bra

Accessible cholesterol is localized in bacterial plasma membrane protrusions

Michael E. Abrams
Dec 1, 2020; 61:1538-1538
Images in Lipid Research




bra

Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice

Abudukadier Abulizi
Dec 1, 2020; 61:1565-1576
Research Articles




bra

WITHDRAWN: Structural and mechanistic studies of hydroperoxide conversions catalyzed by a CYP74 clan epoxy alcohol synthase from amphioxus (Branchiostoma floridae) [Research Articles]

This manuscript has been withdrawn by the Author.




bra

Cholesterol homeostasis in the vertebrate retina: Biology and pathobiology [Thematic Reviews]

Cholesterol is a quantitatively and biologically significant constituent of all mammalian cell membrane, including those that comprise the retina. Retinal cholesterol homeostasis entails the interplay between de novo synthesis, uptake, intra-retinal sterol transport, metabolism and efflux. Defects in these complex processes are associated with several congenital and age-related disorders of the visual system. Herein, we provide an overview of the following topics: a) cholesterol synthesis in the neural retina; b) lipoprotein uptake and intraretinal sterol transport in the neural retina and the retinal pigment epithelium (RPE); c) cholesterol efflux from the neural retina and the RPE; and d) biology and pathobiology of defects in sterol synthesis and sterol oxidation in the neural retina and the RPE. We focus, in particular, on studies involving animal models of monogenic disorders pertinent to the above topics, as well as in vitro models using biochemical, metabolic, and omic approaches. We also identify current knowledge gaps as well as opportunities in the field that beg further research in this topic area.




bra

Babies with microcephaly in Brazil are struggling to access care




bra

Interleukin 6 reduces allopregnanolone synthesis in the brain and contributes to age-related cognitive decline in mice [Research Articles]

Cognitive decline with age is a harmful process that can reduce quality of life. Multiple factors have been established to contribute to cognitive decline, but the overall etiology remains unknown. Here, we hypothesized that cognitive dysfunction is mediated, in part, by increased levels of inflammatory cytokines that alter allopregnanolone (AlloP) levels, an important neurosteroid in the brain. We assessed the levels and regulation of AlloP and the effects of AlloP supplementation on cognitive function in 4-month-old and 24-month-old male C57BL/6 mice. With age, the expression of enzymes involved in the AlloP synthetic pathway was decreased and corticosterone (CORT) synthesis increased. Supplementation of AlloP improved cognitive function. Interestingly, interleukin 6 (IL-6) infusion in young animals significantly reduced the production of AlloP compared with controls. It is notable that inhibition of IL-6 with its natural inhibitor, soluble membrane glycoprotein 130, significantly improved spatial memory in aged mice. These findings were supported by in vitro experiments in primary murine astrocyte cultures, indicating that IL-6 decreases production of AlloP and increases CORT levels. Our results indicate that age-related increases in IL-6 levels reduce progesterone substrate availability, resulting in a decline in AlloP levels and an increase in CORT. Furthermore, our results indicate that AlloP is a critical link between inflammatory cytokines and the age-related decline in cognitive function.




bra

PLRP2 selectively localizes synaptic membrane proteins via acyl-chain remodeling of phospholipids [Research Articles]

The plasma membrane of neurons consists of distinct domains, each of which carries specialized functions and a characteristic set of membrane proteins. While this compartmentalized membrane organization is essential for neuronal functions, it remains controversial how neurons establish these domains on the laterally fluid membrane. Here, using immunostaining, lipid-MS analysis and gene ablation with the CRISPR/Cas9 system, we report that the pancreatic lipase-related protein 2 (PLRP2), a phospholipase A1 (PLA1), is a key organizer of membrane protein localization at the neurite tips of PC12 cells. PLRP2 produced local distribution of 1-oleoyl-2-palmitoyl-PC at these sites through acyl-chain remodeling of membrane phospholipids. The resulting lipid domain assembled the syntaxin 4 (Stx4) protein within itself by selectively interacting with the transmembrane domain of Stx4. The localized Stx4, in turn, facilitated the fusion of transport vesicles that contained the dopamine transporter with the domain of the plasma membrane, which led to the localized distribution of the transporter to that domain. These results revealed the pivotal roles of PLA1, specifically PLRP2, in the formation of functional domains in the plasma membrane of neurons. In addition, our results suggest a mode of membrane organization in which the local acyl-chain remodeling of membrane phospholipids controls the selective localization of membrane proteins by regulating both lipid-protein interactions and the fusion of transport vesicles to the lipid domain.




