mi

All About Kamala Harris: Life, Family, Wealth And Her Impact On US Politics

Kamala Devi Harris was born on October 20, 1964, in Oakland, California, to immigrant parents.




mi

Mike Waltz: The Combat Veteran Turned National Security Adviser

US President-elect Donald Trump has named Mike Waltz, a Congressman from Florida and co-chair of the India Caucus, as the new National Security Adviser.








mi

Telangana train accident: Goods train derails near Peddapalli. Check full list of cancelled, diverted trains today | Today News - Mint

  1. Telangana train accident: Goods train derails near Peddapalli. Check full list of cancelled, diverted trains today | Today News  Mint
  2. Goods train derails in Telangana's Peddapalli; 20 trains cancelled, 10 diverted  The Economic Times
  3. 11 coaches of goods train derail in Telangana  The Times of India
  4. Goods train derailment in Telangana affects rail traffic between Delhi and Chennai  Telangana Today
  5. Goods train derails in Telangana's Peddapalli; 30 trains cancelled, several diverted  The Hindu








mi

Millions Of Teflon Particles Are Mixed With Your Food While Cooking On Teflon-Coated Pan! (Research Results)

There is a shocking revelation by scientists who are studying the surface of a Teflon-coated pan. As per the scientists, thousands to millions of ultra-small Teflon plastic particles may be released during cooking as non-stick pots and pans gradually lose their coating. As per the new study published in the journal Science of the Total […]




mi

Family Members Of Foreign Workers In Canada Now Allowed To Work: Spouses, Working-Age Children Will Get Work Permits!

After its decision to strengthen visa infrastructure in Delhi and Chandigarh, Canada has now announced that family members of temporary international workers will also be allowed to work in the country. Sean Fraser, Canada’s Minister of Immigration, Refugees, and Citizenship, recently informed the media that his agency will be granting work permits to relatives of […]




mi

Exciting Details Of Redmi K60 Series Revealed: Will It Be 2023’s 1st Flagship Smartphone? Check Specs, USPs & More!

The success of the Redmi K50 series, especially the Redmi K50 Pro was resounding, and now, a lot of leaks about the Redmi K60 series have emerged as well. The box of the Redmi K60 was leaked recently, and promotional dates of the phone series have also appeared. Redmi K60 Features Leaked: All You Need […]




mi

[Exclusive Interview] This Startup Promises Out-Of-The-Box Ideas For Businesses To Scale Their Content Marketing

Recently, we interacted with Mr. Ayush Shukla, Creator & Founder, Finnet Media, and asked him about his startup journey, and their plans to disrupt the ecosystem with ideas and passion. With a B.A in Economic Honors from Delhi University, Ayush learned the nuances of networking and explored it for his self-growth by building a strong […]




mi

300 Microsoft Employees Create Employee Union, First Time Ever: This Is How Microsoft Reacted

Around 300 workers at Microsoft Corp.’s ZeniMax Studios have commenced the process of forming a union which is said to be the first at the software giant in the US.  Here, Microsoft Corp.’s ZeniMax Studios known for popular video games including Skyrim and Fallout. Forming Union In Microsoft Corp Moreover, the quality assurance employees at […]




mi

Vesper closes $23M Series B for its sensor-based microphone: Amazon Alexa Fund among investors

Vesper, the maker of piezoelectric sensors used in microphone production and winner of CES Innovation Award 2018 raised a $23M Series B round. American Family Ventures led the investment with participation from Accomplice, Amazon Alexa Fund, Baidu, Bose Ventures, Hyperplane, Sands Capital, Shure, Synaptics, ZZ Capital and some undisclosed investors.

Vesper VM1000

Vesper’s innovative sensors can be used in consumer electronics like TV remote controls, smart speakers, smartphones, intelligent sensor nodes, and hearables. The company will use the funding proceeds to scale-up its functions like mass production of its microphones and support expanded research and development, hiring, and establishing international sales offices.

The main product of Vesper is VM1000, a low noise, high range,single-ended analog output piezoelectric MEMS microphone. It consists of a piezoelectric sensor and circuitry to buffer and amplify the output.

Vesper VM1010

The hot-selling product of Vesper is VM1010 with ZeroPower Listening which is the first MEMS microphone that enables voice activation to battery-powered consumer devices.

The unique selling point of Vesper’s products is they are built to operate in rugged environments that have dust and moisture.

"Vesper's ZeroPower Listening capabilities coupled with its ability to withstand water, dust, oil, and particulate contaminants enables users that have never before been possible," said Katelyn Johnson, principal of American Family Ventures. "We are excited about Vesper's quest to transform our connected world, including IoT devices."

Other recent funding news include $24 raised by sensor-based baby sock maker Owlet, IFTTT banks $24M from Salesforce to scale its IoT Enterprise offering, and Intel sells its Wind River Software to TPG.




mi

Microsoft buys conversational AI company Semantic Machines for an undisclosed sum

Microsoft announced it has acquired Semantic Machines, a conversational AI startup providing chatbots and AI chat apps founded in 2014 having $20.9 million in funding from investors. The acquisition will help Microsoft catch up with Amazon Alexa, though the latter is more focused on enabling consumer applications of conversational AI.

Microsoft will use Semantic Machine’s acquisition to establish a conversational AI center of excellence in Berkeley to help it innovate in natural language interfaces.

Microsoft has been stepping up its products in conversational AI. It launched the digital assistant Cortana in 2015, as well as social chatbots like XiaoIce. The latest acquisition can help Microsoft beef up its ‘enterprise AI’ offerings.

As the use of NLP (natural language processing) increases in IoT products and services, more startups are getting traction from investors and established players. In June last year, Josh.ai, avoice-controlled home automation software has raised $8M.

Followed by it was SparkCognition that raised $32.5M Series B for its NLP-based threat intelligence platform.

