rat

Monthly Portfolio Inspiration - May 2020

Monthly Portfolio Inspiration - May 2020

tobiasMay 05, 2020

Hi! I’m Tobias van Schneider. I’m the co-founder of Semplice, a portfolio tool by designers for designers. We’re teaming up with Abduzeedo to share inspiring design portfolios each month. Here we’ll curate the best online portfolios from graphic designers, photographers, product managers, design studios, visual artists and more – all created from scratch using Semplice.

Web design

Andrew Footit

See portfolio →

Henrik & Sofia

See portfolio →

Ken Bam

See portfolio →

Gambade

See portfolio →

Mary Catherine Pflug

See portfolio →

Hello Dave

See portfolio →

Lennert Antonissen

See portfolio →

Zac Ong

See portfolio →

Florian Stumpe

See portfolio →

Stephie Muller

See portfolio →




rat

Customizing the User Registration Notification eMails

If a new user registers at a WordPress site the new user and the administrator receive notification mails: User: From: […]




rat

Website Inspiration: Ruben Kuipers

Comprehensive One Page portfolio for freelancer Ruben Kuipers. There are a few noteworthy elements here; the tech/design skills switch, the integration of the two (quality) testimonials within project thumbs and how the dark mode color scheme switcher changes the image of him – nice touch! Full Review




rat

Website Inspiration: CleanShot X

What a brilliant Landing Page for the latest CleanShot X release by MakeTheWeb. This is a good reference to the new Landing Page direction I want to take One Page Love. Slightly more lenient on links to other meta pages (changelog, terms) as long as the Single Page presents everything a customer would want to […]





rat

Website Inspiration: BlurHash

Clear representation of how the product works in the header of the Landing Page for BlurHash. A BlurHash is a compact representation of a placeholder for an image. When integrated they really improves app designs by replacing boring grey boxes with smoother loading images. Full Review




rat

Article: 25 Beautifully Dark-Schemed Landing Pages for Inspiration

There is something instantly remarkable about a website with a strong, dark color scheme.







rat

Website Inspiration: Barrel Recap 2019

Fun Annual Report One Pager (built using Webflow) by Barrel recapping their 2019 year. It’s busting with flavor from colorful changing backgrounds, cheeky thick-line illustrations and the playful bouncing social media icon footer. Also worth a shout is the responsive design, scaling up perfectly on huge screens while rearranging content well on small. Full Review





rat

Judge Could Hold Up Trump Administration's Bid to Clear Flynn, Legal Experts say

The notoriously independent-minded federal judge who once said he was disgusted by the conduct of Michael Flynn could block the administration's bid to drop criminal charges against the former adviser to President Donald Trump, legal experts said.




rat

Resilience + Reinvention with Canlis Restaurateurs

In any uncertain time there, we can both feel anxious, upset, curious and we can also look for opportunities. Opportunities for reinvention, for connection, and community in ways we haven’t seen before. That’s the theme of today’s episode with some of my good friends Mark and Brian Canlis + James Beard Award Winning Chef Brady Williams in a conversation we recorded for CreativeLive TV. Mark and Brian run an iconic restaurant in Seattle named Canlis. It’s been a family business for over 70 years. Faced with these uncertain times, they share how they’ve reinvented their business 3 times over the last couple of months. No matter what industry you’re in, their story of overcoming obstacles, problem solving and heart is wisdom for all of us. Enjoy! FOLLOW CANLIS: instagram | website Listen to the Podcast Subscribe   Watch the Episode This podcast is brought to you by CreativeLive. CreativeLive is the world’s largest hub for online creative education in photo/video, art/design, music/audio, craft/maker, money/life and the ability to make a living in any of those disciplines. They are high quality, highly curated classes taught by the world’s top experts — Pulitzer, Oscar, Grammy Award winners, New York Times best selling authors […]

The post Resilience + Reinvention with Canlis Restaurateurs appeared first on Chase Jarvis Photography.




rat

How to Foster Real-Time Client Engagement During Moderated Research

When we conduct moderated research, like user interviews or usability tests, for our clients, we encourage them to observe as many sessions as possible. We find when clients see us interview their users, and get real-time responses, they’re able to learn about the needs of their users in real-time and be more active participants in the process. One way we help clients feel engaged with the process during remote sessions is to establish a real-time communication backchannel that empowers clients to flag responses they’d like to dig into further and to share their ideas for follow-up questions.