bra

Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice [Research Articles]

Microsomal triglyceride transfer protein (MTTP) deficiency results in a syndrome of hypolipidemia and accelerated NAFLD. Animal models of decreased hepatic MTTP activity have revealed an unexplained dissociation between hepatic steatosis and hepatic insulin resistance. Here, we performed comprehensive metabolic phenotyping of liver-specific MTTP knockout (L-Mttp–/–) mice and age-weight matched wild-type control mice. Young (10–12-week-old) L-Mttp–/– mice exhibited hepatic steatosis and increased DAG content; however, the increase in hepatic DAG content was partitioned to the lipid droplet and was not increased in the plasma membrane. Young L-Mttp–/– mice also manifested normal hepatic insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamps, no PKC activation, and normal hepatic insulin signaling from the insulin receptor through AKT Ser/Thr kinase. In contrast, aged (10-month-old) L-Mttp–/– mice exhibited glucose intolerance and hepatic insulin resistance along with an increase in hepatic plasma membrane sn-1,2-DAG content and PKC activation. Treatment with a functionally liver-targeted mitochondrial uncoupler protected the aged L-Mttp–/– mice against the development of hepatic steatosis, increased plasma membrane sn-1,2-DAG content, PKC activation, and hepatic insulin resistance. Furthermore, increased hepatic insulin sensitivity in the aged controlled-release mitochondrial protonophore-treated L-Mttp–/– mice was not associated with any reductions in hepatic ceramide content. Taken together, these data demonstrate that differences in the intracellular compartmentation of sn-1,2-DAGs in the lipid droplet versus plasma membrane explains the dissociation of NAFLD/lipid-induced hepatic insulin resistance in young L-Mttp–/– mice as well as the development of lipid-induced hepatic insulin resistance in aged L-Mttp–/– mice.




bra

Accessible cholesterol is localized in bacterial plasma membrane protrusions [Images In Lipid Research]




bra

Spatial profiling of gangliosides in mouse brain by mass spectrometry imaging [Images In Lipid Research]




bra

Cutting out the fat: Site-specific deacylation of an ion channel [Membrane Biology]

S-Acylation, a reversible post-translational lipid modification of proteins, controls the properties and function of various proteins, including ion channels. Large conductance Ca2+-activated potassium (BK) channels are S-acylated at two sites that impart distinct functional effects. Whereas the enzymes that attach lipid groups are known, the enzymes mediating lipid removal (i.e. deacylation) are largely unknown. Here, McClafferty et al. identify two enzymes, ABHD17a and ABHD17c, that excise BK channel lipid groups with remarkable precision. These findings lend insights into mechanisms that orchestrate the (de)acylation that fine-tunes ion channel function in physiology and disease.




bra

Leptin modulates pancreatic {beta}-cell membrane potential through Src kinase-mediated phosphorylation of NMDA receptors [Membrane Biology]