It appears Microsoft’s acquisition of Semantic Machines was motivated by the latter’s strong AI team. The team includes technology entrepreneur Daniel Roth who sold his previous startups Voice Signal Technologies and Shaser BioScience for $300M and $100M respectively. Other team members include Stanford AI Professor Percy Liang, developer of Google Assistant Core AI technology and former Apple chief speech scientist Larry Gillick.

“Combining Semantic Machines' technology with Microsoft's own AI advances, we aim to deliver powerful, natural and more productive user experiences that will take conversational computing to a new level." David Ku, chief technology officer of Microsoft AI & Research.






mi

Arduino adds two boards to its MKR family of products for new use cases

Arduino’s MKR family of products got two new wireless connectivity boards added to its range of products. These include MKR WiFi 1010 and MKR NB 1500, both aimed at streamlining IoT product/service development.

Arduino MKR WiFi 1010

Arduino’s blog notes that “the Arduino MKR WiFi 1010 is the new version of the MKR1000 with ESP32 module on board made by U-BLOX.”

MKR WiFi 1010: For prototyping of WI-FI based IoT applications

The core difference of MKR WiFi 1010 compared to MKR WiFi 1000 is that the former can be put to use in production-grade IoT apps and it has ESP32-based module manufactured by u-blox. The former enables to add 2.4GHz WiFi and Bluetooth capability to the application. Additionally, it comes with a programmable dual-processor system (an ARM processor and a dual-core Espressif IC).

MKR NB 1500: For on-field monitoring systems and remote-controlled LTE-enabled modules

The Arduino MKR NB 1500 is based on new low-power NB-IoT (narrowband IoT) standard. This makes it appropriate for IoT apps running over cellular/LTE networks.

Arduino MKR NB 1500

Key use cases of this board are remote monitoring systems and remote-controlled LTE-enabled modules. It supports AT&T, T-Mobile USA, Telstra, Verizon over the Cat M1/NB1 deployed bands 2, 3, 4, 5, 8, 12, 13, 20 and 28.

Arduino also pitches this board to be used in IoT apps which used to rely on alternative IoT networks such as LoRa and Sigfox. It promises to save power compared to GSM or 3G cellular-based connections.

“The new boards bring new communication options to satisfy the needs of the most demanding use cases, giving users one of the widest range of options on the market of certified products.” Arduino co-founder and CTO Massimo Banzi






mi

Gqeberha Flying Squad Clamp Down On Criminals

[SAPS] - Gqeberha Flying Squad members clamped down on criminals involved in illegal abalone activities and robbery suspects in two unrelated incidents.




mi

South Africa's Civil Service Should Be Restructured, but a Plan to Reward Early Retirement Won't Solve the Problem - Economist

[The Conversation Africa] South Africa's finance minister, Enoch Godongwana, announced in his October mid-term budget policy statement that cabinet had approved funding for an early retirement programme to reduce the public sector wage bill. R11 billion (about US$627 million) will be allocated over the next two years to pay for the exit costs of 30,000 civil servants while retaining critical skills and promoting the entry of younger talent.




mi

COP29 Expected Finalise Financing Model for Developing Economies

[SAnews.gov.za] With the United Nations Framework Convention on Climate Change (COP29) taking place this week, South Africa expects the COP29 Presidency to enhance efforts to finalise the New Collective Quantified Goal on Finance (NCQG), which is a matter of great importance for developing economies.




mi

Media Reminder - Na and NCOP to Hold Plenary Sittings to Discuss 16 Days of Activism and Infrastructure Development

[Parliament of South Africa] Parliament, Tuesday, 12 November 2024 - The National Assembly (NA) will hold a plenary session scheduled to start at 10:00. Among the items on the agenda from 10:00 to 13:00 is the statement by the Minister of Water and Sanitation on water security in the country and a debate on 16 Days of Activism for no violence against women and children. The debate will be held under the theme, "Marking 30 years of democratic rights for women and fostering national unity to end gender-based violence".




mi

How to see placement reasons of cells? How to highlight timing start/end points?

I am working with innovus on a huge design. I found some cells are placed far away from both timing start points and timing end points. I suspect some other timing paths may be near-critical that results in this sub-optimal cell placement; or innovus has to place the cell far away due to congestion of placement or routing.

Is there a way to see why innovus places/moves the cell during place_opt_design or ccopt_design?

Also, is there a way to highlight all timing start points or timing end points that go through a cell? There may be thousands of timing paths through this cell. I tried using report_timing and timing debugger but it is very painful to click the highlight box and highlight the timing paths one by one.

Thank you for your help!




mi

Tempus ECO initial setup summary not matching timing report results

We are currently setting up the Tempus flow and have ran into some mismatched data regarding ECO and timing reports. I generated a timing report before running ECO and saw six total setup violations. When running opt_signoff -setup, the initial setup summary that was printed in the shell only showed one violation. I can see that violation from the initial setup summary in my pre-ECO timing report and it is not the worst path. Upon further investigation, I forced the tool to try to fix setup on one of the other five violations from the timing report using the opt_signoff_select_setup_endpoints attribute and the tool said that the endpoint had positive slack and would be ignored.

Has anyone experienced something like this before?




mi

Innovus post CTS Timing Analysis issue

While performing the timing analysis after post-CTS. We are getting warnings on all input ports defined in our design.

 **WARN: (IMPESI-3095):  Net: 'CLK' has no receivers. SI analysis is not performed.
**WARN: (IMPESI-3095):  Net: 'RESET' has no receivers. SI analysis is not performed.
**WARN: (IMPESI-3095):  Net: 'UART_BAUD_SWITCHES_2' has no receivers. SI analysis is not performed.
**WARN: (IMPESI-3095):  Net: 'UART_BAUD_SWITCHES_1' has no receivers. SI analysis is not performed.

