ea

removing cdn_loop_breaker from the genus synthesis netlist

I am trying to remove the cdn_loop_breaker cells from the netlist. 
When I tried the below 2 things, genus synthesis tool removing the cdn_loop_breaker cells but while connecting the cdn_loop_breaker cell input to its proper connection, its somehow misleading the connections

Things i tried:
1.  remove_cdn_loop_breaker -instances *cdn_loop_breaker*
then i just ran remove_cdn_loop_breaker  comand without the -instances switch
2. remove_cdn_loop_breaker  
     
both of the above things are not providing the proper connections after removing the loop_breaker_cells

can anyone suggest the best possible workaround for this please?




ea

Beta feature innovusClockOptFlow?

Hi all,

I have been following the tutorial "Innovus Block Implementation with Stylus Common UI", version 23.1.

While I was doing the clock tree synthesis, the tutorial calls for a command

clock_opt_design

But my tool tells me this is a beta feature which needs to be enabled.

Warning: clock_opt_design requires beta feature innovusClockOptFlow enabled.


Can I ask how do I enable this beta feature?

My version of Innovus is v21.35-s114_1, is it because of the version incompatibility?

Many thanks




ea

Tool to create *.lib and *.db files for designs made in Innovus

Hi all, 

I have made a custom cell in Innovus that I will be instantiating into a bigger block, which I will also be using Innovus to do the Place & Route. 

I understand that I can generate a *.lef file and a *.lib file using Innovus. However, I need to also create a *.db file (these format of files are often used in DC Compiler synthesis tool). 

Is there a way to create the *.db file from Innovus? Or, is there a tool that I can use to create this *.db file? 

Thank you for your time. 




ea

How to import different input combination to the same circuit to get max, min, and average delay, power dissipation and area

Hi everyone. 

I'm very a new cadence user. I'm not good at using it and quite lost in finding a way to get the results. With the topic, I would like to ask you for some suggestions to improve my cadence skills.

I have some digital decision logic. Some are combinational logic, some are sequential logic that I would like to import or generate random input combination to the inputs of my decision logic to get the maximum, minimum, and average delay power dissipation and area when feeding the different input combination.

My logic has 8-bit, 16-bit, and 32-bit input. The imported data tends to be decimal numbers.

I would like to ask you:

- which tool(s) are the most appropriate to import and feed the different combination to my decision logic?

- which tool is the most appropriate to synthesis with different number of input? - I have used Genus Synthesis Solution so far. However with my skill right now I can only let Genus synthesize my Verilog code one setup at a time. I'm not sure if I there is anyway I can feed a lot of input at a time and get those results (min, max, average of delay, power dissipation and area)

- which language or scripts I should pick up to use and achieve these results?

-where can I find information to solve my problem? which information shall I look for?

Thank you so much for your time!!

Best Regards




ea

How to add custom indicators to Dynamic Display measuring HUD

I am attempting to use dbGetNeighbor() function inside the dynamic display HUD so that the distance to the next metal on that layer could be viewed. Think of another line in this dynamic table here... 

My SKILL code is essentially the following:

procedure(getNearestNeighborOnMetal(cv)
let((direction tmpBoundingBox)
direction = internal_function()
tmpBoundingBox = dbCreateRect(geGetEditCellView() "tmp" list(hiGetCommandPoint() hiGetCommandPoint()))
car(dbGetNeighbor(geGetEditCellView() tmpBoundingBox direction))
)
)

this returns the distance to the closest metal based on some tests.

Next, I try to register this function to work in the Dynamic Display / Info Balloon world by executing odcRegisterCustomFunc() for each and every object type (I know, absurd, but trying to debug)

In the dynamic display menu, I toggle the "Custom SKILL Function" check in layoutXL, then hit apply, then OK.

After this I find I am unable to view the changes reflected in any info balloons or in the drawing HUD (above) for this wire. I have tried replacing my function with the sample "customFunc" from the odcRegisterCustomFunc() documentation and was still unable to produce any new output.

Any help diagnosing the use of this feature would be very much appreciated




ea

How to create draw region button like the one used in the Area and Density calculator

Hello,

I would like to create a button for my form that prompts the user to click on a cellview and draw a rectangle bounding box, exactly like the one used in the Area and Density Calculator. Can someone please help me with this?

Thanks!

Beto




ea

Disappearing toolbar or docked menu

Disappearing toolbar or docked menu

Is there a way for the toolbar or floating menu from disappearing when a cells tab is added to a window?

I have created a skill toolbar and it disappeared when I add another cell or tab to a window.

The only toolbars that stay are the ones I have defined in the Layout.toolbar file.

Do I have to add a trigger to keep the toolbars visible or not disappearing from the window?

Cadence version IC23.1-64b.ISR7.27

Paul




ea

New Training Courses for RF/Microwave Designers Featuring Cadence AWR Software

Cadence AWR Design Environment Software Featured in Multiple Training Course Options: Live and Virtual Starting in October(read more)




ea

μWaveRiders: Cadence AWR Design Environment V22.1 Software Release Highlights

The Cadence AWR Design Environment V22.1 production release is now available for download at Cadence Downloads with design environment, AWR Microwave Office, AWR VSS, AWR Analyst, and other enhancements.(read more)





ea

read from text file with two values and represent that as voltage signals on two different port a and b

i want to read from text file two values  on two ports , i wrote  that  code, and i have that error that shown in the image below . and also the data in text file is shown as screenshot

 


module read_file (a,b);

electrical a,b;
integer in_file_0,data_value, valid, count0,int_value;


analog begin
@(initial_step) begin
in_file_0 = $fopen("/home/hh1667/ee610/my_library/read_file/data2.txt","r");

valid = $fscanf (in_file_0, "%b,%b" ,int_value,count0);
end

V(a) <+ int_value;
V(b) <+ count0;

end

endmodule




ea

Stream in gds to virtuoso from directory other than where cds.lib exists

I am scripting gds streamin using 'strmin', which works fine so far.

But, as it apparently doesn't have an option to specify where the cds.lib file is, I have to run it from the directory where the cds.lib file is, or I guess I could create a dummy one to source that one.

Is there a way to tell strmin where the cds.lib file is?




ea

removing cdn_loop_breakers from netlist

I was trying to remove the cdn_loop_breaker cells from the netlist. 
When I tried the below 2 things, it removing the cdn_loop_breaker cells but while connecting the cdn_loop_breaker cell input to its proper connection, its somehow misleading the connections

Things i tried:
1.  remove_cdn_loop_breaker -instances *cdn_loop_breaker*
then i just ran remove_cdn_loop_breaker  comand without the -instances switch
2. remove_cdn_loop_breaker  
     
both of the above things are not providing the proper connections after removing the loop_breaker_cells





ea

which tools support Linting for early stages of Digital Design flow?

I am trying to understand the Linting process. I know that mainly JasperGold is the tool for this purpose. Though I think JasperGold is more suited for later stages of the design. As a RTL Design Engineer, I want to make sure that if another tool has the capability of doing Linting earlier in the flow. for example, does Xcelium, Genus or Confomal support linting. I have seen some contradicting information online regarding this topic, though I can't find anything related to Linting on any of these tools.