The adipocyte-derived hormone leptin increases trafficking of KATP and Kv2.1 channels to the pancreatic β-cell surface, resulting in membrane hyperpolarization and suppression of insulin secretion. We have previously shown that this effect of leptin is mediated by the NMDA subtype of glutamate receptors (NMDARs). It does so by potentiating NMDAR activity, thus enhancing Ca2+ influx and the ensuing downstream signaling events that drive channel trafficking to the cell surface. However, the molecular mechanism by which leptin potentiates NMDARs in β-cells remains unknown. Here, we report that leptin augments NMDAR function via Src kinase–mediated phosphorylation of the GluN2A subunit. Leptin-induced membrane hyperpolarization diminished upon pharmacological inhibition of GluN2A but not GluN2B, indicating involvement of GluN2A-containing NMDARs. GluN2A harbors tyrosine residues that, when phosphorylated by Src family kinases, potentiate NMDAR activity. We found that leptin increases phosphorylation of Tyr-418 in Src, an indicator of kinase activation. Pharmacological inhibition of Src or overexpression of a kinase-dead Src mutant prevented the effect of leptin, whereas a Src kinase activator peptide mimicked it. Using mutant GluN2A overexpression, we show that Tyr-1292 and Tyr-1387 but not Tyr-1325 are responsible for the effect of leptin. Importantly, β-cells from db/db mice, a type 2 diabetes mouse model lacking functional leptin receptors, or from obese diabetic human donors failed to respond to leptin but hyperpolarized in response to NMDA. Our study reveals a signaling pathway wherein leptin modulates NMDARs via Src to regulate β-cell excitability and suggests NMDARs as a potential target to overcome leptin resistance.




bra

Neuroligin-2 dependent conformational activation of collybistin reconstituted in supported hybrid membranes [Membrane Biology]

The assembly of the postsynaptic transmitter sensing machinery at inhibitory nerve cell synapses requires the intimate interplay between cell adhesion proteins, scaffold and adaptor proteins, and γ-aminobutyric acid (GABA) or glycine receptors. We developed an in vitro membrane system to reconstitute this process, to identify the essential protein components, and to define their mechanism of action, with a specific focus on the mechanism by which the cytosolic C terminus of the synaptic cell adhesion protein Neuroligin-2 alters the conformation of the adaptor protein Collybistin-2 and thereby controls Collybistin-2-interactions with phosphoinositides (PtdInsPs) in the plasma membrane. Supported hybrid membranes doped with different PtdInsPs and 1,2-dioleoyl-sn-glycero-3-{[N-(5-amino-1-carboxypentyl)iminodiacetic acid]succinyl} nickel salt (DGS-NTA(Ni)) to allow for the specific adsorption of the His6-tagged intracellular domain of Neuroligin-2 (His-cytNL2) were prepared on hydrophobically functionalized silicon dioxide substrates via vesicle spreading. Two different collybistin variants, the WT protein (CB2SH3) and a mutant that adopts an intrinsically 'open' and activated conformation (CB2SH3/W24A-E262A), were bound to supported membranes in the absence or presence of His-cytNL2. The corresponding binding data, obtained by reflectometric interference spectroscopy, show that the interaction of the C terminus of Neuroligin-2 with Collybistin-2 induces a conformational change in Collybistin-2 that promotes its interaction with distinct membrane PtdInsPs.




bra

Conserved biophysical features of the CaV2 presynaptic Ca2+ channel homologue from the early-diverging animal Trichoplax adhaerens [Membrane Biology]

The dominant role of CaV2 voltage-gated calcium channels for driving neurotransmitter release is broadly conserved. Given the overlapping functional properties of CaV2 and CaV1 channels, and less so CaV3 channels, it is unclear why there have not been major shifts toward dependence on other CaV channels for synaptic transmission. Here, we provide a structural and functional profile of the CaV2 channel cloned from the early-diverging animal Trichoplax adhaerens, which lacks a nervous system but possesses single gene homologues for CaV1–CaV3 channels. Remarkably, the highly divergent channel possesses similar features as human CaV2.1 and other CaV2 channels, including high voltage–activated currents that are larger in external Ba2+ than in Ca2+; voltage-dependent kinetics of activation, inactivation, and deactivation; and bimodal recovery from inactivation. Altogether, the functional profile of Trichoplax CaV2 suggests that the core features of presynaptic CaV2 channels were established early during animal evolution, after CaV1 and CaV2 channels emerged via proposed gene duplication from an ancestral CaV1/2 type channel. The Trichoplax channel was relatively insensitive to mammalian CaV2 channel blockers ω-agatoxin-IVA and ω-conotoxin-GVIA and to metal cation blockers Cd2+ and Ni2+. Also absent was the capacity for voltage-dependent G-protein inhibition by co-expressed Trichoplax Gβγ subunits, which nevertheless inhibited the human CaV2.1 channel, suggesting that this modulatory capacity evolved via changes in channel sequence/structure, and not G proteins. Last, the Trichoplax channel was immunolocalized in cells that express an endomorphin-like peptide implicated in cell signaling and locomotive behavior and other likely secretory cells, suggesting contributions to regulated exocytosis.