We've checked our design netlist, and all the required connections are present for the input ports through pads. We are using Innovus version: v21.12 




mi

How to import different input combination to the same circuit to get max, min, and average delay, power dissipation and area

Hi everyone. 

I'm very a new cadence user. I'm not good at using it and quite lost in finding a way to get the results. With the topic, I would like to ask you for some suggestions to improve my cadence skills.

I have some digital decision logic. Some are combinational logic, some are sequential logic that I would like to import or generate random input combination to the inputs of my decision logic to get the maximum, minimum, and average delay power dissipation and area when feeding the different input combination.

My logic has 8-bit, 16-bit, and 32-bit input. The imported data tends to be decimal numbers.

I would like to ask you:

- which tool(s) are the most appropriate to import and feed the different combination to my decision logic?

- which tool is the most appropriate to synthesis with different number of input? - I have used Genus Synthesis Solution so far. However with my skill right now I can only let Genus synthesize my Verilog code one setup at a time. I'm not sure if I there is anyway I can feed a lot of input at a time and get those results (min, max, average of delay, power dissipation and area)

- which language or scripts I should pick up to use and achieve these results?

-where can I find information to solve my problem? which information shall I look for?

Thank you so much for your time!!

Best Regards




mi

Performing a net trace in a CDL file

Hi,

I am looking to perform a net trace in a CDL file.

There is a net at a lower level and would like to know the net it is connected to at the top level.

Please let me know if there is a way to analyze the CDL file to perform this net trace.

Thanks,

Mallikarjun.




mi

Is there a skill command for "Assign Layout Instance terminals"?

Is there a skill command for "Assign Layout Instance terminals", this form appears when i click on define device correspondence and Bind the devices.

Also,

Problem Statement : i have a schematic with a couple of transistor symbols and and i alos have a corresponding layout view with respective layout transistors but they all are inside a pCell(created by me) i.e layout transistor called inside a custom Pcell. Now i have multiple symbols in schematic view and a single instance(pCell) in layout view. 
Is there a way how i can bind these schematic symbols with layout symbols inside the pCell(custom)? Even if i have to use cph commands i'm fine with it. need help here.

The idea here is to establish XL connectivity between the schematic symbols and corresponding layout transistors(inside the pCell).

Thanks,

Shankar




mi

How to add custom indicators to Dynamic Display measuring HUD

I am attempting to use dbGetNeighbor() function inside the dynamic display HUD so that the distance to the next metal on that layer could be viewed. Think of another line in this dynamic table here... 

My SKILL code is essentially the following:

procedure(getNearestNeighborOnMetal(cv)
let((direction tmpBoundingBox)
direction = internal_function()
tmpBoundingBox = dbCreateRect(geGetEditCellView() "tmp" list(hiGetCommandPoint() hiGetCommandPoint()))
car(dbGetNeighbor(geGetEditCellView() tmpBoundingBox direction))
)
)

this returns the distance to the closest metal based on some tests.

Next, I try to register this function to work in the Dynamic Display / Info Balloon world by executing odcRegisterCustomFunc() for each and every object type (I know, absurd, but trying to debug)

In the dynamic display menu, I toggle the "Custom SKILL Function" check in layoutXL, then hit apply, then OK.

After this I find I am unable to view the changes reflected in any info balloons or in the drawing HUD (above) for this wire. I have tried replacing my function with the sample "customFunc" from the odcRegisterCustomFunc() documentation and was still unable to produce any new output.

Any help diagnosing the use of this feature would be very much appreciated




mi

New Training Courses for RF/Microwave Designers Featuring Cadence AWR Software

Cadence AWR Design Environment Software Featured in Multiple Training Course Options: Live and Virtual Starting in October(read more)




mi

μWaveRiders: Scoring Goals with the Latest AWR Design Environment Optimizer

AWR V22.1 software introduces the Pointer-Hybrid optimization method which uses a combination of optimization methods, switching back and forth between methods to efficiently find the lowest optimization error function cost. The optimization algorithm automatically determines when to switch to a different optimization method, making this a superior method over manual selection of algorithms. This method is particularly robust in regards to finding the global minima without getting stuck in a local minima well.(read more)




mi

Knowledge Booster Training Bytes - The Close Connection Between Schematics and Their Layouts in Microwave Office

Microwave Office is Cadence’s tool-of-choice for RF and microwave designers designing everything from III-V 5G chips, to RF systems in board and package technologies. These types of designs require close interaction between the schematic and its layout. A new Training Byte demonstrates how the schematic-layout connections is built into Microwave Office.(read more)




mi

Knowledge Booster Training Bytes - Working with Data Sets in Microwave Office

Data sets are a powerful and easy-to-use feature in Microwave Office. Data can be effortlessly be swapped in graphs, and circuit schematics.(read more)





mi

Training Webinar: Microwave Office: An Integrated Environment for RF and Microwave Design

A recording of a training webinar on Microwave Office is available. Topics show the design environment, with special emphasis placed on electromagnetic (EM) simulation. Normal 0 false false false EN-US JA X-NONE ...(read more)




mi

Training Insights New Course: Planar EM Simulation in AWR Microwave Office

New online training course for AXIEM EM Simulator in AWR Microwave Office is available.(read more)




mi

Unlock Your RF Engineering Potential with a Cadence AWR Free Academic Trial!

Are you ready to revolutionize your RF design experience? Look no further! Cadence AWR software is your gateway to mastering the intricacies of Radio Frequency (RF) circuit design, and now, you can explore its power with our exclusive Free Academic T...(read more)




mi

Want to use Transmission Gate in my design?

I want to use a transmission gate in my design, but it is not available as a standard cell for Genus RTL synthesis. How can I perform an analysis of area, power, and critical path delay that includes the transmission gate alongside standard cells?

