mi Bayesian Quantile Regression with Mixed Discrete and Nonignorable Missing Covariates By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Zhi-Qiang Wang, Nian-Sheng Tang. Source: Bayesian Analysis, Volume 15, Number 2, 579--604.Abstract: Bayesian inference on quantile regression (QR) model with mixed discrete and non-ignorable missing covariates is conducted by reformulating QR model as a hierarchical structure model. A probit regression model is adopted to specify missing covariate mechanism. A hybrid algorithm combining the Gibbs sampler and the Metropolis-Hastings algorithm is developed to simultaneously produce Bayesian estimates of unknown parameters and latent variables as well as their corresponding standard errors. Bayesian variable selection method is proposed to recognize significant covariates. A Bayesian local influence procedure is presented to assess the effect of minor perturbations to the data, priors and sampling distributions on posterior quantities of interest. Several simulation studies and an example are presented to illustrate the proposed methodologies. Full Article
mi Bayesian Sparse Multivariate Regression with Asymmetric Nonlocal Priors for Microbiome Data Analysis By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Kurtis Shuler, Marilou Sison-Mangus, Juhee Lee. Source: Bayesian Analysis, Volume 15, Number 2, 559--578.Abstract: We propose a Bayesian sparse multivariate regression method to model the relationship between microbe abundance and environmental factors for microbiome data. We model abundance counts of operational taxonomic units (OTUs) with a negative binomial distribution and relate covariates to the counts through regression. Extending conventional nonlocal priors, we construct asymmetric nonlocal priors for regression coefficients to efficiently identify relevant covariates and their effect directions. We build a hierarchical model to facilitate pooling of information across OTUs that produces parsimonious results with improved accuracy. We present simulation studies that compare variable selection performance under the proposed model to those under Bayesian sparse regression models with asymmetric and symmetric local priors and two frequentist models. The simulations show the proposed model identifies important covariates and yields coefficient estimates with favorable accuracy compared with the alternatives. The proposed model is applied to analyze an ocean microbiome dataset collected over time to study the association of harmful algal bloom conditions with microbial communities. Full Article
mi Function-Specific Mixing Times and Concentration Away from Equilibrium By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Maxim Rabinovich, Aaditya Ramdas, Michael I. Jordan, Martin J. Wainwright. Source: Bayesian Analysis, Volume 15, Number 2, 505--532.Abstract: Slow mixing is the central hurdle is applications of Markov chains, especially those used for Monte Carlo approximations (MCMC). In the setting of Bayesian inference, it is often only of interest to estimate the stationary expectations of a small set of functions, and so the usual definition of mixing based on total variation convergence may be too conservative. Accordingly, we introduce function-specific analogs of mixing times and spectral gaps, and use them to prove Hoeffding-like function-specific concentration inequalities. These results show that it is possible for empirical expectations of functions to concentrate long before the underlying chain has mixed in the classical sense, and we show that the concentration rates we achieve are optimal up to constants. We use our techniques to derive confidence intervals that are sharper than those implied by both classical Markov-chain Hoeffding bounds and Berry-Esseen-corrected central limit theorem (CLT) bounds. For applications that require testing, rather than point estimation, we show similar improvements over recent sequential testing results for MCMC. We conclude by applying our framework to real-data examples of MCMC, providing evidence that our theory is both accurate and relevant to practice. Full Article