bra

Solvent accessibility changes in a Na+-dependent C4-dicarboxylate transporter suggest differential substrate effects in a multistep mechanism [Membrane Biology]

The divalent anion sodium symporter (DASS) family (SLC13) plays critical roles in metabolic homeostasis, influencing many processes, including fatty acid synthesis, insulin resistance, and adiposity. DASS transporters catalyze the Na+-driven concentrative uptake of Krebs cycle intermediates and sulfate into cells; disrupting their function can protect against age-related metabolic diseases and can extend lifespan. An inward-facing crystal structure and an outward-facing model of a bacterial DASS family member, VcINDY from Vibrio cholerae, predict an elevator-like transport mechanism involving a large rigid body movement of the substrate-binding site. How substrate binding influences the conformational state of VcINDY is currently unknown. Here, we probe the interaction between substrate binding and protein conformation by monitoring substrate-induced solvent accessibility changes of broadly distributed positions in VcINDY using a site-specific alkylation strategy. Our findings reveal that accessibility to all positions tested is modulated by the presence of substrates, with the majority becoming less accessible in the presence of saturating concentrations of both Na+ and succinate. We also observe separable effects of Na+ and succinate binding at several positions suggesting distinct effects of the two substrates. Furthermore, accessibility changes to a solely succinate-sensitive position suggests that substrate binding is a low-affinity, ordered process. Mapping these accessibility changes onto the structures of VcINDY suggests that Na+ binding drives the transporter into an as-yet-unidentified conformational state, involving rearrangement of the substrate-binding site–associated re-entrant hairpin loops. These findings provide insight into the mechanism of VcINDY, which is currently the only structurally characterized representative of the entire DASS family.




bra

{alpha}-Synuclein facilitates endocytosis by elevating the steady-state levels of phosphatidylinositol 4,5-bisphosphate [Membrane Biology]

α-Synuclein (α-Syn) is a protein implicated in the pathogenesis of Parkinson's disease (PD). It is an intrinsically disordered protein that binds acidic phospholipids. Growing evidence supports a role for α-Syn in membrane trafficking, including, mechanisms of endocytosis and exocytosis, although the exact role of α-Syn in these mechanisms is currently unclear. Here we investigate the associations of α-Syn with the acidic phosphoinositides (PIPs), phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2). Our results show that α-Syn colocalizes with PIP2 and the phosphorylated active form of the clathrin adaptor protein 2 (AP2) at clathrin-coated pits. Using endocytosis of transferrin as an indicator for clathrin-mediated endocytosis (CME), we find that α-Syn involvement in endocytosis is specifically mediated through PI(4,5)P2 levels on the plasma membrane. In accord with their effects on PI(4,5)P2 levels, the PD associated A30P, E46K, and A53T mutations in α-Syn further enhance CME in neuronal and nonneuronal cells. However, lysine to glutamic acid substitutions at the KTKEGV repeat domain of α-Syn, which interfere with phospholipid binding, are ineffective in enhancing CME. We further show that the rate of synaptic vesicle (SV) endocytosis is differentially affected by the α-Syn mutations and associates with their effects on PI(4,5)P2 levels, however, with the exception of the A30P mutation. This study provides evidence for a critical involvement of PIPs in α-Syn–mediated membrane trafficking.




bra

Exofacial membrane composition and lipid metabolism regulates plasma membrane P4-ATPase substrate specificity [Lipids]