Could you provide guidance or a methodology for integrating custom cells, like the transmission gate, into the synthesis flow for accurate analysis?




mi

Xcelium PowerPlayBack App and Dynamic Power Analysis

Learn how Xcelium PowerPlayback App enables the massively parallel Xcelium replay of waveforms for glitch-accurate power estimation of multi-billion gate SoC designs.(read more)




mi

Coalesce Xcelium Apps to Maximize Performance by 10X and Catch More Bugs

Xcelium Simulator has been in the industry for years and is the leading high-performance simulation platform. As designs are getting more and more complex and verification is taking longer than ever, the need of the hour is plug-and-play apps that ar...(read more)




mi

BoardSurfers: Optimizing RF Routing and Impedance Using Allegro X PCB Editor

Achieving optimal power transfer in RF PCBs hinges on meticulously routed traces that meet specific impedance requirements. Impedance matching is essential to ensure that traces have the same impedance to prevent signal reflection and inefficient pow...(read more)




mi

BoardSurfers: Optimizing Designs with PCB Editor-Topology Workbench Flow

When it comes to system integration, PCB designers need to collaborate with the signal analysis or integrity team to run pre-route or post-route analysis and modify constraints, floorplan, or topology based on the results. Allegro PCB Edito...(read more)




mi

How to access the Transmission Line Calculator in Allegro X APD

Have you ever thought of a handy utility to specify all necessary transmission line parameters to decide upon the stackup?   

Starting SPB 23.1, a handy feature Transmission Line Calculator, is built into Allegro X Advanced Package Designer (Allegro X APD). This feature will require either an SiP Layout license or can be accessed through SiP Layout Bundle. 

From the Analyze dropdown menu in the 23.1 Allegro X APD toolbar, you can choose Transmission Line Calculator. 

 

You can use this calculator to help decide constraints and stackup for laminate-based PCB or Packages. You can calculate the correct stackup material and width/spacing to meet any requirements that may be later entered in a constraint. This is truly a calculated number and not a true field solver. 

The different types of calculations that the Transmission Line Calculator can provide are Microstrip, Embedded microstrip, Stripline, CPW (Coplanar), FGCPW (frequency-dependent Coplanar),Asymmetric stripline, Coupled microstrip (Differential Pair), Coupled stripline (Differential Pair), and Dual striplines. 

This feature is important for customers relying on fabricators/spreadsheets to provide this information or need to test a quick spacing/width as per the impedance value. 

Let us know your comments on this new feature in 23.1 Allegro X APD. 

 




mi

Maximizing Display Performance with Display Stream Compression (DSC)

Display Stream Compression (DSC) is a lossless or near-lossless image compression standard developed by the Video Electronics Standards Association (VESA) for reducing the bandwidth required to transmit high-resolution video and images. DSC compresses video streams in real-time, allowing for higher resolutions, refresh rates, and color depths while minimizing the data load on transmission interfaces such as DisplayPort, HDMI, and embedded display interfaces.

Why Is DSC Needed?

In the ever-evolving landscape of display technology, the pursuit of higher resolutions and better visual quality is relentless. As display capabilities advance, so do the challenges of managing the immense amounts of data required to drive these high-performance screens. This is where DSC steps in. DSC is designed to address the challenges of transmitting ultra-high-definition content without sacrificing quality or performance. As displays grow in resolution and capability, the amount of data they need to transmit increases exponentially. DSC addresses these issues by compressing video streams in real-time, significantly reducing the bandwidth needed while preserving image quality.
 

DSC Use in End-to-end System

DSC Key Features

  • Encoding tools:
    • Modified Median-Adaptive Prediction (MMAP)
    • Block Prediction (BP)
    • Midpoint Prediction (MPP)
    • Indexed color history (ICH)
    • Entropy coding using delta size unit-variable length coding (DSU-VLC)
  • The DSC bitstream and decoding process are designed to facilitate the decoding of 3 pixels/clock in practical hardware decoder implementations. Hardware encoder implementations are possible at 1 pixel/clock.
  • DSC uses an intra-frame, line-based coding algorithm, which results in very low latency for encoding and decoding.

DSC encoding algorithm
 

  • Compression can be done to a fractional bpp. The compressed bits per pixel ranges from 6 to 63.9375.
  • For validation/compliance certification of DSC compression and decompression engines, cyclic redundancy checks (CRCs) are used to verify the correctness of the bitstream and the reconstructed image.
  • DSC supports more color bit depths, including 8, 10, 12, 14, and 16 bpc.
  • DSC supports RGB and YCbCr input format, supporting 4:4:4, 4:2:2, and 4:2:0 sampling.
  • Maximum decompressor-supported bits/pixel values are as listed in the Maximum Allowed Bit Rate column in the table below

  • DP DSC Source device shall program the bit rate within the range of Minimum Allowed Bit Rate column in the table:

          


Summary

Display Stream Compression (DSC) is a technology used in DisplayPort to enable higher resolutions and refresh rates while maintaining high image quality. It works by compressing the video data transmitted from the source to the display, effectively reducing the bandwidth required. DSC uses a visually lossless algorithm, meaning that the compression is designed to be imperceptible to the human eye, preserving the fidelity of the image. This technology allows for smoother, more detailed visuals at higher resolutions, such as 4K or 8K, without requiring a significant increase in data bandwidth.

More Information

  • Cadence has a very mature Verification IP solution. Verification over many different configurations can be used with DisplayPort 2.1 and DisplayPort 1.4 designs, so you can choose the best version for your specific needs.
  • The DisplayPort VIP provides a full-stack solution for Sink and Source devices with a comprehensive coverage model, protocol checkers, and an extensive test suite.
  • More details are available on the DisplayPort Verification IP product page, Simulation VIP pages.
  • If you have any queries, feel free to contact us at talk_to_vip_expert@cadence.com




mi

Unveiling the Capabilities of Verisium Manager for Optimized Operations

In SoC development, the verification cycle is a crucial phase that ensures products meet their specifications and function correctly. However, the complexity of modern SoC projects, with their constant data flow, multiple validation teams working in parallel, and tight schedules, presents significant challenges. This article explores these challenges and introduces Verisium Manager as a solution that embodies the 'One Tool Fits All' concept. This means that Verisium Manager is designed to handle all aspects of the verification process for SoC development, from planning to coverage analysis to regression testing, thereby addressing the complex needs of SoC verification.