There are several benefits to establishing a communication backchannel for moderated sessions:

  • Everyone on the team, including both internal and client team members, can be actively involved throughout the data collection process rather than waiting to passively consume findings.
  • Team members can identify follow-up questions in real-time which allows the moderator to incorporate those questions during the current session, rather than just considering them for future sessions.
  • Subject matter experts can identify more detailed and specific follow-up questions that the moderator may not think to ask.
  • Even though the whole team is engaged, a single moderator still maintains control over the conversation which creates a consistent experience for the participant.

If you’re interested in creating your own backchannel, here are some tips to make the process work smoothly:

  • Use the chat tool that is already being used on the project. In most cases, we use a joint Slack workspace for the session backchannel but we’ve also used Microsoft Teams.
  • Create a dedicated channel like #moderated-sessions. Conversation in this channel should be limited to backchannel discussions during sessions. This keeps the communication consolidated and makes it easier for the moderator to stay focused during the session.
  • Keep communication limited. Channel participants should ask basic questions that are easy to consume quickly. Supplemental commentary and analysis should not take place in the dedicated channel.
  • Use emoji responses. The moderator can add a quick thumbs up to indicate that they’ve seen a question.

Introducing backchannels for communication during remote moderated sessions has been a beneficial change to our research process. It not only provides an easy way for clients to stay engaged during the data collection process but also increases the moderator’s ability to focus on the most important topics and to ask the most useful follow-up questions.




rat

A Viget Exploration: How Tech Can Help in a Pandemic

Viget Explorations have always been the result of our shared curiosities. They’re usually a spontaneous outcome of team downtime and a shared problem we’ve experienced. We use our Explorations to pursue our diverse interests and contribute to the conversations about building a better digital world.

As the COVID-19 crisis emerged, we were certainly experiencing a shared problem. As a way to keep busy and manage our anxieties, a small team came together to dive into how technology has helped, and, unfortunately, hindered the community response to the current pandemic.

We started by researching the challenges we saw: information overload, a lack of clarity, individual responsibility, and change. Then we brainstormed possible technical solutions that could further improve how communities respond to a pandemic. Click here to see our Exploration on some possible ways to take the panic out of pandemics.

While we aren’t currently pursuing the solutions outlined in the Exploration, we’d love to hear what you think about these approaches, as well as any ideas you have for how technology can help address the outlined challenges.

Please note, this Exploration doesn’t provide medical information. Visit the Center for Disease Control’s website for current information and COVID-19, its symptoms, and treatments.

At Viget, we’re adjusting to this crisis for the safety of our clients, our staff, and our communities. If you’d like to hear from Viget's co-founder, Brian Williams, you can read his article on our response to the situation.



  • News & Culture

rat

Why Collaborative Coding Is The Ultimate Career Hack

Taking your first steps in programming is like picking up a foreign language. At first, the syntax makes no sense, the vocabulary is unfamiliar, and everything looks and sounds unintelligible. If you’re anything like me when I started, fluency feels impossible. I promise it isn’t. When I began coding, the learning curve hit me — hard. I spent ten months teaching myself the basics while trying to stave off feelings of self-doubt that I now recognize as imposter syndrome.




rat

Godox’s new SL150/SL200 Mark II LED lights offer fanless “silent mode” operation

The Godox SL series LED lights have proven to be extremely popular due to their low cost. Two of the models in that range, the SL150 and SL200 have seen a Mark II update today, according to an email that Godox has been sending out today. One of the features of the new SL150II and […]

The post Godox’s new SL150/SL200 Mark II LED lights offer fanless “silent mode” operation appeared first on DIY Photography.




rat

The entropy of holomorphic correspondences: exact computations and rational semigroups. (arXiv:2004.13691v1 [math.DS] CROSS LISTED)