The plasma membrane of a cell is characterized by an asymmetric distribution of lipid species across the exofacial and cytofacial aspects of the bilayer. Regulation of membrane asymmetry is a fundamental characteristic of membrane biology and is crucial for signal transduction, vesicle transport, and cell division. The type IV family of P-ATPases, or P4-ATPases, establishes membrane asymmetry by selection and transfer of a subset of membrane lipids from the lumenal or exofacial leaflet to the cytofacial aspect of the bilayer. It is unclear how P4-ATPases sort through the spectrum of membrane lipids to identify their desired substrate(s) and how the membrane environment modulates this activity. Therefore, we tested how the yeast plasma membrane P4-ATPase, Dnf2, responds to changes in membrane composition induced by perturbation of endogenous lipid biosynthetic pathways or exogenous application of lipid. The primary substrates of Dnf2 are glucosylceramide (GlcCer) and phosphatidylcholine (PC, or their lyso-lipid derivatives), and we find that these substrates compete with each other for transport. Acutely inhibiting sphingolipid synthesis using myriocin attenuates transport of exogenously applied GlcCer without perturbing PC transport. Deletion of genes controlling later steps of glycosphingolipid production also perturb GlcCer transport to a greater extent than PC transport. In contrast, perturbation of ergosterol biosynthesis reduces PC and GlcCer transport equivalently. Surprisingly, application of lipids that are poor transport substrates differentially affects PC and GlcCer transport by Dnf2, thus altering substrate preference. Our data indicate that Dnf2 exhibits exquisite sensitivity to the membrane composition, thus providing feedback onto the function of the P4-ATPases.




bra

Quantitative Proteomics Links the LRRC59 Interactome to mRNA Translation on the ER Membrane [Research]

Protein synthesis on the endoplasmic reticulum (ER) requires the dynamic coordination of numerous cellular components. Together, resident ER membrane proteins, cytoplasmic translation factors, and both integral membrane and cytosolic RNA-binding proteins operate in concert with membrane-associated ribosomes to facilitate ER-localized translation. Little is known, however, regarding the spatial organization of ER-localized translation. This question is of growing significance as it is now known that ER-bound ribosomes contribute to secretory, integral membrane, and cytosolic protein synthesis alike. To explore this question, we utilized quantitative proximity proteomics to identify neighboring protein networks for the candidate ribosome interactors SEC61β (subunit of the protein translocase), RPN1 (oligosaccharyltransferase subunit), SEC62 (translocation integral membrane protein), and LRRC59 (ribosome binding integral membrane protein). Biotin labeling time course studies of the four BioID reporters revealed distinct labeling patterns that intensified but only modestly diversified as a function of labeling time, suggesting that the ER membrane is organized into discrete protein interaction domains. Whereas SEC61β and RPN1 reporters identified translocon-associated networks, SEC62 and LRRC59 reporters revealed divergent protein interactomes. Notably, the SEC62 interactome is enriched in redox-linked proteins and ER luminal chaperones, with the latter likely representing proximity to an ER luminal chaperone reflux pathway. In contrast, the LRRC59 interactome is highly enriched in SRP pathway components, translation factors, and ER-localized RNA-binding proteins, uncovering a functional link between LRRC59 and mRNA translation regulation. Importantly, analysis of the LRRC59 interactome by native immunoprecipitation identified similar protein and functional enrichments. Moreover, [35S]-methionine incorporation assays revealed that siRNA silencing of LRRC59 expression reduced steady state translation levels on the ER by ca. 50%, and also impacted steady state translation levels in the cytosol compartment. Collectively, these data reveal a functional domain organization for the ER and identify a key role for LRRC59 in the organization and regulation of local translation.




bra

Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS1) and in Silico Peptide Mass Libraries [Technological Innovation and Resources]