The Hurdles in Traditional Validation Cycles

 A typical validation process involves planning, coverage analysis, and regression testing. This complexity is compounded by using separate tools for each activity, leading to multiple control environments, APIs, and databases, not to mention the array of tool owners. Such fragmentation results in constant data transfer and translation between systems, from the planning tool to the coverage analysis tool and then to the regression testing tool. This continuous movement of data causes delays, system instability, poor user experiences, and, ultimately, a dip in the quality of the validation process.

The use of multiple platforms leads to inefficiency and reduced productivity. What's needed is a unified system that can streamline the workflow, simplify the verification process, and enhance its effectiveness.

Envisioning the Ideal Solution: Verisium Manager

 The cornerstone of an efficient validation cycle is integration and simplicity. The ideal solution is a singular platform that consolidates planning, coverage analysis, and regression management into one smooth, unified process. Verisium Manager emerges as this much-needed solution, encompassing all the functionalities necessary to streamline the validation process. Its comprehensive nature instills confidence in its ability to handle all aspects of the verification cycle. It can be fully customized to address and enforce any validation methodology and can facilitate smooth integration into any customer environment.

Features that stand out in Verisium Manager include: 

  • Unified Workflow: It acts as a single cockpit from which all activities are orchestrated, ensuring the validation teams' work is uninterrupted and seamlessly integrated.
  • Customization and Integration: Verisium Manager supports customizing test-plan structures and mapping results per project, ensuring a perfect fit for various project requirements. Its ability to smoothly integrate into the project's environment and compute platforms is unparalleled.
  • Support for Continuous Updates and Migration: The tool accommodates constant updates to project data and supports the migration of legacy data, ensuring that no historical data is lost in the transition to a new system.

Addressing Project-Specific Needs

 Verisium Manager recognizes diversity in different projects and offers project-specific solutions, including:

 Enforcing Project Test-Plan Structures and Attributes: It supports and enforces each project's unique test-plan structure and mapping guidelines.

  • Unified Data Views and Measurements: Verisium Manager promotes a unified view of data across all teams and enforces unified measurements, ensuring consistency and clarity in the validation process.
  • Enabling Project-Specific Actions and Integrations: The tool is designed to support project-specific actions directly from its graphical user interface and allows for smooth integration with in-house databases, dashboards, and the project execution stack.

Verisium Manager is the epitome of efficiency in software/hardware validation. Its differentiating features, such as support for customization, unified data view, and comprehensive coverage and regression requirements, make it an indispensable tool for any validation team looking to elevate their workflow.




mi

Cadence Fem.AI Summit: A Journey of Inspiration

This year, the Cadence Giving Foundation (CGF) launched Fem.AI to achieve a more inclusive tech sector, and the inaugural Fem.AI Summit that took place on October 1 was a luminary in a world where technology is evolving at an unprecedented pace. The summit not only excelled in its mission to enlighten, empower, and mobilize stakeholders across various industries on the issue of gender disparity in high tech and AI, but was a celebration of innovation, diversity, and empowerment. As we reflect on the moments that made the summit unforgettable, it's clear that the event was more than just a meeting of minds—it was a movement for change! Shaping Tomorrow Together Cadence’s president and CEO, Anirudh Devgan, stated, “Women’s talent and perspectives are crucial to shaping the future of AI.” Devgan’s words epitomized the driving force behind the first-ever Fem.AI Summit which brought together innovators, educators, business leadership, and investors across industries to create an ecosystem that ensures women can fully participate in the AI revolution and burgeoning AI economy. The energy of pioneers ready to collectively disrupt the status quo filled the air, and as the day-long summit began, it became clear that we were part of something truly groundbreaking. The event's lineup of speakers held discussions that went beyond the technical aspects of AI, emphasizing the vital importance of diversity in technology. Such insights were lent by leading voices from MIT, Stanford, and UC Berkeley, who set the stage for inspiring discussions with speakers like Dr. Joy Buolamwini, Founder of the Algorithmic Justice League, and Reshma Saujani, Founder and CEO of Moms First and Girls Who Code. Included in this lineup of leading figures was Dr. Chelsea Clinton, Vice Chair of the Clinton Foundation, who left us with her hopes for the future of women in AI: “I’m hoping because of company-wide commitments like what we’re experiencing here today thanks to Cadence, that the people who will be part of designing [future technologies] will have a different group of people around the proverbial table or the computer screens doing that… and that women will be more integral into the conceptualization and then the actualization of AI-driven enterprises.” The hopes and visions for women in AI cannot manifest in a vacuum, they must be achieved with the support of individuals and systems from education all the way to the upper echelons of leadership. It is with this understanding, that Fem.AI is committed to investing in women at every stage of their STEM journey. Breaking Barriers It is with this ideal that we were honored to hear from women breaking through barriers of gender, race, and class in achieving pinnacles of success in areas of science and technology. Dr. Sarah H. Chen, Postdoctoral Researcher at Stanford and Thriving Stars Scholar at MIT, Niki Karanikola, Machine Learning Engineer and Break Through Tech AI Scholar at MIT, and Katya Echazarreta, NASA’s first Mexican Astronaut, showcased the resilience and determination that drive progress within and beyond our industry. Through their stories of persevering despite all odds, we were reminded that supporting students in STEM can create generational change with impacts beyond the realms of AI and technology. The final speaker at the Cadence Fem.AI Summit, the trailblazing Brandi Chastain, Founder of Bay FC, World Cup Champion, and Olympic Gold Medalist, left us with a powerful reminder that when faced with this opportunity: “Our purpose needs to be intentional” especially in building the future of technology and AI where “diversity is not something to be afraid of, but something to be embraced.” Echoing this sentiment, summit attendees left the event reminded of the crucial role we collectively play in ensuring women are part of this tech revolution. Moving Forward While the summit may have concluded, its impact will continue through individuals, companies, and communities aspiring to achieve an equitable tech sector. This is just the start, and we must take collective action now. We hope that you will join Cadence to ensure that we clear the path and catalyze women's role in the AI revolution! Meet Our Partners Our partners are making Fem.AI’s vision a reality through their important work advancing women in technology, including fostering STEM excellence in higher education, launching STEM careers, and achieving gender diversity in leadership. Learn more about the important work of each of our partners by visiting their pages: Break Through Tech Last Mile Education Fund Fast Forward Generation VC Include Global Semiconductor Alliance Join the Fem.AI Alliance Joining the Fem.AI Alliance signals that your company or institution is committed to evolving the AI workforce. By increasing the representation of women in AI, we aim to broaden the talent pool and the perspective so that AI represents us all. Through the Fem.AI Alliance, companies and institutions can share best practices, guidance, and inspiration. Since its launch, companies like the Equinix Foundation, NetApp, NVIDIA, Unity Technologies, and Workday have joined the Alliance in their commitment to Fem.AI’s work and mission. Visit Fem.AI to get involved today or contact Fem.AI@cadence.com .