Thanks




ea

5X “Time Warp” in Your Next Verification Cycle Using Xcelium Machine Learning

Artificial intelligence (AI) is everywhere. Machine learning (ML) and its associated inference abilities promise to revolutionize everything from driving your car to making your breakfast. Verification is never truly complete; it is over when you run...(read more)





ea

Achieve 80% Less Late-Stage RTL Changes and Early RTL Bug Detection

It has become challenging to ensure that the designs are complete, correct, and adhere to necessary coding rules before handing them off for RTL verification and implementation. RTL Designer Signoff Solution from Cadence helps the user identify RTL bugs at a very early development stage, saving a lot of effort and cost for the design and verification team. Our reputed customers have confirmed that using RTL signoff for their design IP helped save up to 4 weeks and reduce the late-stage RTL changes by up to 80%.(read more)



  • Jasper RTL Designer Signoff App
  • Jasper
  • Early Bug Detection

ea

TSN-PTP: A Real-Time Network Clock Synchronizing Protocol

In a network containing multiple nodes, the need for synchronization between the various nodes is not just instrumental but also a complicated and highly complex process. This process becomes even more tricky if we synchronize the clocks between the Manager and the Peripheral. As we know, in a real-time network, some of the nodes would behave like Managers while some would be a Peripheral. If we must make the communication process smooth, then the local clocks of these nodes must be synchronized. 

The problem with this synchronization is that we have the clock running in the Manager as well. If we send the value of the Manager clock to the Peripheral, the synchronization doesn’t happen as we have a propagation delay of the messages, along with the propagation delay of the electronic circuits of Manager and the Peripheral.  

The cherry on the cake is that these electronic circuit propagation delays are not random and remain constant, so we can add a time offset to it to match the clock. To tackle this challenge, IEEE has come up with a protocol named “Precision Timing Protocol.” 

 

Operation of PTP: 

To synchronize the clocks, a Sync message is sent by the Manager to the Peripheral, which then timestamps the receiving time of the same. Following this, a ‘Follow up’ message is issued by the Manager stating the timestamp at which the Sync message was sent. 

The Peripheral then finds the difference between the two values and adds this to its current time. After this, the time difference between the Manager and the Peripheral narrows down to only the propagation delay of the messages.  

To overcome this, the Peripheral issues a ‘Delay Request’ to the Manager, and the Manager, in turn, issues a ‘Delay Response.’ Both these messages have the timestamp of when they were issued. The time at which they are received is then noted. Since two messages are sent, one from the Peripheral and the other from the Manager, there are two propagation delays. Then half of this value is our propagation delay. 

The Peripheral then adds this propagation delay to its clock, and hence the clock gets synchronized. 

Advantages of PTP: 

  1. It provides accurate time stamping. 
  2. It is a well-known clock synchronization protocol. 
  3. It provides intensified security inside the premises. 
  4. It provides the possibility of setting coordinated actions and synchronized communication. 

There are various versions of PTP that have been developed over time, namely PTPv1, PTPv2, PTPv2_1, and the latest PTP-AS. 

Cadence Verification IP for Ethernetis available to support the newer version of PTP, allowing simulation of the device for efficient IP, SoC, and system-level design verification. Semiconductor companies can start using it to fully verify their controller design and achieve functional verification closure on it within no time. 




ea

Allegro X APD: SPB 23.1 release —Your freedom to design boldly!

Cadence is super excited to announce SPB 23.1 release —Your freedom to design boldly 

These tools help engineers build better PCBs faster with the new 3D engine and optimized interface.  

We have been hard at work to bring you this release and believe that it will help you take control of the PCB design process with the powerful new features in Allegro X APD like: 

  • Packaging Support in 3DX Canvas 

  • 3DX Wire DRCs 

  • Aligning Components by Offset 

  • Text Wizard Enhancements 

  • Device File Reuse for Existing Components for Netlist and Logic Import 

 

Watch this space to know all about What’s New in SPB 23.1.  

 

Regards 

Team PCBTech 

Cadence Design System 

For individuals, small businesses, or teams, START YOUR FREE TRIAL. 

 




ea

Creating Power and Ground rings in Allegro X Package Designer Plus

Power and Ground rings are exposed rings of metal surrounding a die that supply power/ground to the die and create a low-impedance path for the current flow. These rings ensure stable power distribution and reduce noise. Allegro X Package Designer Plus has a utility called Power/Ground Ring Generator which lets you define and place one or more shapes in the form of a ring around a die.

 To run the PWR/GND Generator Wizard, go to Route > Power/Ground Ring Generator or type "pring wizard" in the APD command window to invoke the Wizard.

   

This Wizard lets you define and place one or more shapes in the form of a ring around a die. The Power/Ground Ring Wizard creates up to 12 rings (shapes) at a time. If you require more rings, you can run the Power/Ground Ring Wizard as many times as needed. This command displays a wizard in which you can specify:

  • The number of rings to be generated
  • The creation of the first ring as a die flag (Die flag is the boundary of the die like the power ring.)
    • If you create a die flag and the first ring is the same net as the flag, you can enter a negative distance to overlap the ring and the die flag.
  • Multiple options for placement of the rings with respect to:
    • Origination point
    • Distance from the edge of the die
    • Distance from the nearest die pin on each die side
  • The reference designator of the die with which the rings will be used
  • The distance between rings
  • The width of each ring
  • The corner types on each ring (arc, chamfer, and right-angle)
  • An assigned net name for each ring
  • A label for each ring

The rings are basic in nature. For other shape geometries or split rings, choose Shape > Polygon or Shape > Compose/Decompose Shape from the menu in the design window.

Depending on the options selected, the Power/Ground Ring Wizard UI changes, representing how the rings will be created. Verify the Wizard settings to ensure that the rings are created as intended.

  1. When the Power/Ground Ring Wizard appears, set the number of rings to 2, accept the other defaults, and click Next. You can set Create first ring as die flag to create a basic die flag.

         2. Define Ring 1 and the net associated with it.

              a) Browse and choose Vss in the Net Names dialog box.

            b) Click OK.

            c) Specify the label as VSS.

            d) Click Next.

             The first ring should appear in your design. It is associated with the proper net; in this case, VSS.

  1. For the second ring, choose the net as Vdd and specify the label as VDD.
  2. Click Next.
  3. Click Finish in the Result Verification screen to complete the process.

The completed rings appear as shown below.

Now, when you click on Power and Ground Die Pin and add wirebonds, you will see that the wirebonds are placed directly on the Power and Ground rings.




ea

Allegro X APD : Tip of the Week: ‘Auto-blank other rats’ feature

When working on a complex design, it is common to have very many net ratlines. Quantities like 1000 ratlines are possible. It can result in a cluttered view while routing. Therefore, it is useful to make all other ratlines invisible while routing interactively. You would like to make all ratlines visible again when each route action is completed.

You can easily do this by enabling the Auto-blank other rats option during routing. When enabled, all rats other than the primary ones are suppressed during the Add Connect command.




ea

Maximizing Display Performance with Display Stream Compression (DSC)

Display Stream Compression (DSC) is a lossless or near-lossless image compression standard developed by the Video Electronics Standards Association (VESA) for reducing the bandwidth required to transmit high-resolution video and images. DSC compresses video streams in real-time, allowing for higher resolutions, refresh rates, and color depths while minimizing the data load on transmission interfaces such as DisplayPort, HDMI, and embedded display interfaces.

Why Is DSC Needed?

In the ever-evolving landscape of display technology, the pursuit of higher resolutions and better visual quality is relentless. As display capabilities advance, so do the challenges of managing the immense amounts of data required to drive these high-performance screens. This is where DSC steps in. DSC is designed to address the challenges of transmitting ultra-high-definition content without sacrificing quality or performance. As displays grow in resolution and capability, the amount of data they need to transmit increases exponentially. DSC addresses these issues by compressing video streams in real-time, significantly reducing the bandwidth needed while preserving image quality.
 