We study two notions of topological entropy of correspondences introduced by Friedland and Dinh-Sibony. Upper bounds are known for both. We identify a class of holomorphic correspondences whose entropy in the sense of Dinh-Sibony equals the known upper bound. This provides an exact computation of the entropy for rational semigroups. We also explore a connection between these two notions of entropy.




rat

Almost invariant subspaces of the shift operator on vector-valued Hardy spaces. (arXiv:2005.02243v2 [math.FA] UPDATED)

In this article, we characterize nearly invariant subspaces of finite defect for the backward shift operator acting on the vector-valued Hardy space which is a vectorial generalization of a result of Chalendar-Gallardo-Partington (C-G-P). Using this characterization of nearly invariant subspace under the backward shift we completely describe the almost invariant subspaces for the shift and its adjoint acting on the vector valued Hardy space.




rat

Solving an inverse problem for the Sturm-Liouville operator with a singular potential by Yurko's method. (arXiv:2004.14721v2 [math.SP] UPDATED)

An inverse spectral problem for the Sturm-Liouville operator with a singular potential from the class $W_2^{-1}$ is solved by the method of spectral mappings. We prove the uniqueness theorem, develop a constructive algorithm for solution, and obtain necessary and sufficient conditions of solvability for the inverse problem in the self-adjoint and the non-self-adjoint cases




rat

Convergent normal forms for five dimensional totally nondegenerate CR manifolds in C^4. (arXiv:2004.11251v2 [math.CV] UPDATED)

Applying the equivariant moving frames method, we construct convergent normal forms for real-analytic 5-dimensional totally nondegenerate CR submanifolds of C^4. These CR manifolds are divided into several biholomorphically inequivalent subclasses, each of which has its own complete normal form. Moreover it is shown that, biholomorphically, Beloshapka's cubic model is the unique member of this class with the maximum possible dimension seven of the corresponding algebra of infinitesimal CR automorphisms. Our results are also useful in the study of biholomorphic equivalence problem between CR manifolds, in question.




rat

Equivalence of classical and quantum completeness for real principal type operators on the circle. (arXiv:2004.07547v3 [math.AP] UPDATED)

In this article, we prove that the completeness of the Hamilton flow and essential self-dajointness are equivalent for real principal type operators on the circle. Moreover, we study spectral properties of these operators.




rat

Co-Seifert Fibrations of Compact Flat Orbifolds. (arXiv:2002.12799v2 [math.GT] UPDATED)

In this paper, we develop the theory for classifying all the geometric fibrations of compact, connected, flat $n$-orbifolds, over a 1-orbifold, up to affine equivalence. We apply our classification theory to classify all the geometric fibrations of compact, connected, flat $2$-orbifolds, over a 1-orbifold, up to affine equivalence. This paper is an essential part of our project to give a geometric proof of the classification of all closed flat 4-manifolds.




rat

Multitype branching process with nonhomogeneous Poisson and generalized Polya immigration. (arXiv:1909.03684v2 [math.PR] UPDATED)

In a multitype branching process, it is assumed that immigrants arrive according to a nonhomogeneous Poisson or a generalized Polya process (both processes are formulated as a nonhomogeneous birth process with an appropriate choice of transition intensities). We show that the renormalized numbers of objects of the various types alive at time $t$ for supercritical, critical, and subcritical cases jointly converge in distribution under those two different arrival processes. Furthermore, some transient moment analysis when there are only two types of particles is provided. AMS 2000 subject classifications: Primary 60J80, 60J85; secondary 60K10, 60K25, 90B15.




rat

Decentralized and Parallelized Primal and Dual Accelerated Methods for Stochastic Convex Programming Problems. (arXiv:1904.09015v10 [math.OC] UPDATED)

We introduce primal and dual stochastic gradient oracle methods for decentralized convex optimization problems. Both for primal and dual oracles the proposed methods are optimal in terms of the number of communication steps. However, for all classes of the objective, the optimality in terms of the number of oracle calls per node in the class of methods with optimal number of communication steps takes place only up to a logarithmic factor and the notion of smoothness. By using mini-batching technique we show that all proposed methods with stochastic oracle can be additionally parallelized at each node.