Over the past decade, modern methods of MS (MS) have emerged that allow reliable, fast and cost-effective identification of pathogenic microorganisms. Although MALDI-TOF MS has already revolutionized the way microorganisms are identified, recent years have witnessed also substantial progress in the development of liquid chromatography (LC)-MS based proteomics for microbiological applications. For example, LC-tandem MS (LC-MS2) has been proposed for microbial characterization by means of multiple discriminative peptides that enable identification at the species, or sometimes at the strain level. However, such investigations can be laborious and time-consuming, especially if the experimental LC-MS2 data are tested against sequence databases covering a broad panel of different microbiological taxa. In this proof of concept study, we present an alternative bottom-up proteomics method for microbial identification. The proposed approach involves efficient extraction of proteins from cultivated microbial cells, digestion by trypsin and LC–MS measurements. Peptide masses are then extracted from MS1 data and systematically tested against an in silico library of all possible peptide mass data compiled in-house. The library has been computed from the UniProt Knowledgebase covering Swiss-Prot and TrEMBL databases and comprises more than 12,000 strain-specific in silico profiles, each containing tens of thousands of peptide mass entries. Identification analysis involves computation of score values derived from correlation coefficients between experimental and strain-specific in silico peptide mass profiles and compilation of score ranking lists. The taxonomic positions of the microbial samples are then determined by using the best-matching database entries. The suggested method is computationally efficient – less than 2 mins per sample - and has been successfully tested by a test set of 39 LC-MS1 peak lists obtained from 19 different microbial pathogens. The proposed method is rapid, simple and automatable and we foresee wide application potential for future microbiological applications.




bra

A Mouse Brain-based Multi-omics Integrative Approach Reveals Potential Blood Biomarkers for Ischemic Stroke [Research]

Stroke remains a leading cause of death and disability worldwide. Despite continuous advances, the identification of key molecular signatures in the hyper-acute phase of ischemic stroke is still a primary interest for translational research on stroke diagnosis, prognosis, and treatment. Data integration from high-throughput -omics techniques has become crucial to unraveling key interactions among different molecular elements in complex biological contexts, such as ischemic stroke. Thus, we used advanced data integration methods for a multi-level joint analysis of transcriptomics and proteomics data sets obtained from mouse brains at 2 h after cerebral ischemia. By modeling net-like correlation structures, we identified an integrated network of genes and proteins that are differentially expressed at a very early stage after stroke. We validated 10 of these deregulated elements in acute stroke, and changes in their expression pattern over time after cerebral ischemia were described. Of these, CLDN20, GADD45G, RGS2, BAG5, and CTNND2 were next evaluated as blood biomarkers of cerebral ischemia in mice and human blood samples, which were obtained from stroke patients and patients presenting stroke-mimicking conditions. Our findings indicate that CTNND2 levels in blood might potentially be useful for distinguishing ischemic strokes from stroke-mimicking conditions in the hyper-acute phase of the disease. Furthermore, circulating GADD45G content within the first 6 h after stroke could also play a key role in predicting poor outcomes in stroke patients. For the first time, we have used an integrative biostatistical approach to elucidate key molecules in the initial stages of stroke pathophysiology and highlight new notable molecules that might be further considered as blood biomarkers of ischemic stroke.




bra

Croq’Kilos : programme minceur, rééquilibrage alimentaire

Pour de nombreuses personnes, perte de poids rime obligatoirement avec privations. Et si vous appreniez aujourd’hui que vous pouvez perdre efficacement vos kilos en trop sans pour autant vous priver excessivement ? De nombreux programmes minceur et de rééquilibrage, notamment Croq’kilos offrent ce genre d’alternative. Mais de quoi s’agit-il réellement ? C’est quoi Croq’Kilos ? Croq’Kilos […]

L’article Croq’Kilos : programme minceur, rééquilibrage alimentaire est apparu en premier sur Ortho Doc France.




bra

Interpretation of data underlying the link between CCD and an invertebrate iridescent virus [Invited]

No abstract




bra

Thermal proteome profiling in zebrafish reveals effects of napabucasin on retinoic acid metabolism [Research]