DSC Use in End-to-end System

DSC Key Features

  • Encoding tools:
    • Modified Median-Adaptive Prediction (MMAP)
    • Block Prediction (BP)
    • Midpoint Prediction (MPP)
    • Indexed color history (ICH)
    • Entropy coding using delta size unit-variable length coding (DSU-VLC)
  • The DSC bitstream and decoding process are designed to facilitate the decoding of 3 pixels/clock in practical hardware decoder implementations. Hardware encoder implementations are possible at 1 pixel/clock.
  • DSC uses an intra-frame, line-based coding algorithm, which results in very low latency for encoding and decoding.

DSC encoding algorithm
 

  • Compression can be done to a fractional bpp. The compressed bits per pixel ranges from 6 to 63.9375.
  • For validation/compliance certification of DSC compression and decompression engines, cyclic redundancy checks (CRCs) are used to verify the correctness of the bitstream and the reconstructed image.
  • DSC supports more color bit depths, including 8, 10, 12, 14, and 16 bpc.
  • DSC supports RGB and YCbCr input format, supporting 4:4:4, 4:2:2, and 4:2:0 sampling.
  • Maximum decompressor-supported bits/pixel values are as listed in the Maximum Allowed Bit Rate column in the table below

  • DP DSC Source device shall program the bit rate within the range of Minimum Allowed Bit Rate column in the table:

          


Summary

Display Stream Compression (DSC) is a technology used in DisplayPort to enable higher resolutions and refresh rates while maintaining high image quality. It works by compressing the video data transmitted from the source to the display, effectively reducing the bandwidth required. DSC uses a visually lossless algorithm, meaning that the compression is designed to be imperceptible to the human eye, preserving the fidelity of the image. This technology allows for smoother, more detailed visuals at higher resolutions, such as 4K or 8K, without requiring a significant increase in data bandwidth.

More Information

  • Cadence has a very mature Verification IP solution. Verification over many different configurations can be used with DisplayPort 2.1 and DisplayPort 1.4 designs, so you can choose the best version for your specific needs.
  • The DisplayPort VIP provides a full-stack solution for Sink and Source devices with a comprehensive coverage model, protocol checkers, and an extensive test suite.
  • More details are available on the DisplayPort Verification IP product page, Simulation VIP pages.
  • If you have any queries, feel free to contact us at talk_to_vip_expert@cadence.com




ea

Partial Header Encryption in Integrity and Data Encryption for PCIe

Cadence PCIe/CXL VIP support for Partial Header Encryption in Integrity and Data Encryption.(read more)




ea

Sigrity and Systems Analysis 2024.1 Release Now Available

The Sigrity and Systems Analysis (SIGRITY/SYSANLS) 2024.1 release is now available for download at Cadence Downloads . For the list of CCRs fixed in this release, see the README.txt file in the installation hierarchy. SIGRITY/SYSANLS 2024.1 Here is a list of some of the key updates in the SIGRITY/SYSANLS 2024.1 release: For more details about these and all the other new and enhanced features introduced in this release , refer to the following document: Sigrity Release Overview and Common Tools What's New . Supported Platforms and Operating Systems Platform and Architecture X86_64 (lnx86) Windows (64 bit) Development OS RHEL 8.4 Windows Server 2022 Supported OS RHEL 8.4 and above RHEL 9 SLES 15 (SP3 and above) Windows 10 Windows 11 Windows Server 2019 Windows Server 2022 Systems Analysis 2024.1 Clarity 3D Solver Clarity 3D Layout Structure Optimization Workflow : A new workflow, Clarity 3D Layout Structure Optimization Workflow, has been added to Clarity 3D Layout. This workflow integrates Allegro PCB Designer with Clarity 3D Layout for high-speed structure optimization. Component Geometry Model Editor : The new Clarity 3D Layout editor lets you set up ports, solder bumps/balls/extrusions, and two-terminal and multi-terminal circuits using a single GUI. Coaxial Open Port Option Added to Port Setup Wizard : The Coaxial Open Port option lets you create ports for each target net pin and reference net pin in Clarity 3D Layout. The nearby reference net pins are then used as a reference for each target net pin, reducing the number of ports needed. In addition, the ports of unused reference net pins are shorted to the ground. Parametric Import Option Added : Two new options, Parametric Import and Default Import , have been added to the Tools – Launch Clarity3DWorkbench menu. The Parametric Import option lets you import the design along with its parameters into Clarity 3D Workbench. The Default Import option lets you ignore the parameters when importing the design into Clarity 3D Workbench. Component Library Added to Generate 3D Components : Clarity 3D Workbench now includes a new component library that lets you use predefined 3D component templates or add existing 3D components to create 3D designs and simulation models. AI-Powered Content Search Capability : Clarity 3D Workbench and Clarity 3D Transient Solver now support an AI-powered capability for searching the content and displaying relevant information. Expression Parser to Handle Undefined Parameters : Clarity 3D Workbench and Clarity 3D Transient Solver support writing expressions or equations containing undefined parameters in the Property window to describe a simulation variable. The improved expression parser automatically detects any undefined parameter in an expression and prompts users to specify their values. This capability lets you define a model or a simulation variable as a function instead of specifying static values. For detailed information, refer to Clarity 3D Layout User Guide and Clarity 3D Workbench User Guide on the Cadence Support portal. Clarity 3D Transient Solver Mesh Processing Improved to Simulate Large Use Cases : Clarity 3D Transient Solver leverages a new meshing algorithm that enhances overall mesh processing, specifically for large designs and use cases. The new algorithm dramatically improves the mesh quality, minimum mesh size, number of mesh key points, total mesh number, and memory usage. Advanced Material Processing Engine : The material processing capability has been enhanced to handle thin outer metal, which previously resulted in open and short issues in some designs. In addition, the material processing engine offers improved mode extraction for particular use cases, including waveguide and coaxial designs. Characteristic Impedance Calculation Improved : The solver engine now uses a new analytical calculation method to calculate the characteristic impedance of coaxial designs with improved accuracy. For detailed information, refer to Clarity 3D Transient Solver User Guide on the Cadence Support portal. Celsius Studio Celsius Interchange Model Introduced : Celsius Studio now supports Celsius Interchange Model generation, which is a 3D model derived from detailed physical designs for multi-physics and multi-scale analysis. This Celsius Interchange Model file ( .cim ) serves as a design information carrier across Celsius Studio tools, enabling a variety of simulation and analysis tasks . Celsius 3DIC Thermal Workflow Improvements : The Thermal Simulation workflows in Celsius 3DIC have been significantly enhanced. Key improvements include: Advanced Power Setup with Transient Power Function and Multi Mode options Enhanced GUI for the Mesh Control and Simulation Control tabs Improved meshing capabilities Celsius Interchange Model ( .cim ) generation Material library support for block and connections Import of Heat Transfer Coefficients (HTCs) from a CFD file Bump creation through the Bump Array Wizard Layer Stackup CSV file generation Celsius 3DIC Warpage and Stress Workflow Enhancements : The Warpage and Stress workflow in Celsius 3DIC has undergone significant improvements, such as: Improved multi-stage warpage simulation flow for 3DIC packaging process Enhanced GUI for the Mesh Control , Simulation Control , and Stress Boundary Conditions tabs Support for large deformations and temperature profiles Bump creation through the Bump Array Wizard New constraint types Enhanced meshing capabilities Geometric Nonlinearity Support in Warpage and Stress Analysis : Large deformation analysis is now supported in warpage and stress studies. This study uses the Total Lagrangian approach to model geometric nonlinearities in simulation, which allows accurate prediction of final deformations. Thermal Network Extraction and Simulation : In the solid extraction flow in Celsius 3D Workbench, you can now import area-based power map files to create terminals. For designs with multiple blocks, this capability allows automatic terminal creation, eliminating the need to manually create and set up 2D sheets individually. Additionally, thermal throttling feature is now supported in Celsius Thermal Network. This makes it ideal for preliminary analyses or when a quick estimation is required. It runs significantly faster than 3D models, allowing for quicker iterations and more efficient decision-making. For detailed information, refer to the Celsius 3DIC User Guide , Celsius Layout User Guide and Celsius 3D Workbench User Guide on the Cadence Support portal. Sigrity 2024.1 Layout Workbench Improved Graphical User Interface : A new option, Use Improved User Interface , has been added in the Themes page of the Options dialog box in the Layout Workbench GUI. In the new GUI, the toolbar icons and menu options have been enhanced and rearranged. For detailed information, refer to Layout Workbench User Guide on the Cadence Support portal. Broadband SPICE Python Script Integration with Command Line for Simulation Tasks : Broadband SPICE lets you run Python scripts directly from the command line for performing simulation and analysis. The new -py and *.py options make it easier to integrate Python scripts with the command-line operations. This update streamlines the process of automating and customizing simulations from the command line, which makes your simulation tasks faster and easier. For detailed information, refer to Broadband SPICE User Guide on the Cadence Support portal. Celsius PowerDC Block Power Assignment (BPA) File Format Support : PowerDC now supports the BPA file format. Similar to the Pin Location (PLOC) file, the BPA file is a current assignment file that defines the total current of a power grid cell, which is then equally distributed across the power pins within the cell. This provides better control over the power distribution. Ability to Run Multiple IR Drop Cases Sequentially : You can now select multiple result sinks from the Current-Limited IR Drop flow and run IR Drop analysis for them sequentially. PowerDC automatically runs the simulations in sequence after you select multiple result sinks. This saves time by automating the process. Enhanced Support for Mixed Conversion Devices : PowerDC now supports mixing different conversion devices, such as switching regulators and linear regulators within a single DC-DC/LDO instance. This enhancement offers added flexibility by letting you configure each instance in your design according to your specific needs. For detailed information, refer to PowerDC User Guide on the Cadence Support portal. PowerSI Monte Carlo Method Added : A new option, Monte Carlo Method, has been added in the Optimality dialog box. This option lets you create multiple random samples to depict variations in the input parameters and assess the output. Channel Check Optimization Added : The S-Parameter Assessment workflow in PowerSI now supports Channel Check Optimization . It uses the AI-driven Multidisciplinary Analysis and Optimization (MDAO) technology that lets you optimize your design quickly and efficiently with no accuracy loss. For detailed information, refer to PowerSI User Guide on the Cadence Support portal. SPEEDEM Multi-threaded Matrix Solver Support Added : The Enable Multi-threaded Matrix Solver check box has been added that lets you accelerate the simulation speed for high-performance computing. This check box provides two options, Automatic and Always, to include the -lhpc4 or -lhpc5 parameter, respectively, in the SPEEDEM Simulator (SPDSIM) before running the simulation. For detailed information, refer to the SPEEDEM User Guide on the Cadence Support portal. XtractIM Options to Skip or Calculate Special DC-R Simulation Results : The Skip DC_R of Each Path and Only DC_R of Each Path options have been added to the Setup menu. Skip DC_R of Each Path : This option lets you skip the calculation of the DC-R result during the simulation. Other results, such as SPICE T-model , RL_C of Each Path , Coupling of Each Path , etc., are still calculated. Only DC_R of Each Path : This option lets you calculate the DC-R result only during the simulation. Other results, such as SPICE T-model , RL_C of Each Path , Coupling of Each Path , etc., are not calculated. Color Assignment for Pin Matching : The MCP Auto Connection window includes the Display Color Editor , which lets you assign a color for pin matching. It helps you easily identify the matching pins in the left and right sections of the MCP Auto Connection window . Ability to Save Simulations Individually : The Save each simulation individually check box has been added to the Tools - Options - Edit Options - Simulation (Basic) - General form. Select this check box and run the simulation to generate a simulation results folder containing files and logs with a timestamp for each simulation. Reuse of SPD File Settings : The XtractIM setup check box lets you import an existing package setup to reuse the configurations and settings from one .spd file to another. For detailed information, refer to XtractIM User Guide on the Cadence Support portal. Documentation Enhancements Cloud-Based Help System Upgraded The cloud-based help system, Doc Assistant, has been upgraded to version 24.10, which contains several new features and enhancements over the previous 2.03 version. Sigrity Release Team Please send your questions and feedback to sigrity_rmt@cadence.com .