mi

Solutions to Maximize Data Center Performance Featured at OCP Global Summit 2024

The demand for higher compute performance, energy efficiency, and faster time-to-market drove the conversations at this year's Open Compute Project (OCP) Global Summit in San Jose, California. It was the scene of showcasing groundbreaking innovations, expert-led sessions, and networking opportunities to drive the future of data center technology. For those who didn't get to attend or stop by our booth, here's a recap of Cadence's comprehensive solutions that enable next-generation compute technology, AI data center design, analysis, and optimization. Optimized Data Center Design and Operations As the data center community increasingly faces demands for enhanced efficiency, thermal management, sustainability, and performance optimization, data center operators, IT managers, and executives are looking for solutions to these challenges. At the Cadence booth, attendees explored the Cadence Reality Digital Twin Platform and Celsius EC Solver. These technologies are pivotal in achieving high-performance standards for AI data centers, providing advanced digital twin modeling capabilities that redefine next-generation data center design and operation. The Celsius EC Solver demonstration showed how it solves challenging thermal and electronics cooling management problems with precision and speed. CadenceCONNECT: Take the Heat Out of Your AI Data Center Cadence hosted a networking reception on October 16 titled "Take the Heat Out of Your AI Data Center." In today's AI era, managing the heat generated by high-density computing environments is more critical than ever. This reception offered insights into current and emerging data center technologies, digital twin cooling strategies that deliver energy-saving operations, and a chance to engage with industry leaders, Cadence experts, and peers to explore the latest cooling, AI, and GPU acceleration advancements. Here's a recap: Researcher, author, and entrepreneur Dr. Jon Koomey highlighted the inefficiency of data centers in his talk "The Rise of Zombie Data Centers," noting that 20-30% of their capacity is stranded and unused. He advocated for organizational changes and technological solutions like digital twins to reduce wasted energy and improve computational effectiveness as AI deployments increase. In "A New Millennium in Multiphysics System Analysis," Cadence Corporate VP Ben Gu explained the company's significant strides in multiphysics system analysis, evolving from chip simulation to a broader application of computational software for simulating various physical systems, including entire data centers. He noted that the latest Cadence venture, a digital twin platform for data center optimization, opened the opportunity to use simulation technology to optimize the efficiency of data centers. Senior Software Engineering Group Director Albert Zeng highlighted the Cadence Reality DC suite's ability to transform data center operations through simulation, emphasizing its multi-phase engine for optimal thermal performance and the integration of AI capabilities for enhanced design and management. A panel discussion titled "Turning AI Factory Blueprints into Reality at the Speed of Light" featured industry experts from NVIDIA, Norman Wright Precision Environmental and Power, NV5, Switch Data Centers, and Cadence, who explored the evolving requirements and multidimensional challenges of AI factories, emphasizing the need for collaboration across the supply chain to achieve high-performing and sustainable data centers. Watch the highlights. Transforming Designs from Chips to Data Centers The OCP Global Summit 2024 has reaffirmed its status as a pivotal event for data center professionals seeking to stay at the forefront of technological advancements. Cadence's contributions, from groundbreaking digital twin technologies to innovative cooling strategies, have shed light on the path forward for efficient, sustainable data centers. For data center professionals, IT managers, and engineers, the insights gained at this summit are invaluable in navigating the challenges and opportunities presented by the burgeoning AI era. Partnering with Arm Arm Total Design Cadence is a member of the Arm Total Design program. At an invitation-only special Arm event, Cadence's VP of Research and Development, Lokesh Korlipara, delivered a presentation focusing on data center challenges and design solutions with Arm Neoverse Compute Subsystem (CSS). The session highlighted: Efficient integration of Arm Neoverse CSS into system on chips (SoCs) with pre-integrated connectivity IP Performance analysis and verification of the Neoverse CSS integration into the SoC through Cadence's System VIP verification suite and automated testbench creation, enhancing both quality and productivity Jumpstarting designs through Cadence's collaboration with Arm for 3D-IC system planning, chiplets, and interposers Design Services readiness and global scale to support and/or deliver the most demanding Arm Neoverse CSS-based SoC design projects Cadence Supports Arm CSS in Arm Booth During the event, Cadence conducted a demo in the Arm booth that showcased the Cadence System VIP verification suite. The demo highlighted automated testbench creation and performance analysis for integrating the Arm CSS into SoCs while enhancing verification quality and productivity. Summary Cadence offers data center solutions for designing everything from the compute and networking chips to the board, racks, data centers, and campuses. Stay connected with Cadence and other industry leaders to continue exploring the innovations set to redefine the future of data centers. Learn More Cadence Joins Arm Total Design Cadence Arm-Based Solutions Cadence Reality Digital Twin Platform