rat

On the rationality of cycle integrals of meromorphic modular forms. (arXiv:1810.00612v3 [math.NT] UPDATED)

We derive finite rational formulas for the traces of cycle integrals of certain meromorphic modular forms. Moreover, we prove the modularity of a completion of the generating function of such traces. The theoretical framework for these results is an extension of the Shintani theta lift to meromorphic modular forms of positive even weight.




rat

Expansion of Iterated Stratonovich Stochastic Integrals of Arbitrary Multiplicity Based on Generalized Iterated Fourier Series Converging Pointwise. (arXiv:1801.00784v9 [math.PR] UPDATED)

The article is devoted to the expansion of iterated Stratonovich stochastic integrals of arbitrary multiplicity $k$ $(kinmathbb{N})$ based on the generalized iterated Fourier series. The case of Fourier-Legendre series as well as the case of trigonotemric Fourier series are considered in details. The obtained expansion provides a possibility to represent the iterated Stratonovich stochastic integral in the form of iterated series of products of standard Gaussian random variables. Convergence in the mean of degree $2n$ $(nin mathbb{N})$ of the expansion is proved. Some modifications of the mentioned expansion were derived for the case $k=2$. One of them is based of multiple trigonomentric Fourier series converging almost everywhere in the square $[t, T]^2$. The results of the article can be applied to the numerical solution of Ito stochastic differential equations.




rat

Graded 2-generated axial algebras. (arXiv:2005.03577v1 [math.RA])

Axial algebras are non-associative algebras generated by semisimple idempotents whose adjoint actions obey a fusion law. Axial algebras that are generated by two such idempotents play a crucial role in the theory. We classify all primitive 2-generated axial algebras whose fusion laws have two eigenvalues and all graded primitive 2-generated axial algebras whose fusion laws have three eigenvalues. This represents a significant broadening in our understanding of axial algebras.




rat

Minimal acceleration for the multi-dimensional isentropic Euler equations. (arXiv:2005.03570v1 [math.AP])

Among all dissipative solutions of the multi-dimensional isentropic Euler equations there exists at least one that minimizes the acceleration, which implies that the solution is as close to being a weak solution as possible. The argument is based on a suitable selection procedure.




rat

Continuity properties of the shearlet transform and the shearlet synthesis operator on the Lizorkin type spaces. (arXiv:2005.03505v1 [math.FA])

We develop a distributional framework for the shearlet transform $mathcal{S}_{psi}colonmathcal{S}_0(mathbb{R}^2) omathcal{S}(mathbb{S})$ and the shearlet synthesis operator $mathcal{S}^t_{psi}colonmathcal{S}(mathbb{S}) omathcal{S}_0(mathbb{R}^2)$, where $mathcal{S}_0(mathbb{R}^2)$ is the Lizorkin test function space and $mathcal{S}(mathbb{S})$ is the space of highly localized test functions on the standard shearlet group $mathbb{S}$. These spaces and their duals $mathcal{S}_0^prime (mathbb R^2),, mathcal{S}^prime (mathbb{S})$ are called Lizorkin type spaces of test functions and distributions. We analyze the continuity properties of these transforms when the admissible vector $psi$ belongs to $mathcal{S}_0(mathbb{R}^2)$. Then, we define the shearlet transform and the shearlet synthesis operator of Lizorkin type distributions as transpose mappings of the shearlet synthesis operator and the shearlet transform, respectively. They yield continuous mappings from $mathcal{S}_0^prime (mathbb R^2)$ to $mathcal{S}^prime (mathbb{S})$ and from $mathcal{S}^prime (mathbb S)$ to $mathcal{S}_0^prime (mathbb{R}^2)$. Furthermore, we show the consistency of our definition with the shearlet transform defined by direct evaluation of a distribution on the shearlets. The same can be done for the shearlet synthesis operator. Finally, we give a reconstruction formula for Lizorkin type distributions, from which follows that the action of such generalized functions can be written as an absolutely convergent integral over the standard shearlet group.




rat

On completion of unimodular rows over polynomial extension of finitely generated rings over $mathbb{Z}$. (arXiv:2005.03485v1 [math.AC])