mi Dynamic Quantile Linear Models: A Bayesian Approach By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Kelly C. M. Gonçalves, Hélio S. Migon, Leonardo S. Bastos. Source: Bayesian Analysis, Volume 15, Number 2, 335--362.Abstract: The paper introduces a new class of models, named dynamic quantile linear models, which combines dynamic linear models with distribution-free quantile regression producing a robust statistical method. Bayesian estimation for the dynamic quantile linear model is performed using an efficient Markov chain Monte Carlo algorithm. The paper also proposes a fast sequential procedure suited for high-dimensional predictive modeling with massive data, where the generating process is changing over time. The proposed model is evaluated using synthetic and well-known time series data. The model is also applied to predict annual incidence of tuberculosis in the state of Rio de Janeiro and compared with global targets set by the World Health Organization. Full Article
mi A Novel Algorithmic Approach to Bayesian Logic Regression (with Discussion) By projecteuclid.org Published On :: Tue, 17 Mar 2020 04:00 EDT Aliaksandr Hubin, Geir Storvik, Florian Frommlet. Source: Bayesian Analysis, Volume 15, Number 1, 263--333.Abstract: Logic regression was developed more than a decade ago as a tool to construct predictors from Boolean combinations of binary covariates. It has been mainly used to model epistatic effects in genetic association studies, which is very appealing due to the intuitive interpretation of logic expressions to describe the interaction between genetic variations. Nevertheless logic regression has (partly due to computational challenges) remained less well known than other approaches to epistatic association mapping. Here we will adapt an advanced evolutionary algorithm called GMJMCMC (Genetically modified Mode Jumping Markov Chain Monte Carlo) to perform Bayesian model selection in the space of logic regression models. After describing the algorithmic details of GMJMCMC we perform a comprehensive simulation study that illustrates its performance given logic regression terms of various complexity. Specifically GMJMCMC is shown to be able to identify three-way and even four-way interactions with relatively large power, a level of complexity which has not been achieved by previous implementations of logic regression. We apply GMJMCMC to reanalyze QTL (quantitative trait locus) mapping data for Recombinant Inbred Lines in Arabidopsis thaliana and from a backcross population in Drosophila where we identify several interesting epistatic effects. The method is implemented in an R package which is available on github. Full Article
mi Learning Semiparametric Regression with Missing Covariates Using Gaussian Process Models By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Abhishek Bishoyi, Xiaojing Wang, Dipak K. Dey. Source: Bayesian Analysis, Volume 15, Number 1, 215--239.Abstract: Missing data often appear as a practical problem while applying classical models in the statistical analysis. In this paper, we consider a semiparametric regression model in the presence of missing covariates for nonparametric components under a Bayesian framework. As it is known that Gaussian processes are a popular tool in nonparametric regression because of their flexibility and the fact that much of the ensuing computation is parametric Gaussian computation. However, in the absence of covariates, the most frequently used covariance functions of a Gaussian process will not be well defined. We propose an imputation method to solve this issue and perform our analysis using Bayesian inference, where we specify the objective priors on the parameters of Gaussian process models. Several simulations are conducted to illustrate effectiveness of our proposed method and further, our method is exemplified via two real datasets, one through Langmuir equation, commonly used in pharmacokinetic models, and another through Auto-mpg data taken from the StatLib library. Full Article
mi Determinantal Point Process Mixtures Via Spectral Density Approach By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Ilaria Bianchini, Alessandra Guglielmi, Fernando A. Quintana. Source: Bayesian Analysis, Volume 15, Number 1, 187--214.Abstract: We consider mixture models where location parameters are a priori encouraged to be well separated. We explore a class of determinantal point process (DPP) mixture models, which provide the desired notion of separation or repulsion. Instead of using the rather restrictive case where analytical results are partially available, we adopt a spectral representation from which approximations to the DPP density functions can be readily computed. For the sake of concreteness the presentation focuses on a power exponential spectral density, but the proposed approach is in fact quite general. We later extend our model to incorporate covariate information in the likelihood and also in the assignment to mixture components, yielding a trade-off between repulsiveness of locations in the mixtures and attraction among subjects with similar covariates. We develop full Bayesian inference, and explore model properties and posterior behavior using several simulation scenarios and data illustrations. Supplementary materials for this article are available online (Bianchini et al., 2019). Full Article