mi

Celebrating Milestones: The Cadence Bangalore Toastmasters Club’s Journey

On November 5, 2024, the Cadence Bangalore Toastmasters Club celebrated a significant milestone by hosting its 50th meeting. Established in December 2020, the club was created to provide a supportive environment for individuals looking to improve their communication and leadership skills. Over the years, the club has evolved into a vibrant community filled with success stories of personal development and newfound confidence. A testament to the club's dedication is its achievement of the "Select Distinguished Club" status during the 2023-2024 program year. By fulfilling 7 out of 10 distinguished goals, the club highlighted its commitment to excellence—a success driven by its vibrant members' relentless focus and perseverance. The strategic insight gained from regular Toastmasters committee meetings and the influential "Moments of Truth" sessions held in 2023 and 2024 are key to this success. Our club members have consistently demonstrated strong performance in various speech contests, with notable achievements across multiple levels. In 2023, members excelled in Evaluation and Table Topics contests, reaching the district level while advancing to the Division Level in the International Speech Contest. Continuing their success into 2024, members again qualified for area-level contests, securing third-place positions in the Evaluation and Table Topics categories, highlighting the club's dedication and competitive spirit. The 50th meeting was based on the theme of serendipity. It was not only a milestone celebration but also a vibrant festival of achievements and growth. The day buzzed with energy as activities like a spirited Treasure Hunt injected enthusiasm and camaraderie among attendees. Distinguished guests, including Kripa Venkitachalam and Madhavi Rao, enriched the occasion with inspiring speeches. Madhavi reignited the club's spirit, while Kripa's discourse on the Growth Mindset and the "Power of Yet" encouraged members to pursue continuous self-improvement. The Cadence Bangalore Toastmasters Club is enthusiastic about its promising future and is committed to creating an environment that promotes personal and professional growth. Many members are close to completing their Toastmasters levels and pathways, and this term, a new group of approximately 30 individuals has joined, bringing the total membership to 52. This vibrant community is just beginning its journey and is eager to reach new milestones together through mutual support and a shared commitment to excellence. The transformations experienced by many club members are truly compelling. They often share how the club has significantly improved their communication skills and boosted their confidence. One member recalls, "Before joining, I found public speaking intimidating. Now, I embrace every opportunity to share my ideas." Another member highlights how the club's supportive environment helped him overcome his fear of public speaking, propelling his career to new heights. This culture of constructive feedback and continuous improvement has inspired countless members to pursue their dreams with renewed determination and optimism. The Cadence Bangalore Toastmasters Club's journey is a living testament to the power of community and the potential within each of us to grow and achieve greatness. As the club continues to evolve and inspire, it serves as a beacon for those aspiring to transform their skills and seize their moment in the spotlight. Learn more about life at Cadence.




mi

Randomization considerations for PCIe Integrity and Data Encryption Verification Challenges