Thermal proteome profiling (TPP) allows for the unbiased detection of drug – target protein engagements in vivo. Traditionally, one cell type is used for TPP studies, with the risk of missing important differentially expressed target proteins. The use of whole organisms would circumvent this problem. Zebrafish embryos are amenable to such an approach. Here, we used TPP on whole zebrafish embryo lysate to identify protein targets of napabucasin, a compound that may affect Signal transducer and activator of transcription 3 (Stat3) signaling through an ill-understood mechanism. In zebrafish embryos, napabucasin induced developmental defects consistent with inhibition of Stat3 signaling. TPP profiling showed no distinct shift in Stat3 upon napabucasin treatment, but effects were detected on the oxidoreductase, Pora, which might explain effects on Stat3 signaling. Interestingly, thermal stability of several aldehyde dehydrogenases (Aldhs) was affected. Moreover, napabucasin activated ALDH enzymatic activity in vitro. Aldhs have crucial roles in retinoic acid metabolism and functionally we validated napabucasin-mediated activation of the retinoic acid pathway in zebrafish in vivo. We conclude that TPP profiling in whole zebrafish embryo lysate is feasible and facilitates direct correlation of in vivo effects of small molecule drugs with their protein targets.




bra

Systematic identification of P. falciparum sporozoite membrane protein interactions reveals an essential role for the p24 complex in host infection [Research]

Sporozoites are a motile form of malaria-causing Plasmodium falciparum parasites that migrate from the site of transmission in the dermis through the bloodstream to invade hepatocytes. Sporozoites interact with many cells within the host, but the molecular identity of these interactions and their role in the pathology of malaria is poorly understood. Parasite proteins that are secreted and embedded within membranes are known to be important for these interactions, but our understanding of how they interact with each other to form functional complexes is largely unknown. Here, we compile a library of recombinant proteins representing the repertoire of cell surface and secreted proteins from the P. falciparum sporozoite and use an assay designed to detect extracellular interactions to systematically identify complexes. We identify three protein complexes including an interaction between two components of the p24 complex that is involved in the trafficking of glycosylphosphatidylinositol (GPI)-anchored proteins through the secretory pathway. Plasmodium parasites lacking either gene are strongly inhibited in the establishment of liver stage infections. These findings reveal an important role for the p24 complex in malaria pathogenesis and show that the library of recombinant proteins represents a valuable resource to investigate P. falciparum sporozoite biology.




bra

Correction: Transcriptional factors Smad1 and Smad9 act redundantly to mediate zebrafish ventral specification downstream of Smad5. [Additions and Corrections]

VOLUME 289 (2014) PAGES 6604–6618In Fig. 4G, in the foxi1 panel, the images in Fig. 4G, i and l, corresponding to “smad1 MO” and “smad5 MO + samd1/9 mRNA” samples, respectively, were inadvertently reused during figure preparation. This error has now been corrected using images pertaining to each treatment and sample. This correction does not affect the results or conclusions of the work.jbc;295/52/18650/F4F1F4Figure 4G.




bra

Whole brain radiotherapy for brain metastases




bra

Pure Storage Embraces Next-Gen Networking for AI with Ultra Ethernet Consortium Membership

SANTA CLARA, Calif., Aug. 13, 2024 — Pure Storage today announced that it joined Ultra Ethernet Consortium (UEC), a Linux Foundation initiative dedicated to building a complete, open, and accessible Ethernet-based […]

The post Pure Storage Embraces Next-Gen Networking for AI with Ultra Ethernet Consortium Membership appeared first on HPCwire.




bra

Air Force secretary: Branch focused on confronting China, must retire old platforms

Air Force Secretary Frank Kendall said the branch is looking toward confronting China, as well as unity in its ranks, and added that the service needs to retire older aircraft and programs -- and focus on ones that work.




bra

Army tests MK-22 Precision Sniper Rifle at Fort Bragg ahead of fielding

The Army has successfully tested the MK-22 Precision Sniper Rifle to clear it for fielding.




bra

AlmaLinux OS Foundation Chair to Discuss Embracing Diversity in Open Source at SC24

FORT MYERS, Fla., Nov. 7, 2024 — The AlmaLinux OS Foundation, the nonprofit that stewards the free and community-governed open source enterprise Linux distribution, today announced that chair benny Vasquez is […]

The post AlmaLinux OS Foundation Chair to Discuss Embracing Diversity in Open Source at SC24 appeared first on HPCwire.




bra

Elon Musk's Neuralink Has Implanted Its First Chip in a Human Brain. What's Next?