mi Adaptive Bayesian Nonparametric Regression Using a Kernel Mixture of Polynomials with Application to Partial Linear Models By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Fangzheng Xie, Yanxun Xu. Source: Bayesian Analysis, Volume 15, Number 1, 159--186.Abstract: We propose a kernel mixture of polynomials prior for Bayesian nonparametric regression. The regression function is modeled by local averages of polynomials with kernel mixture weights. We obtain the minimax-optimal contraction rate of the full posterior distribution up to a logarithmic factor by estimating metric entropies of certain function classes. Under the assumption that the degree of the polynomials is larger than the unknown smoothness level of the true function, the posterior contraction behavior can adapt to this smoothness level provided an upper bound is known. We also provide a frequentist sieve maximum likelihood estimator with a near-optimal convergence rate. We further investigate the application of the kernel mixture of polynomials to partial linear models and obtain both the near-optimal rate of contraction for the nonparametric component and the Bernstein-von Mises limit (i.e., asymptotic normality) of the parametric component. The proposed method is illustrated with numerical examples and shows superior performance in terms of computational efficiency, accuracy, and uncertainty quantification compared to the local polynomial regression, DiceKriging, and the robust Gaussian stochastic process. Full Article
mi Bayes Factors for Partially Observed Stochastic Epidemic Models By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Muteb Alharthi, Theodore Kypraios, Philip D. O’Neill. Source: Bayesian Analysis, Volume 14, Number 3, 927--956.Abstract: We consider the problem of model choice for stochastic epidemic models given partial observation of a disease outbreak through time. Our main focus is on the use of Bayes factors. Although Bayes factors have appeared in the epidemic modelling literature before, they can be hard to compute and little attention has been given to fundamental questions concerning their utility. In this paper we derive analytic expressions for Bayes factors given complete observation through time, which suggest practical guidelines for model choice problems. We adapt the power posterior method for computing Bayes factors so as to account for missing data and apply this approach to partially observed epidemics. For comparison, we also explore the use of a deviance information criterion for missing data scenarios. The methods are illustrated via examples involving both simulated and real data. Full Article
mi Bayesian Zero-Inflated Negative Binomial Regression Based on Pólya-Gamma Mixtures By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Brian Neelon. Source: Bayesian Analysis, Volume 14, Number 3, 849--875.Abstract: Motivated by a study examining spatiotemporal patterns in inpatient hospitalizations, we propose an efficient Bayesian approach for fitting zero-inflated negative binomial models. To facilitate posterior sampling, we introduce a set of latent variables that are represented as scale mixtures of normals, where the precision terms follow independent Pólya-Gamma distributions. Conditional on the latent variables, inference proceeds via straightforward Gibbs sampling. For fixed-effects models, our approach is comparable to existing methods. However, our model can accommodate more complex data structures, including multivariate and spatiotemporal data, settings in which current approaches often fail due to computational challenges. Using simulation studies, we highlight key features of the method and compare its performance to other estimation procedures. We apply the approach to a spatiotemporal analysis examining the number of annual inpatient admissions among United States veterans with type 2 diabetes. Full Article