ea

Redefining Hearing Aids with Cadence DSPs

Hearing is one of the most essential senses for engaging with the world. It enables us to converse, appreciate music, and remain alert to our surroundings. Hearing loss is a prevalent issue affecting millions of individuals globally and disconnecting them from a world where sound is vital to others and the environment. The World Health Organization (WHO) reports that over 5% of the global population requires hearing rehabilitation, a striking statistic highlighting this issue's pervasive nature. Technology has transformed audiology, evolving from simple ear trumpets to sophisticated modern hearing aids. This advancement began with the invention of the transistor, paving the way for devices that are fully wearable inside or behind the ear. Although hearing aids have been available for many years, historically, access to these critical devices has been insufficient, resulting in numerous individuals lacking the necessary support. However, recent advances in hearing aid technology promise improved acoustic experiences, employing modern techniques like binaural processing and neural networks. These innovations demand sophisticated architecture to balance high memory needs with low power consumption in a user-friendly design. Cadence is at the forefront of this technological evolution, offering tools and IP solutions that enhance the accessibility, efficiency, and impact of hearing aids, paving the way for a more inclusive future. This blog explores how Cadence's advanced DSPs are transforming hearing aid design and making them more accessible, efficient, and impactful. Hearing Aids: A Testament to Human Ingenuity The transition from analo g to digital technology in the late 20th century further transformed hearing aids, offering superior sound quality, customization, and the ability to connect to various electronic devices, thus enhancing the user experience markedly. Today's hearing aids are highly effective, versatile, and nearly invisible, a significant advancement from early attempts to address hearing loss. They also feature advanced noise cancellation and connectivity options, allowing users to integrate seamlessly into the digital world. This progression not only highlights the industry's commitment to improving user experience and accessibility but also offers a glimpse into a future where hearing loss is no longer a barrier. Challenges Despite advancements and sophistication, there are several challenges related to hearing aid design and adoption. Users demand smaller, more discreet devices that don't sacrifice performance. While the shift towards sleeker designs is aesthetically pleasing, it introduces substantial complexities in product design. Designers face the challenges of integrating essential components, such as batteries and peripherals, into increasingly compact spaces. Power consumption remains a critical concern, as these devices must remain operational throughout the day. Leveraging neural networks to enhance the signal-to-noise ratio (SNR) for better quality demands additional memory capacity. Consequently, there is a pressing need for flexible, low-power architectures that incorporate all necessary memory and peripherals without compromising the device’s compact size. Adopting AI for adjusting hearing aid volume to fit an individual's specific auditory requirements is a significant challenge and demands more memory and effort. Besides this, reliability and cost are significant challenges for manufacturers. Cadence's Role in Transforming Hearing Aids In hearing aid development, the capacity to evaluate the energy efficiency of SoCs across different frequencies in real time is crucial. These applications demand cohesive, energy-efficient solutions that can uphold high performance. The Cadence Tensilica HiFi and Fusion F1 DSP family emphasize minimal power usage while providing robust performance, ideally suited for a wide range of audio and voice applications. The Cadence Tensilica HiFi DSP family, a high-performance audio technology with AI acceleration and advanced DSP capability, offers feature-rich audio, speech, and imaging for wearables, automotive, home entertainment, digital assistants, and ASR. The Tensilica HiFi DSP family accelerates innovation with its comprehensive instruction set and supports fixed- and floating-point data types. Simplifying software development, it offers C/C++ programming, an auto-vectorizing compiler, and a rich DSP software library through the Cadence Tensilica Xplorer development environment. With the flexibility to customize and enhance performance through additional instructions and better I/O bandwidth, the Tensilica HiFi and Fusion DSP families offer a robust, low-energy audio solution compatible across an expansive software ecosystem for various applications and devices. Conclusion Technological advancements are driving hearing aid evolution; the future of hearing aids lies in further miniaturization and functionality enhancement. Cadence's ongoing innovations aim to improve signal processing and noise reduction, even in challenging environments. The integration of neural networks promises more apparent sound transmission and greater adaptability. Cadence is working on improving how these devices process signals and reduce noise and has initiated a collaborative venture with distinguished entities like GlobalFoundries (GF), Hoerzentrum Oldenburg gGmbH, and Leibniz University Hannover. This collaboration has borne fruit in the form of the industry's first binaural hearing aid system-on-chip (SoC) prototype, the Smart Hearing Aid Processor ( SmartHeAP ). Learn More Cadence, GlobalFoundries, Hoerzentrum Oldenburg and Leibniz University Hannover Collaborate to Advance Hearing Aid Technology Cadence Extends Battery Life and Improves User Experience for Next-Generation Hearables, Wearables and Always-On Devices Advancing the Future of Hearing Aids with Cadence Bluetooth LE Audio, Hearing Aids, and Mindtree




