. This inflammaraft motif serves an important role in the membrane assembly of protein complexes, for example, TLR4 dimerization. Operating within this framework, we demonstrate the involvement of inflammatory receptors, redox molecules, and ion channels in the inflammaraft formation and the regulation of cholesterol and sphingolipid metabolism in the inflammaraft maintenance and disruption. Strategies for targeting inflammarafts, without affecting the integrity of lipid rafts in noninflammatory cells, may lead to developing novel therapies for neuropathic pain states and other neuroinflammatory conditions. Full Article
neuroinflammation Roles of the DOCK-D family proteins in a mouse model of neuroinflammation [Neurobiology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 The DOCK-D (dedicator of cytokinesis D) family proteins are atypical guanine nucleotide exchange factors that regulate Rho GTPase activity. The family consists of Zizimin1 (DOCK9), Zizimin2 (DOCK11), and Zizimin3 (DOCK10). Functions of the DOCK-D family proteins are presently not well-explored, and the role of the DOCK-D family in neuroinflammation is unknown. In this study, we generated three mouse lines in which DOCK9 (DOCK9−/−), DOCK10 (DOCK10−/−), or DOCK11 (DOCK11−/−) had been deleted and examined the phenotypic effects of these gene deletions in MOG35–55 peptide-induced experimental autoimmune encephalomyelitis, an animal model of the neuroinflammatory disorder multiple sclerosis. We found that all the gene knockout lines were healthy and viable. The only phenotype observed under normal conditions was a slightly smaller proportion of B cells in splenocytes in DOCK10−/− mice than in the other mouse lines. We also found that the migration ability of macrophages is impaired in DOCK10−/− and DOCK11−/− mice and that the severity of experimental autoimmune encephalomyelitis was ameliorated only in DOCK10−/− mice. No apparent phenotype was observed for DOCK9−/− mice. Further investigations indicated that lipopolysaccharide stimulation up-regulates DOCK10 expression in microglia and that microglial migration is decreased in DOCK10−/− mice. Up-regulation of C–C motif chemokine ligand 2 (CCL2) expression induced by activation of Toll-like receptor 4 or 9 signaling was reduced in DOCK10−/− astrocytes compared with WT astrocytes. Taken together, our findings suggest that DOCK10 plays a role in innate immunity and neuroinflammation and might represent a potential therapeutic target for managing multiple sclerosis. Full Article
neuroinflammation Single-cell RNA-seq analysis of human CSF microglia and myeloid cells in neuroinflammation By nn.neurology.org Published On :: 2020-05-05T12:45:12-07:00 Objective To identify and characterize myeloid cell populations within the CSF of patients with MS and anti-myelin oligodendrocyte glycoprotein (MOG) disorder by high-resolution single-cell gene expression analysis. Methods Single-cell RNA sequencing (scRNA-seq) was used to profile individual cells of CSF and blood from 2 subjects with relapsing-remitting MS (RRMS) and one with anti-MOG disorder. Publicly available scRNA-seq data from the blood and CSF of 2 subjects with HIV were also analyzed. An informatics pipeline was used to cluster cell populations by transcriptomic profiling. Based on gene expression by CSF myeloid cells, a flow cytometry panel was devised to examine myeloid cell populations from the CSF of 11 additional subjects, including individuals with RRMS, anti-MOG disorder, and control subjects without inflammatory demyelination. Results Common myeloid populations were identified within the CSF of subjects with RRMS, anti-MOG disorder, and HIV. These included monocytes, conventional and plasmacytoid dendritic cells, and cells with a transcriptomic signature matching microglia. Microglia could be discriminated from other myeloid cell populations in the CSF by flow cytometry. Conclusions High-resolution single-cell gene expression analysis clearly distinguishes distinct myeloid cell types present within the CSF of subjects with neuroinflammation. A population of microglia exists within the human CSF, which is detectable by surface protein expression. The function of these cells during immunity and disease requires further investigation. Full Article
neuroinflammation Dimethyl fumarate suppresses granulocyte macrophage colony-stimulating factor-producing Th1 cells in CNS neuroinflammation By nn.neurology.org Published On :: 2020-05-05T12:45:12-07:00 Objective To study the immunomodulatory effect of dimethyl fumarate (DF) on granulocyte macrophage colony-stimulating factor (GM-CSF) production in CD4+ T cells in experimental autoimmune encephalomyelitis (EAE) and human peripheral blood mononuclear cells (PBMCs). Methods We collected splenocytes and CD4+ T cells from C57BL/6 wild-type and interferon (IFN)-–deficient mice. For human PBMCs, venous blood was collected from healthy donors, and PBMCs were collected using the Percoll gradient method. Cells were cultured with anti-CD3/28 in the presence/absence of DF for 3 to 5 days. Cells were stained and analyzed by flow cytometry. Cytokines were measured by ELISA in cell supernatants. For in vivo experiments, EAE was induced by myelin oligodendrocyte glycoprotein35–55 and mice were treated with oral DF or vehicle daily. Results DF acts directly on CD4+ T cells and suppresses GM-CSF–producing Th1 not Th17 or single GM-CSF+ T cells in EAE. In addition, GM-CSF suppression depends on the IFN- pathway. We also show that DF specifically suppresses Th1 and GM-CSF–producing Th1 cells in PBMCs from healthy donors. Conclusions We suggest that DF exclusively suppresses GM-CSF–producing Th1 cells in both animal and human CD4+ T cells through an IFN-–dependent pathway. These findings indicate that DF has a better therapeutic effect on patients with Th1-dominant immunophenotype. However, future longitudinal study to validate this finding in MS is needed. Full Article
neuroinflammation [ASAP] A Multifunctional Chemical Agent as an Attenuator of Amyloid Burden and Neuroinflammation in Alzheimer’s Disease By feedproxy.google.com Published On :: Mon, 04 May 2020 04:00:00 GMT ACS Chemical NeuroscienceDOI: 10.1021/acschemneuro.0c00114 Full Article
neuroinflammation Neuroinflammation in Alzheimers disease By digital.lib.usf.edu Published On :: Sat, 15 Feb 2014 18:20:37 -0400 Full Article
neuroinflammation The role of neuroinflammation in regulating the age-related decline in neurogenesis By digital.lib.usf.edu Published On :: Sat, 15 Feb 2014 19:00:54 -0400 Full Article