mi Semiparametric Multivariate and Multiple Change-Point Modeling By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Stefano Peluso, Siddhartha Chib, Antonietta Mira. Source: Bayesian Analysis, Volume 14, Number 3, 727--751.Abstract: We develop a general Bayesian semiparametric change-point model in which separate groups of structural parameters (for example, location and dispersion parameters) can each follow a separate multiple change-point process, driven by time-dependent transition matrices among the latent regimes. The distribution of the observations within regimes is unknown and given by a Dirichlet process mixture prior. The properties of the proposed model are studied theoretically through the analysis of inter-arrival times and of the number of change-points in a given time interval. The prior-posterior analysis by Markov chain Monte Carlo techniques is developed on a forward-backward algorithm for sampling the various regime indicators. Analysis with simulated data under various scenarios and an application to short-term interest rates are used to show the generality and usefulness of the proposed model. Full Article
mi Low Information Omnibus (LIO) Priors for Dirichlet Process Mixture Models By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Yushu Shi, Michael Martens, Anjishnu Banerjee, Purushottam Laud. Source: Bayesian Analysis, Volume 14, Number 3, 677--702.Abstract: Dirichlet process mixture (DPM) models provide flexible modeling for distributions of data as an infinite mixture of distributions from a chosen collection. Specifying priors for these models in individual data contexts can be challenging. In this paper, we introduce a scheme which requires the investigator to specify only simple scaling information. This is used to transform the data to a fixed scale on which a low information prior is constructed. Samples from the posterior with the rescaled data are transformed back for inference on the original scale. The low information prior is selected to provide a wide variety of components for the DPM to generate flexible distributions for the data on the fixed scale. The method can be applied to all DPM models with kernel functions closed under a suitable scaling transformation. Construction of the low information prior, however, is kernel dependent. Using DPM-of-Gaussians and DPM-of-Weibulls models as examples, we show that the method provides accurate estimates of a diverse collection of distributions that includes skewed, multimodal, and highly dispersed members. With the recommended priors, repeated data simulations show performance comparable to that of standard empirical estimates. Finally, we show weak convergence of posteriors with the proposed priors for both kernels considered. Full Article
mi A Bayesian Nonparametric Spiked Process Prior for Dynamic Model Selection By projecteuclid.org Published On :: Wed, 13 Mar 2019 22:00 EDT Alberto Cassese, Weixuan Zhu, Michele Guindani, Marina Vannucci. Source: Bayesian Analysis, Volume 14, Number 2, 553--572.Abstract: In many applications, investigators monitor processes that vary in space and time, with the goal of identifying temporally persistent and spatially localized departures from a baseline or “normal” behavior. In this manuscript, we consider the monitoring of pneumonia and influenza (P&I) mortality, to detect influenza outbreaks in the continental United States, and propose a Bayesian nonparametric model selection approach to take into account the spatio-temporal dependence of outbreaks. More specifically, we introduce a zero-inflated conditionally identically distributed species sampling prior which allows borrowing information across time and to assign data to clusters associated to either a null or an alternate process. Spatial dependences are accounted for by means of a Markov random field prior, which allows to inform the selection based on inferences conducted at nearby locations. We show how the proposed modeling framework performs in an application to the P&I mortality data and in a simulation study, and compare with common threshold methods for detecting outbreaks over time, with more recent Markov switching based models, and with spike-and-slab Bayesian nonparametric priors that do not take into account spatio-temporal dependence. Full Article