The wealthiest person on Earth has taken the next step toward a commercial brain interface




bra

How Sleep Engineering Could Help Heal the Brain

Stimulating the sleeping brain may ease suffering from memory loss, stroke or mental health problems




bra

How Light Pollution Could Be Affecting Your Brain Health (M)

A study reveals the hidden dangers of night time light pollution for brain health.




bra

A Surprising Sign Of A High IQ Brain

High IQ brains have greater functional connectivity and higher synchronisation, but this has an unexpected real-world effect.




bra

Why Your Brain Breaks Up Your Day Into ‘Chapters’ (M)

Find out how and why your brain divides your day into meaningful chapters.




bra

The Best Exercise For Brain Health Revealed By 98 Studies

Which types of exercise can help keep the brain healthy?



  • Boost Brain Power

bra

The power of personalization in the age of AI | Mark Abraham

With all that spam clogging your inbox, a more personalized experience with the brands you interact with would be a refreshing change of pace. Sharing insights from his research into what brands can do to improve the experience of the people they want to reach, personalization pioneer Mark Abraham highlights a key mindset that can help companies boost their growth (and delight their customers) in the era of AI.





bra

Mattel Mindflex Game: Brain-controlled Neuro-Toy

Who says neuroscience can’t be fun? The toy giant Mattel makes Mindflex, a toy that lets players control a ping pong ball with their brain waves. I wrote about the toy way back in 2009, and was surprised to find it was still selling. It seemed like a gimmick when introduced, and I didn’t expect […]

The post Mattel Mindflex Game: Brain-controlled Neuro-Toy appeared first on Neuromarketing.





bra

How the Brain Heals from Addiction

Addiction isn’t a condition that just affects your behavior; it also affects your brain and body. Therefore, to recover from addiction, it’s not enough to simply quit using substances. Your brain also has to undergo certain changes to detox and recuperate. Knowing how the brain heals from addiction can help throw light on the science […]

The post How the Brain Heals from Addiction first appeared on What is Psychology?.




bra

R.I. Education Commissioner Diagnosed with Brain Tumor

From guest blogger Kimberly Shannon Rhode Island Education Commissioner Deborah Gist has been diagnosed with a brain tumor and will undergo surgery in September, according to the Associated Press. She is expected to have a full recovery, but will be working a limited schedule until her operation. Af




bra

Betsy DeVos Greenlights ESSA Plans for Nebraska and North Carolina

U.S. Ed Secretary DeVos has approved plans for 46 states, plus the District of Columbia and Puerto Rico. Still waiting: California, Florida, Oklahoma, and Utah.




bra

State of the States: Nebraska

Gov. Dave Heineman used part of his speech to blast the federal Affordable Care Act, saying its mandatory provisions will cost the state.




bra

Nebraska

Student Achievement (NAEP 2003)




bra

Nebraska




bra

Nebraska

State of the States: Education highlights from latest governor's address before the legislature.




bra

Nebraska

Nebraska education officials were hoping the legislature would come through with funding for plans to improve and coordinate distance learning throughout the state.




bra

Heavy Response to Nebraska Restraint Bill Illuminates Teachers' Frustrations

A Nebraska senator introduced a bill that would give teachers legal cover to physically restraint disruptive students, prompting a strong positive response from members of the state teachers' union.




bra

Nebraska

Gov. Heineman is calling for a simplified student-measurement system, increased parental involvement, and more-rigorous academic standards to close the achievement gap and increase overall academic performance.