ea

Lessons from the UMass Lowell Women’s Leadership Conference

This post was contributed by Liliko Uchida, application engineer at Cadence. Being a “Woman in STEM” is a phrase that has long been used to describe the holistic experience shared by thousands of women globally, yet it still makes us feel isolated. Partially due to the statistics of gender population in the STEM workforce and the remainder due to our own internal obstacles, being a woman in STEM continues to be a challenge. While many of us know the should-do’s and should-be’s of taking on this unique role objectively, we struggle to implement them. After all, our perseverance as engineers, mathematicians, businesswomen, programmers, and scientists is largely affected by subjectivity. The UMass Lowell Women’s Leadership Conference 2024 aimed to tackle this problem by uniting hundreds of women with shared experiences under one roof. Not only did the conference provide us with the knowledge necessary to persevere, but it also gave us the tools that will allow us to thrive and act upon the facts we already know. It is my hope that through this blog post, I can share some of my main takeaways from this special day. Be Confident This is one of the most palpable pieces of advice we always hear. Yet so many of us struggle to build this confidence because we don’t know how. Featured speaker Nicole Kalil defined confidence as “complete trust in oneself”.”One way to build this self-trust is by getting to know yourself on a deeper level. By creating a true inner connection, we begin to see ourselves as a whole instead of hyper-focusing on our shortcomings frequently illusioned by imposter syndrome. In one of the sessions, we were asked to introduce ourselves to our neighbors, not by what we do for work, but by who we are as a person. Even if this opportunity does not arise every day, this practice can be done simply by listing characteristics of yourself that define who you are. Who do you care for? How do you show them? What are your life goals oriented towards? How do you observe others’ behavior around you, and what does that say about how you make them feel? Getting to know you beneath the surface and allowing yourself to be seen for who you are is critical in building internal confidence. With practice, this self-reassurance will grow independent of external factors. Take Risks “Sometimes, you have to put your foot in the elevator” - Barb Vlacich, Keynote Speaker When opportunities arise, the only thing you can do to have a chance is to try. Without putting your foot in the elevator, the doors will close, becoming a missed opportunity. Similarly, several of the conference’s speakers also emphasized that the answer to every unasked question will always be a no. Even if you are not ready to full-send a negotiation, ask for a raise, or respectfully disagree with a co-worker’s opinion, start by getting comfortable asking uncomfortable questions. Just one discomfort a day will help in building an immunity to the anxiety that comes with taking risks, typically driven by our self-doubt. Another interesting point that stood out from the conference was the statistics of self-assessed qualifications between men and women. During the negotiation panel, it was revealed that men typically feel they only need 60% of the qualifications under a job description to apply, whereas women often feel they need close to 100%. These numbers alone demonstrate how the pure mental habits of men continue to funnel them into STEM and not women. The next time you seek a new opportunity, assess yourself based on the 60% and use it as a checklist threshold. If more women are able to pursue STEM careers using these numbers, the more likely we will begin to populate these roles. Build Your Genuine Network “ The essence of communication lies in the mutual exchange of ideas and emotions. And when the listener isn’t invested, it undermines the entire purpose of the conversation. Why are you having it anyway?” This is a quote from episode 186 of Julie Brown’s podcast This Sh!t Works called “The 5 Steps to Being an Active Listener”. Julie Brown is a Networking Coach, author, and podcast host who guided an energetic and candid conversation about networking and building a personal brand for women. Networking is often misunderstood as putting your name and qualifications out on the table for as many people to pick up your cards. While making these things known is important, they are not what nurtures effective connections. The key to cultivating your genuine network is to activate a sincere interest in the people you meet. Become the proactive receiver of the confidence exercise discussed above. When you meet someone new, what can you take away from them as a person, not an employee? By making people feel heard, even through the little conversations, you can begin to develop more meaningful connections that resonate. And, with practice, the sometimes inherent need to overcompensate by defining yourself with your resume will slowly fade. It was a wonderful opportunity to attend the UML Women’s Leadership Conference with four other inspiring Cadence women. Not only was the conference a motivating learning experience, but it was also a wonderful opportunity for us to bond together as women and feel supported by each other. The most eye-opening part of the day was seeing just how many women alike were sitting under the same roof. The conclusion of the event led me to feel proud to be an engineer, proud to be at Cadence, and most importantly, proud to be a woman. Learn more about life at Cadence .