mi Constrained Bayesian Optimization with Noisy Experiments By projecteuclid.org Published On :: Wed, 13 Mar 2019 22:00 EDT Benjamin Letham, Brian Karrer, Guilherme Ottoni, Eytan Bakshy. Source: Bayesian Analysis, Volume 14, Number 2, 495--519.Abstract: Randomized experiments are the gold standard for evaluating the effects of changes to real-world systems. Data in these tests may be difficult to collect and outcomes may have high variance, resulting in potentially large measurement error. Bayesian optimization is a promising technique for efficiently optimizing multiple continuous parameters, but existing approaches degrade in performance when the noise level is high, limiting its applicability to many randomized experiments. We derive an expression for expected improvement under greedy batch optimization with noisy observations and noisy constraints, and develop a quasi-Monte Carlo approximation that allows it to be efficiently optimized. Simulations with synthetic functions show that optimization performance on noisy, constrained problems outperforms existing methods. We further demonstrate the effectiveness of the method with two real-world experiments conducted at Facebook: optimizing a ranking system, and optimizing server compiler flags. Full Article
mi Analysis of the Maximal a Posteriori Partition in the Gaussian Dirichlet Process Mixture Model By projecteuclid.org Published On :: Wed, 13 Mar 2019 22:00 EDT Łukasz Rajkowski. Source: Bayesian Analysis, Volume 14, Number 2, 477--494.Abstract: Mixture models are a natural choice in many applications, but it can be difficult to place an a priori upper bound on the number of components. To circumvent this, investigators are turning increasingly to Dirichlet process mixture models (DPMMs). It is therefore important to develop an understanding of the strengths and weaknesses of this approach. This work considers the MAP (maximum a posteriori) clustering for the Gaussian DPMM (where the cluster means have Gaussian distribution and, for each cluster, the observations within the cluster have Gaussian distribution). Some desirable properties of the MAP partition are proved: ‘almost disjointness’ of the convex hulls of clusters (they may have at most one point in common) and (with natural assumptions) the comparability of sizes of those clusters that intersect any fixed ball with the number of observations (as the latter goes to infinity). Consequently, the number of such clusters remains bounded. Furthermore, if the data arises from independent identically distributed sampling from a given distribution with bounded support then the asymptotic MAP partition of the observation space maximises a function which has a straightforward expression, which depends only on the within-group covariance parameter. As the operator norm of this covariance parameter decreases, the number of clusters in the MAP partition becomes arbitrarily large, which may lead to the overestimation of the number of mixture components. Full Article
mi Statistical Molecule Counting in Super-Resolution Fluorescence Microscopy: Towards Quantitative Nanoscopy By projecteuclid.org Published On :: Tue, 03 Mar 2020 04:00 EST Thomas Staudt, Timo Aspelmeier, Oskar Laitenberger, Claudia Geisler, Alexander Egner, Axel Munk. Source: Statistical Science, Volume 35, Number 1, 92--111.Abstract: Super-resolution microscopy is rapidly gaining importance as an analytical tool in the life sciences. A compelling feature is the ability to label biological units of interest with fluorescent markers in (living) cells and to observe them with considerably higher resolution than conventional microscopy permits. The images obtained this way, however, lack an absolute intensity scale in terms of numbers of fluorophores observed. In this article, we discuss state of the art methods to count such fluorophores and statistical challenges that come along with it. In particular, we suggest a modeling scheme for time series generated by single-marker-switching (SMS) microscopy that makes it possible to quantify the number of markers in a statistically meaningful manner from the raw data. To this end, we model the entire process of photon generation in the fluorophore, their passage through the microscope, detection and photoelectron amplification in the camera, and extraction of time series from the microscopic images. At the heart of these modeling steps is a careful description of the fluorophore dynamics by a novel hidden Markov model that operates on two timescales (HTMM). Besides the fluorophore number, information about the kinetic transition rates of the fluorophore’s internal states is also inferred during estimation. We comment on computational issues that arise when applying our model to simulated or measured fluorescence traces and illustrate our methodology on simulated data. Full Article