Peripheral Component Interconnect Express (PCIe) is a high-speed interface standard widely used for connecting processors, memory, and peripherals. With the increasing reliance on PCIe to handle sensitive data and critical high-speed data transfer, ensuring data integrity and encryption during verification is the most essential goal. As we know, in the field of verification, randomization is a key technique that drives robust PCIe verification. It introduces unpredictability to simulate real-world conditions and uncover hidden bugs from the design. This blog examines the significance of randomization in PCIe IDE verification, focusing on how it ensures data integrity and encryption reliability, while also highlighting the unique challenges it presents. For more relevant details and understanding on PCIe IDE you can refer to Introducing PCIe's Integrity and Data Encryption Feature . The Importance of Data Integrity and Data Encryption in PCIe Devices Data Integrity : Ensures that the transmitted data arrives unchanged from source to destination. Even minor corruption in data packets can compromise system reliability, making integrity a critical aspect of PCIe verification. Data Encryption : Protects sensitive data from unauthorized access during transmission. Encryption in PCIe follows a standard to secure information while operating at high speeds. Maintaining both data integrity and data encryption at PCIe’s high-speed data transfer rate of 64GT/s in PCIe 6.0 and 128GT/s in PCIe 7.0 is essential for all end point devices. However, validating these mechanisms requires comprehensive testing and verification methodologies, which is where randomization plays a very crucial role. You can refer to Why IDE Security Technology for PCIe and CXL? for more details on this. Randomization in PCIe Verification Randomization refers to the generation of test scenarios with unpredictable inputs and conditions to expose corner cases. In PCIe verification, this technique helps us to ensure that all possible behaviors are tested, including rare or unexpected situations that could cause data corruption or encryption failures that may cause serious hindrances later. So, for PCIe IDE verification, we are considering the randomization that helps us verify behavior more efficiently. Randomization for Data Integrity Verification Here are some approaches of randomized verifications that mimic real-world traffic conditions, uncovering subtle integrity issues that might not surface in normal verification methods. 1. Randomized Packet Injection: This technique randomized data packets and injected into the communication stream between devices. Here we Inject random, malformed, or out-of-sequence packets into the PCIe link and mix valid and invalid IDE-encrypted packets to check the system’s ability to detect and reject unauthorized or invalid packets. Checking if encryption/decryption occurs correctly across packets. On verifying, we check if the system logs proper errors or alerts when encountering invalid packets. It ensures coverage of different data paths and robust protocol check. This technique helps assess the resilience of the IDE feature in PCIe in below terms: (i) Data corruption: Detecting if the system can maintain data integrity. (ii) Encryption failures: Testing the robustness of the encryption under random data injection. (iii) Packet ordering errors: Ensuring reordering does not affect data delivery. 2. Random Errors and Fault Injection: It involves simulating random bit flips, PCRC errors, or protocol violations to help validate the robustness of error detection and correction mechanisms of PCIe. These techniques help assess how well the PCIe IDE implementation: (i) Detects and responds to unexpected errors. (ii) Maintains secure communication under stress. (iii) Follows the PCIe error recovery and reporting mechanisms (AER – Advanced Error Reporting). (iv) Ensures encryption and decryption states stay synchronized across endpoints. 3. Traffic Pattern Randomization: Randomizing the sequence, size, and timing of data packets helps test how the device maintains data integrity under heavy, unpredictable traffic loads. Randomization for Data Encryption Verification Encryption adds complexity to verification, as encrypted data streams are not readable for traditional checks. Randomization becomes essential to test how encryption behaves under different scenarios. Randomization in data encryption verification ensures that vulnerabilities, such as key reuse or predictable patterns, are identified and mitigated. 1. Random Encryption Keys and Payloads: Randomly varying keys and payloads help validate the correctness of encryption without hardcoding assumptions. This ensures that encryption logic behaves correctly across all possible inputs. 2. Randomized Initialization Vectors (IVs): Many encryption protocols require a unique IV for each transaction. Randomized IVs ensure that encryption does not repeat patterns. To understand the IDE Key management flow, we can follow the below diagram that illustrates a detailed example key programming flow using the IDE_KM protocol. Figure 1: IDE_KM Example As Figure 1 shows, the functionality of the IDE_KM protocol involves Start of IDE_KM Session, Device Capability Discovery, Key Request from the Host, Key Programming to PCIe Device, and Key Acknowledgment. First, the Host starts the IDE_KM session by detecting the presence of the PCIe devices; if the device supports the IDE protocol, the system continues with the key programming process. Then a query occurs to discover the device’s encryption capabilities; it ensures whether the device supports dynamic key updates or static keys. Then the host sends a request to the Key Management Entity to obtain a key suitable for the devices. Once the key is obtained, the host programs the key into the IDE Controller on the PCIe endpoint. Both the host and the device now share the same key to encrypt and authenticate traffic. The device acknowledges that it has received and successfully installed the encryption key and the acknowledgment message is sent back to the host. Once both the host and the PCIe endpoint are configured with the key, a secure communication channel is established. From this point, all data transmitted over the PCIe link is encrypted to maintain confidentiality and integrity. IDE_KM plays a crucial role in distributing keys in a secure manner and maintaining encryption and integrity for PCIe transactions. This key programming flow ensures that a secure communication channel is established between the host and the PCIe device. Hence, the Randomized key approach ensures that the encryption does not repeat patterns. 3. Randomization PHE: Partial Header Encryption (PHE) is an additional mechanism added to Integrity and Data Encryption (IDE) in PCIe 6.0. PHE validation using a variety of traffic; incorporating randomization in APIs provided for validating PHE feature can add more robust Encryption to the data. Partial Header Encryption in Integrity and Data Encryption for PCIe has more detailed information on this. Figure 2: High-Level Flow for Partial Header Encryption 4. Randomization on IDE Address Association Register values: IDE Address Association Register 1/2/3 are supposed to be configured considering the memory address range of IDE partner ports. The fields of IDE address registers are split multiple values such as Memory Base Lower, Memory Limit Lower, Memory Base Upper, and Memory Limit Upper. IDE implementation can have multiple register blocks considering addresses with 32 or 64, different registers sizes, 0-255 selective streams, 0-15 address blocks, etc. This Randomization verification can help verify all the corner cases. Please refer to Figure 2. Figure 3: IDE Address Association Register 5. Random Faults During Encryption: Injecting random faults (e.g., dropped packets or timing mismatches) ensures the system can handle disruptions and prevent data leakage. Challenges of IDE Randomization and its Solution Randomization introduces a vast number of scenarios, making it computationally intensive to simulate every possibility. Constrained randomization limits random inputs to valid ranges while still covering edge cases. Again, using coverage-driven verification to ensure critical scenarios are tested without excessive redundancy. Verifying encrypted data with random inputs increases complexity. Encryption masks data, making it hard to verify outputs without compromising security. Here we can implement various IDE checks on the IDE callback to analyze encrypted traffic without decrypting it. Randomization can trigger unexpected failures, which are often difficult to reproduce. By using seed-based randomization, a specific seed generates a repeatable random sequence. This helps in reproducing and analyzing the behavior more precisely. Conclusion Randomization is a powerful technique in PCIe verification, ensuring robust validation of both data integrity and data encryption. It helps us to uncover subtle bugs and edge cases that a non-randomized testing might miss. In Cadence PCIe VIP, we support full-fledged IDE Verification with rigorous randomized verification that ensures data integrity. Robust and reliable encryption mechanisms ensure secure and efficient data communication. However, randomization also brings various challenges, and to overcome them we adopt a combination of constrained randomization, seed-based testing, and coverage-driven verification. As PCIe continues to evolve with higher speeds and focuses on high security demands, our Cadence PCIe VIP ensures it is in line with industry demand and verify high-performance systems that safeguard data in real-world environments with excellence. For more information, you can refer to Verification of Integrity and Data Encryption(IDE) for PCIe Devices and Industry's First Adopted VIP for PCIe 7.0 . More Information: For more info on how Cadence PCIe Verification IP and TripleCheck VIP enables users to confidently verify IDE, see our VIP for PCI Express , VIP for Compute Express Link for and TripleCheck for PCI Express For more information on PCIe in general, and on the various PCI standards, see the PCI-SIG website .