ea

Solutions to Maximize Data Center Performance Featured at OCP Global Summit 2024

The demand for higher compute performance, energy efficiency, and faster time-to-market drove the conversations at this year's Open Compute Project (OCP) Global Summit in San Jose, California. It was the scene of showcasing groundbreaking innovations, expert-led sessions, and networking opportunities to drive the future of data center technology. For those who didn't get to attend or stop by our booth, here's a recap of Cadence's comprehensive solutions that enable next-generation compute technology, AI data center design, analysis, and optimization. Optimized Data Center Design and Operations As the data center community increasingly faces demands for enhanced efficiency, thermal management, sustainability, and performance optimization, data center operators, IT managers, and executives are looking for solutions to these challenges. At the Cadence booth, attendees explored the Cadence Reality Digital Twin Platform and Celsius EC Solver. These technologies are pivotal in achieving high-performance standards for AI data centers, providing advanced digital twin modeling capabilities that redefine next-generation data center design and operation. The Celsius EC Solver demonstration showed how it solves challenging thermal and electronics cooling management problems with precision and speed. CadenceCONNECT: Take the Heat Out of Your AI Data Center Cadence hosted a networking reception on October 16 titled "Take the Heat Out of Your AI Data Center." In today's AI era, managing the heat generated by high-density computing environments is more critical than ever. This reception offered insights into current and emerging data center technologies, digital twin cooling strategies that deliver energy-saving operations, and a chance to engage with industry leaders, Cadence experts, and peers to explore the latest cooling, AI, and GPU acceleration advancements. Here's a recap: Researcher, author, and entrepreneur Dr. Jon Koomey highlighted the inefficiency of data centers in his talk "The Rise of Zombie Data Centers," noting that 20-30% of their capacity is stranded and unused. He advocated for organizational changes and technological solutions like digital twins to reduce wasted energy and improve computational effectiveness as AI deployments increase. In "A New Millennium in Multiphysics System Analysis," Cadence Corporate VP Ben Gu explained the company's significant strides in multiphysics system analysis, evolving from chip simulation to a broader application of computational software for simulating various physical systems, including entire data centers. He noted that the latest Cadence venture, a digital twin platform for data center optimization, opened the opportunity to use simulation technology to optimize the efficiency of data centers. Senior Software Engineering Group Director Albert Zeng highlighted the Cadence Reality DC suite's ability to transform data center operations through simulation, emphasizing its multi-phase engine for optimal thermal performance and the integration of AI capabilities for enhanced design and management. A panel discussion titled "Turning AI Factory Blueprints into Reality at the Speed of Light" featured industry experts from NVIDIA, Norman Wright Precision Environmental and Power, NV5, Switch Data Centers, and Cadence, who explored the evolving requirements and multidimensional challenges of AI factories, emphasizing the need for collaboration across the supply chain to achieve high-performing and sustainable data centers. Watch the highlights. Transforming Designs from Chips to Data Centers The OCP Global Summit 2024 has reaffirmed its status as a pivotal event for data center professionals seeking to stay at the forefront of technological advancements. Cadence's contributions, from groundbreaking digital twin technologies to innovative cooling strategies, have shed light on the path forward for efficient, sustainable data centers. For data center professionals, IT managers, and engineers, the insights gained at this summit are invaluable in navigating the challenges and opportunities presented by the burgeoning AI era. Partnering with Arm Arm Total Design Cadence is a member of the Arm Total Design program. At an invitation-only special Arm event, Cadence's VP of Research and Development, Lokesh Korlipara, delivered a presentation focusing on data center challenges and design solutions with Arm Neoverse Compute Subsystem (CSS). The session highlighted: Efficient integration of Arm Neoverse CSS into system on chips (SoCs) with pre-integrated connectivity IP Performance analysis and verification of the Neoverse CSS integration into the SoC through Cadence's System VIP verification suite and automated testbench creation, enhancing both quality and productivity Jumpstarting designs through Cadence's collaboration with Arm for 3D-IC system planning, chiplets, and interposers Design Services readiness and global scale to support and/or deliver the most demanding Arm Neoverse CSS-based SoC design projects Cadence Supports Arm CSS in Arm Booth During the event, Cadence conducted a demo in the Arm booth that showcased the Cadence System VIP verification suite. The demo highlighted automated testbench creation and performance analysis for integrating the Arm CSS into SoCs while enhancing verification quality and productivity. Summary Cadence offers data center solutions for designing everything from the compute and networking chips to the board, racks, data centers, and campuses. Stay connected with Cadence and other industry leaders to continue exploring the innovations set to redefine the future of data centers. Learn More Cadence Joins Arm Total Design Cadence Arm-Based Solutions Cadence Reality Digital Twin Platform




ea

Cleared to Land: An Interview with Cadence Veterans ERG Lead Johnathan Edmonds

Each November, we are reminded of the bravery and dedication of those who have served our country. At Cadence, we thank our Veteran employees for their patriotism by reaffirming our commitment to honoring their sacrifices and recognizing their contributions to our business success. Our diverse and inclusive culture is strengthened by the unique perspective of our Veteran employees, and we are proud to support the Veterans Inclusion Group as a space for community members and their allies to connect. In celebration of Veterans Day, we were excited to catch up with Johnathan Edmonds, Veterans Inclusion Group Lead and Design Engineering Director, for a heartfelt chat on his journey through military service to leadership within Cadence. Throughout the conversation, he shared the importance of creating space for Veterans, the skills they offer, and his aspirations for what the Veterans Inclusion Group will achieve in the years ahead. Oh yeah, and he flies planes, too! Join us as we dive into what makes this holiday special for so many across the nation and how we can respectfully commemorate it together. Johnathan, you’re a retired Air Force Reservist, pilot, and now a Design Engineering Director. Can you tell us about your journey from the military to your current role at Cadence? I started my military and electronics journey in the Navy. I enlisted at 18 and served for six years as an aviation electronics technician. During this time, I was able to learn about and repair electronics on planes. This set me up for success, and when I was honorably discharged, I attended Virginia Tech to study computer engineering. Once I graduated, I continued my career as an engineer, but I still wanted to be a military pilot. From my past experience, I knew the reserves were an option where I could learn to fly and still have a civilian career. Not only was I lucky enough to get selected to go to pilot training, but after I returned from flight school, my luck grew, and I was hired at Cadence. Cadence has supported me throughout my military career, which has been a great benefit, as many companies don’t support reservists. The best thing about serving and being employed at Cadence is how I could blend my skill sets to further the Air Force’s mission and achieve great things in engineering. As the first lead of Cadence’s Veterans Inclusion Group, you played an integral part in growing our culture and building community at the company since launching the group four years ago. What inspired you to take on the role of Inclusion Group Lead? I was inspired by three things: camaraderie, service, and outreach. I wanted to see if we could achieve a similar sense of community through the Veterans Inclusion Group as we had during our service life. I also wanted to see how we could better serve our Veterans here at Cadence. I wanted to explore any benefits that could be expanded, roles that could be developed by Vets, and, lastly, I wanted to serve a broader community. COVID-19 put a damper on some of the community support, but we are getting back on track with Veteran employment programs and volunteer efforts like Carry the Load and Gold Star Families. Why is it important to have this space dedicated to Veteran employees? There are many reasons! Networking, for one, creates a stronger, more unified Cadence culture. Two, Vets face a variety of issues not generally understood by those who have not served, such as PTSD, where to get help for disabilities, how to get an old medical record, etc. As I mentioned, I’m also passionate about connecting Veterans with employment and job opportunities. It is so nice to work for a company that actively recruits Vets. We have our own “language,” if you will, so it’s nice to have a space to talk in the language that we are familiar with. What have been some of your favorite moments leading this group over the past few years? Are there any “wins” that you would like to recognize? We have a lot of wins. Events held during COVID-19 and getting past COVID-19, donating to worthwhile causes, and hosting guest speakers are all fantastic milestones and accomplishments. That said, the biggest win is the hiring of new Veteran employees. Mark Murphy, Corporate VP of Sales Operations, and I have both welcomed Vets to our team during this time, and it is such a joy to watch what someone can do when given the opportunity to succeed in the right environment. As you are set to transition out of the lead role next year, what do you hope to see the Veterans Inclusion Group accomplish next? My hope is that the Veterans Inclusion Group partners with other companies, expanding our reach externally and exploring new opportunities to engage Veterans outside of Cadence. Johnathan (left) speaks on an inclusion group panel, along with David Sallard (center), lead of Cadence's Black Inclusion Group and Sr. Principal Application Engineer; Christina Jamerson (on screen), lead of Cadence's Abilities Inclusion Group and Demand Generation Director; and Dianne Rambke (right), lead of Cadence's Latinx Inclusion Group and Marketing Communications Director. What are the important ways that people can signal inclusion and respectfully honor Veterans at work? What are the most meaningful or impactful actions employees everywhere can take to support Veteran coworkers? I think there is one answer to both questions. I recommend that people engage with their companies’ employee resource groups (ERGs) and have conversations with them. Opening up the lines of communication will lead to new paths in their journeys. What are you looking forward to in 2025, both personally and professionally? In 2025, professionally, I am looking forward to taking mixed-signal systems and verification to another level by including emulation, automatic model generation, and seeing which boundaries we can push in our SerDes and Chiplets products. Personally, I am looking forward to making my SXS street legal so I can drive places without getting a ticket, seeing my children participate in sports, church, and school, and taking my wife on vacation to Europe or somewhere else we can unplug. Learn more about Cadence’s Inclusion Groups, diverse culture, and commitment to belonging.




ea

Population Is Not a Problem, but Our Greatest Strength

This is the 21st installment of The Rationalist, my column for the Times of India.