mi Larry Brown’s Work on Admissibility By projecteuclid.org Published On :: Wed, 08 Jan 2020 04:00 EST Iain M. Johnstone. Source: Statistical Science, Volume 34, Number 4, 657--668.Abstract: Many papers in the early part of Brown’s career focused on the admissibility or otherwise of estimators of a vector parameter. He established that inadmissibility of invariant estimators in three and higher dimensions is a general phenomenon, and found deep and beautiful connections between admissibility and other areas of mathematics. This review touches on several of his major contributions, with a focus on his celebrated 1971 paper connecting admissibility, recurrence and elliptic partial differential equations. Full Article
mi An Overview of Semiparametric Extensions of Finite Mixture Models By projecteuclid.org Published On :: Fri, 11 Oct 2019 04:03 EDT Sijia Xiang, Weixin Yao, Guangren Yang. Source: Statistical Science, Volume 34, Number 3, 391--404.Abstract: Finite mixture models have offered a very important tool for exploring complex data structures in many scientific areas, such as economics, epidemiology and finance. Semiparametric mixture models, which were introduced into traditional finite mixture models in the past decade, have brought forth exciting developments in their methodologies, theories, and applications. In this article, we not only provide a selective overview of the newly-developed semiparametric mixture models, but also discuss their estimation methodologies, theoretical properties if applicable, and some open questions. Recent developments are also discussed. Full Article
mi Comment: Minimalist $g$-Modeling By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Roger Koenker, Jiaying Gu. Source: Statistical Science, Volume 34, Number 2, 209--213.Abstract: Efron’s elegant approach to $g$-modeling for empirical Bayes problems is contrasted with an implementation of the Kiefer–Wolfowitz nonparametric maximum likelihood estimator for mixture models for several examples. The latter approach has the advantage that it is free of tuning parameters and consequently provides a relatively simple complementary method. Full Article
mi Karachi Plague Committee in 1897. Album of photographs. By search.wellcomelibrary.org Published On :: 1897. Full Article
mi Danny Smith from No Human Being Is Illegal (in all our glory). Collaged photograph by Deborah Kelly and collaborators, 2014-2018. By search.wellcomelibrary.org Published On :: [London], 2019. Full Article
mi The Comfy Sneakers That Kate Middleton, Kelly Ripa, and More Celebs Love Are on Sale at Amazon By www.health.com Published On :: Mon, 02 Dec 2019 17:12:09 -0500 Keep your feet comfy and your wallet fat. Full Article
mi Dopamine D1 and D2 Receptor Family Contributions to Modafinil-Induced Wakefulness By www.jneurosci.org Published On :: 2009-03-04 Jared W. YoungMar 4, 2009; 29:2663-2665Journal Club Full Article
mi Optimization of a GCaMP Calcium Indicator for Neural Activity Imaging By www.jneurosci.org Published On :: 2012-10-03 Jasper AkerboomOct 3, 2012; 32:13819-13840Cellular Full Article
mi Metacognitive Mechanisms Underlying Lucid Dreaming By www.jneurosci.org Published On :: 2015-01-21 Elisa FilevichJan 21, 2015; 35:1082-1088BehavioralSystemsCognitive Full Article
mi Gut Microbes and the Brain: Paradigm Shift in Neuroscience By www.jneurosci.org Published On :: 2014-11-12 Emeran A. MayerNov 12, 2014; 34:15490-15496Symposium Full Article
mi Genomic Analysis of Reactive Astrogliosis By www.jneurosci.org Published On :: 2012-05-02 Jennifer L. ZamanianMay 2, 2012; 32:6391-6410Neurobiology of Disease Full Article
mi Readiness Potential and Neuronal Determinism: New Insights on Libet Experiment By www.jneurosci.org Published On :: 2018-01-24 Karim FifelJan 24, 2018; 38:784-786Journal Club Full Article
mi Sleep Deprivation Biases the Neural Mechanisms Underlying Economic Preferences By www.jneurosci.org Published On :: 2011-03-09 Vinod VenkatramanMar 9, 2011; 31:3712-3718BehavioralSystemsCognitive Full Article
mi Axonal ramifications of hippocampal Ca1 pyramidal cells By www.jneurosci.org Published On :: 1981-11-01 WD KnowlesNov 1, 1981; 1:1236-1241Articles Full Article
mi Microglia Actively Remodel Adult Hippocampal Neurogenesis through the Phagocytosis Secretome By www.jneurosci.org Published On :: 2020-02-12 Irune Diaz-AparicioFeb 12, 2020; 40:1453-1482Development Plasticity Repair Full Article
mi Dural Calcitonin Gene-Related Peptide Produces Female-Specific Responses in Rodent Migraine Models By www.jneurosci.org Published On :: 2019-05-29 Amanda AvonaMay 29, 2019; 39:4323-4331Systems/Circuits Full Article
mi Significant Neuroanatomical Variation Among Domestic Dog Breeds By www.jneurosci.org Published On :: 2019-09-25 Erin E. HechtSep 25, 2019; 39:7748-7758BehavioralSystemsCognitive Full Article
mi White Matter Microstructure in Transsexuals and Controls Investigated by Diffusion Tensor Imaging By www.jneurosci.org Published On :: 2014-11-12 Georg S. KranzNov 12, 2014; 34:15466-15475Systems/Circuits Full Article
mi Endothelial Adora2a Activation Promotes Blood-Brain Barrier Breakdown and Cognitive Impairment in Mice with Diet-Induced Insulin Resistance By www.jneurosci.org Published On :: 2019-05-22 Masaki YamamotoMay 22, 2019; 39:4179-4192Neurobiology of Disease Full Article
mi Sleep Loss Promotes Astrocytic Phagocytosis and Microglial Activation in Mouse Cerebral Cortex By www.jneurosci.org Published On :: 2017-05-24 Michele BellesiMay 24, 2017; 37:5263-5273Cellular Full Article
mi Increased Neural Activity in Mesostriatal Regions after Prefrontal Transcranial Direct Current Stimulation and L-DOPA Administration By www.jneurosci.org Published On :: 2019-07-03 Benjamin MeyerJul 3, 2019; 39:5326-5335Systems/Circuits Full Article
mi Oscillatory Coupling of Hippocampal Pyramidal Cells and Interneurons in the Behaving Rat By www.jneurosci.org Published On :: 1999-01-01 Jozsef CsicsvariJan 1, 1999; 19:274-287Articles Full Article
mi Visualization of Microtubule Growth in Cultured Neurons via the Use of EB3-GFP (End-Binding Protein 3-Green Fluorescent Protein) By www.jneurosci.org Published On :: 2003-04-01 Tatiana StepanovaApr 1, 2003; 23:2655-2664Cellular Full Article
mi Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics By www.jneurosci.org Published On :: 1989-08-01 KM HarrisAug 1, 1989; 9:2982-2997Articles Full Article
mi Optimization of a GCaMP Calcium Indicator for Neural Activity Imaging By www.jneurosci.org Published On :: 2012-10-03 Jasper AkerboomOct 3, 2012; 32:13819-13840Cellular Full Article
mi Cellular Composition and Three-Dimensional Organization of the Subventricular Germinal Zone in the Adult Mammalian Brain By www.jneurosci.org Published On :: 1997-07-01 Fiona DoetschJul 1, 1997; 17:5046-5061Articles Full Article
mi Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases By www.jneurosci.org Published On :: 1996-04-01 M NiethammerApr 1, 1996; 16:2157-2163Articles Full Article
mi A selective impairment of motion perception following lesions of the middle temporal visual area (MT) By www.jneurosci.org Published On :: 1988-06-01 WT NewsomeJun 1, 1988; 8:2201-2211Articles Full Article
mi A framework for mesencephalic dopamine systems based on predictive Hebbian learning By www.jneurosci.org Published On :: 1996-03-01 PR MontagueMar 1, 1996; 16:1936-1947Articles Full Article
mi Adaptive representation of dynamics during learning of a motor task By www.jneurosci.org Published On :: 1994-05-01 R ShadmehrMay 1, 1994; 14:3208-3224Articles Full Article
mi Pax6, Tbr2, and Tbr1 Are Expressed Sequentially by Radial Glia, Intermediate Progenitor Cells, and Postmitotic Neurons in Developing Neocortex By www.jneurosci.org Published On :: 2005-01-05 Chris EnglundJan 5, 2005; 25:247-251BRIEF COMMUNICATION Full Article
mi Mice Deficient in Cellular Glutathione Peroxidase Show Increased Vulnerability to Malonate, 3-Nitropropionic Acid, and 1-Methyl-4-Phenyl-1,2,5,6-Tetrahydropyridine By www.jneurosci.org Published On :: 2000-01-01 Peter KlivenyiJan 1, 2000; 20:1-7Cellular Full Article
mi High-Level Neuronal Expression of A{beta}1-42 in Wild-Type Human Amyloid Protein Precursor Transgenic Mice: Synaptotoxicity without Plaque Formation By www.jneurosci.org Published On :: 2000-06-01 Lennart MuckeJun 1, 2000; 20:4050-4058Cellular Full Article
mi Response of Neurons in the Lateral Intraparietal Area during a Combined Visual Discrimination Reaction Time Task By www.jneurosci.org Published On :: 2002-11-01 Jamie D. RoitmanNov 1, 2002; 22:9475-9489Behavioral Full Article