When all political parties agree on something, you know you might have a problem. Giriraj Singh, a minister in Narendra Modi’s new cabinet, tweeted this week that our population control law should become a “movement.” This is something that would find bipartisan support – we are taught from school onwards that India’s population is a big problem, and we need to control it.

This is wrong. Contrary to popular belief, our population is not a problem. It is our greatest strength.

The notion that we should worry about a growing population is an intuitive one. The world has limited resources. People keep increasing. Something’s gotta give.

Robert Malthus made just this point in his 1798 book, An Essay on the Principle of Population. He was worried that our population would grow exponentially while resources would grow arithmetically. As more people entered the workforce, wages would fall and goods would become scarce. Calamity was inevitable.

Malthus’s rationale was so influential that this mode of thinking was soon called ‘Malthusian.’ (It is a pejorative today.) A 20th-century follower of his, Harrison Brown, came up with one of my favourite images on this subject, arguing that a growing population would lead to the earth being “covered completely and to a considerable depth with a writhing mass of human beings, much as a dead cow is covered with a pulsating mass of maggots.”

Another Malthusian, Paul Ehrlich, published a book called The Population Bomb in 1968, which began with the stirring lines, “The battle to feed all of humanity is over. In the 1970s hundreds of millions of people will starve to death in spite of any crash programs embarked upon now.” Ehrlich was, as you’d guess, a big supporter of India’s coercive family planning programs. ““I don’t see,” he wrote, “how India could possibly feed two hundred million more people by 1980.”

None of these fears have come true. A 2007 study by Nicholas Eberstadt called ‘Too Many People?’ found no correlation between population density and poverty. The greater the density of people, the more you’d expect them to fight for resources – and yet, Monaco, which has 40 times the population density of Bangladesh, is doing well for itself. So is Bahrain, which has three times the population density of India.

Not only does population not cause poverty, it makes us more prosperous. The economist Julian Simon pointed out in a 1981 book that through history, whenever there has been a spurt in population, it has coincided with a spurt in productivity. Such as, for example, between Malthus’s time and now. There were around a billion people on earth in 1798, and there are around 7.7 billion today. As you read these words, consider that you are better off than the richest person on the planet then.

Why is this? The answer lies in the title of Simon’s book: The Ultimate Resource. When we speak of resources, we forget that human beings are the finest resource of all. There is no limit to our ingenuity. And we interact with each other in positive-sum ways – every voluntary interactions leaves both people better off, and the amount of value in the world goes up. This is why we want to be part of economic networks that are as large, and as dense, as possible. This is why most people migrate to cities rather than away from them – and why cities are so much richer than towns or villages.

If Malthusians were right, essential commodities like wheat, maize and rice would become relatively scarcer over time, and thus more expensive – but they have actually become much cheaper in real terms. This is thanks to the productivity and creativity of humans, who, in Eberstadt’s words, are “in practice always renewable and in theory entirely inexhaustible.”

The error made by Malthus, Brown and Ehrlich is the same error that our politicians make today, and not just in the context of population: zero-sum thinking. If our population grows and resources stays the same, of course there will be scarcity. But this is never the case. All we need to do to learn this lesson is look at our cities!

This mistaken thinking has had savage humanitarian consequences in India. Think of the unborn millions over the decades because of our brutal family planning policies. How many Tendulkars, Rahmans and Satyajit Rays have we lost? Think of the immoral coercion still carried out on poor people across the country. And finally, think of the condescension of our politicians, asserting that people are India’s problem – but always other people, never themselves.

This arrogance is India’s greatest problem, not our people.

The India Uncut Blog © 2010 Amit Varma. All rights reserved.
Follow me on Twitter.




ea

Start Your Engines: Create and Insert Connect Modules for Mixed-Signal Verification

Read this blog to know how you can easily create and insert connect modules using Spectre AMS Designer with the Verilog-AMS standard language defined by Accellera. (read more)




ea

Spectre 24.1 Release Now Available

The SPECTRE 24.1 release is now available for download at Cadence Downloads. For information on supported platforms and other release compatibility information, see the README.txt file in the installation hierarchy.(read more)




ea

Allegro 17.4 always reports new files as created in 17.2

Hello. I am using Cadence 17.4 tools. When I open a package symbol (.dra) or board file (.brd) in Allegro that was created in an older version of the tool I get a message like this one (as expected):

"The design created using release 17.2 will be updated for compatibility with the current software..."


If I create a symbol or board file from scratch in the 17.4 tool then open it later, I get the same message. (always referring to version 17.2 which is the previous version I was using here).

So far this has not caused me any problems, but I would like to understand why it is doing this in case I have something setup incorrectly.

I only have version 17.4 installed. I am not exporting to a downrev version when I save (i.e. not using File->Export->Downrev design…) and in User Preferences->Drawing I don’t have anything selected for database_compatibility_mode. What else might I check?

FYI here is the tool version information that I see after selecting Help->About Symbol:

OrCAD PCB Designer Standard 17.4-2019 S012 [10/26/2020] Windows SPB 64-bit Edition


Thanks -Jason




ea

Create bounding shape for arcs

When using Shape > Create Bounding Shape on an arc, the outer side works well, but on the inner side it just draws a straight line from the begging to the end of the curve.  Is anyone aware of a fix for this?

I'm attaching  a picture as an example, it works great on lines.




ea

New CDF creation and callback

I need to add a new CDF parameter called "mag" to symbols in a given library using skill script in which the symbol size can be controlled and call back it each time this library is used so that all the symbols are updated.




ea

Force virtuoso (Layout XL) to NOT create warning markers in design

Hi

I have a rather strange question - is there a way to tell layout XL to NOT place the error/warning markers on a design when I open a cell?  I do a lot of my layout by using arrays from placed instances and create mosaics that completely ignore the metadata that Layout XL uses with its bindings with schematic (and instances get deleted etc. but I do like using it to generate all my pins etc.) and it's just really annoying when I open a design that I know is LVS clean and since the connectivity metadata is all screwed up (because I did not use it to actually complete the layout) I have a design that's just blinking at me at every gate, source and drain.  I typically delete them at the high level heirarchically but the second I go in and modify something and come back up it places all of them again.  I know that if I flatten all the p cells it goes away but sometimes it's nice to have that piece of metadata but that's about it.  Is there a way to "break" the features of XL like this?  I realize what a weird question this is but it's becoming more of an issue since we moved to IC 23 from IC 6 where there is no longer a layout L that I can use free from these annoyances that can't use any of the connectivity metadata.

Thanks

Chris




ea

How to Set Up a Config View to Easily Switch Between Schematic and Calibre of DUT for Multiple Testbenches?

Hello everyone,

I hope you're all doing well. I’ve set up two testbenches (TB1 and TB2) for my Design Under Test (DUT) using Cadence IC6.1.8-64b.500.21 tools, as shown in the attached figure. The DUT has multiple views available: schematic, Calibre, Maestro, and Symbol, and each testbench uses the same DUT in different scenarios. Currently, I have to manually switch between these views, but I would like to streamline this process.

My goal is to use a single config view that allows me to switch between the schematic and the extracted (Calibre) views. Ideally, I would like to have a configuration file where making changes once would update both testbenches (TB1 and TB2) automatically. In other words, when I modify one config, both testbenches should reflect this update for a single simulation run.

I would really appreciate it if you could guide me on the following:

  1. How to create a config view for my DUT that can be used to easily switch between the schematic and extracted views, impacting both TB1 and TB2.
  2. Where to specify view priorities or other settings to control which view is used during simulation.
  3. Best practices for using a config file in this scenario, so that it ensures consistency across multiple testbenches.

Please refer to the attached figure to get a better understanding of the setup I’m using, where both TB1 and TB2 include the same DUT with multiple available views.

Thank you so much for your time and assistance!




ea

How do I create a basic connectivity csv?

First time user of JasperGold. Chip level verif. I want to prove that an arbiter and a buffer are connected. I want to use the connectivity app to do that.

I see from the user guide, that I should provide a connectivity map, but i have no idea how to construct one.
The training videos said use this command: check_conn -generate_template jasper_template.xlsm -xlsm
But that did nothing, or at least it did not produce a file that i could find


[<embedded>] % check_conn -generate_template jasper_template.xlsm -xlsm
ERROR (ESW104): Invalid command formation.
Problem occurs with "-generate_template -xlsm".

And even if it did, I don't even know what's in the file, and whether it contains the two ips I'm trying to check.

I'm hoping someone can give me a bit of a boost here with some knowledge.




ea

Welcome! Please use this forum to upload your code

Please include a brief summary of how to use it.




ea

e-code: Macro example code for Team Specman blog post

Hi everybody,

 

The attached package is a tiny code example with a demo for an upcoming Team Specman blog post about writing macros.

 

Hilmar




ea

memory leak in ncsim

ncsim will consume an increasing ammount of memory when a function has an output port that return an associative array which was not initialized. My simulator version is 12.10-s011.

Below is a code example to reproduce the failure. The code is inside a class (uvm_object):

 

function void a_function(output bit ret_val[int]);

// empty 

endfunction : get_cov


each time the call is done a small ammount of memory is allocated. I n my case I call this function several (millions of) times during simulation and then I can see the memory leaking.




ea

Creating cover items for sparse values/queue or define in specman

Hello,

I have a question I want to create a cover that consists a sparse values, pre-computed (a list or define) for example l = {1; 4; 7; 9; 2048; 700} I'd like to cover that data a (uint(bits:16)) had those values, Any suggestion on how to achieve this, I'd prefer to stay away from macros, and avoid to write a lot of code

struct inst {

  data :uint(bits:16);
  opcode :uint(bits:16);
  !valid_data : list of uint(bits:16) = {0; 12; 10; 700; 890; 293;};
  event data_e;
  event opcode_e;

  cover data_e is {
     item data using radix = HEX, ranges = {
     //I dont want to write all of this
     range([0], "My range1");
     range([10], "My range2");
     //... many values in between
    range([700], "My rangen");
    };


    item opcode;


   cross data, opcode;
};

post_generate() is also {
    emit data_e;
};
};




ea

SI/PI Simulation and Measurement Correlation Forum

Join this insightful on-demand webinar event "SI/PI Simulation and Measurement Correlation Forum" available through Signal Integrity Journal that features industry expert presentations ranging from chip to package to complex board designs.(read more)




ea

Sigrity and Systems Analysis 2022.1 HF2 Release Now Available

The Sigrity and Systems Analysis (SIGRITY/SYSANLS) 2022.1 HF2 release is now available for download at Cadence Downloads. For the list of CCRs fixed in the 2022.1 HF2 release, see the README.txt file in the installation hierarchy.(read more)




ea

Strmount failed in streaming out cell

Hi, I would be grateful if you can help me with this error which I get after trying to run an EMX simulation on a PCELL.

I've found very limited information in this forum. Thanks




ea

Measuring DDJ (data dependent jitter). Cross function on eye-diagram

Hi,
My Virtuoso and Spectre Version: ICADVM20.1-64b.NYISR30.2
I plot an eye diagram using a built in function. I want to see the data-dependent jitter. I want to measure the eye diagram edges at zero crossing (width of that diamond part) shown in the pic by vertical and horizontal markers. I can put a marker and read the numbers there and get what I want. But now I want to run Monte Carlo and I can't do this for all samples. I wish I could write an expression for this. Unfortunately, I see that the function "cross" is not working on the eye diagram. Basically, when I send the eye diagram data to a table, I see that it actually is just the prbs data and not the eye diagram data. Is there a hack that can help me achieve my goal which is: having an expression to measure the edges of the eye diagram at zero crossing?
There is a script that Andrew wrote (https://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin%3AViewSolution%3BsolutionNumber%3D11395772). This is a good script but it puts all edges on top of each other. I want to distinguish the two edges. In the attached pic (two-period eye diagram) you can see what I mean by the two edges (diamond shapes). I want to measure each of the two and take the maximum. Having all the edges on top of each other won't give me what I want. All edges together will lso include DCD. I purely want to measure DDJ. DCD is measured separately. I have very little experience with writing scripts and could not modify Andrew's script.
Your help is much appreciated. Thank you.




ea

Figures missing in the RF Design Blogs article of "Measuring Fmax for MOS Transistors"

Hi I noticed that some figures from the old posts in the cadence blogs have been missing.

I think this problem happened before and Andrew Beckett asked the original author to fix the issue:

 Figures missing in the RF Design Blogs article of "Measuring Fmax for MOS Transistors" 

Some of these posts are quite valuable, and would be nice to have access to the figures, which are a very important part of some posts,

Thanks

Leandro




ea

Test point creation workflow recommendations?

I am trying to figure out the most efficient workflow for adding test points. My use case involves adding ~100 or so SMT pads at the bottom for bed-of-nails ICT test that are required to be on a test point grid. A lot of the nets are on the top or from inner layers and so have to be brought to the bottom using stubs. I'm used to Xpediiton workflow of being able to set a test point padstack, set a test point grid, and then select a net, add the test point to the bottom layer on the grid with that net attached and then route the stub with gridless routing.

In Orcad, it seems I need to route the stub, switch layer pairs to be both bottom once I bring the stub to the bottom and then change the grid to be the test point grid and then add the test point on the grid. It requires a lot of clicks, very mistake prone requiring lots of oops and very slow for 100+ test points to be brought out at the bottom. 

I'm sure there is a better way that is used by folks with a lot of Orcad experience. Any suggestions?




ea

spreading clines

hello.

 

i have asked this question a few years back but no good answer so i ask again.

 

i would like to spread clines with equal spacing.

 

i do know how to spread clines between vias.

 

but i would like to simply spread clines between two clines (not between two vias).

 

for instance, there are 4 parallel clines but the inner 3 spaces are not equal so i would like to move the inner 2 clines to make the 3 spaces equal.

 

regards

masa




ea

Creating Web/Thermal shape for paste mask

Any tips or SKIL files to help create a thermal shaped openings for paste masks for a donut shaped pin for mics or stand-offs like below?




ea

Socionext Accelerates SoC Design Breakthroughs with Cadence Signoff Tools

Socionext, a leader in SoC design, recently made significant strides in enhancing its design efficiency for a complex billion-gate project. Faced with the initial challenges of lengthy eight-day iterations and a protracted two-month timing signoff process, the objective was to reduce the iteration cycle to just three days. By integrating Cadence's cutting-edge solutions—Certus Closure Solution, Tempus Timing Solution, and Quantus Extraction Solution—Socionext achieved remarkable improvements.

Notably, the Tempus DSTA tool dramatically cut timing closure time by 73%, outperforming conventional single-machine STA methods. This achievement, combined with the synergistic use of Cadence's Certus Closure and Tempus Timing solutions, allowed Socionext to meet their ambitious three-day iteration target and double productivity. Additionally, integrating these solutions significantly decreased both human and machine resource needs, slashing memory and disk costs by up to 90% and halving engineering resources during the optimization and signoff phases.

For more on this collaboration, check out the "Designed with Cadence" success story video on Cadence's website and YouTube channel.

Also, don't miss the on-demand webinar "Fast, Accurate STA for Large-Scale Design Challenges," which provides a deeper dive into Socionext's breakthroughs and the innovative solutions that powered their success.