In this article, we prove that if $R$ is a finitely generated ring over $mathbb{Z}$ of dimension $d, dgeq2, frac{1}{d!}in R$, then any unimodular row over $R[X]$ of length $d+1$ can be mapped to a factorial row by elementary transformations.




rat

Derivatives of normal Jacobi operator on real hypersurfaces in the complex quadric. (arXiv:2005.03483v1 [math.DG])

In cite{S 2017}, Suh gave a non-existence theorem for Hopf real hypersurfaces in the complex quadric with parallel normal Jacobi operator. Motivated by this result, in this paper, we introduce some generalized conditions named $mathcal C$-parallel or Reeb parallel normal Jacobi operators. By using such weaker parallelisms of normal Jacobi operator, first we can assert a non-existence theorem of Hopf real hypersurfaces with $mathcal C$-parallel normal Jacobi operator in the complex quadric $Q^{m}$, $m geq 3$. Next, we prove that a Hopf real hypersurface has Reeb parallel normal Jacobi operator if and only if it has an $mathfrak A$-isotropic singular normal vector field.




rat

Aspiration can promote cooperation in well-mixed populations as in regular graphs. (arXiv:2005.03421v1 [q-bio.PE])

Classical studies on aspiration-based dynamics suggest that a dissatisfied individual changes strategy without taking into account the success of others. This promotes defection spreading. The imitation-based dynamics allow individuals to imitate successful strategies without taking into account their own-satisfactions. In this article, we propose to study a dynamic based on aspiration which takes into account imitation of successful strategies for dissatisfied individuals. This helps cooperative members to resist. Individuals compare their success to their desired satisfaction level before making a decision to update their strategies. This mechanism helps individuals with a minimum of self-satisfaction to maintain their strategies. If an individual is dissatisfied, it will learn from others by choosing successful strategies. We derive an exact expression of the fixation probability in well-mixed populations as in structured populations in networks. As a result, we show that selection may favor cooperation more than defection in well-mixed populations as in populations ranged over a regular graph. We show that the best scenario is a graph with small connectivity.




rat

The Congruence Subgroup Problem for finitely generated Nilpotent Groups. (arXiv:2005.03263v1 [math.GR])

The congruence subgroup problem for a finitely generated group $Gamma$ and $Gleq Aut(Gamma)$ asks whether the map $hat{G} o Aut(hat{Gamma})$ is injective, or more generally, what is its kernel $Cleft(G,Gamma ight)$? Here $hat{X}$ denotes the profinite completion of $X$. In the case $G=Aut(Gamma)$ we denote $Cleft(Gamma ight)=Cleft(Aut(Gamma),Gamma ight)$.

Let $Gamma$ be a finitely generated group, $ar{Gamma}=Gamma/[Gamma,Gamma]$, and $Gamma^{*}=ar{Gamma}/tor(ar{Gamma})congmathbb{Z}^{(d)}$. Denote $Aut^{*}(Gamma)= extrm{Im}(Aut(Gamma) o Aut(Gamma^{*}))leq GL_{d}(mathbb{Z})$. In this paper we show that when $Gamma$ is nilpotent, there is a canonical isomorphism $Cleft(Gamma ight)simeq C(Aut^{*}(Gamma),Gamma^{*})$. In other words, $Cleft(Gamma ight)$ is completely determined by the solution to the classical congruence subgroup problem for the arithmetic group $Aut^{*}(Gamma)$.

In particular, in the case where $Gamma=Psi_{n,c}$ is a finitely generated free nilpotent group of class $c$ on $n$ elements, we get that $C(Psi_{n,c})=C(mathbb{Z}^{(n)})={e}$ whenever $ngeq3$, and $C(Psi_{2,c})=C(mathbb{Z}^{(2)})=hat{F}_{omega}$ = the free profinite group on countable number of generators.




rat

Optimality for the two-parameter quadratic sieve. (arXiv:2005.03162v1 [math.NT])

We study the two-parameter quadratic sieve for a general test function. We prove, under some very general assumptions, that the function considered by Barban and Vehov [BV68] and Graham [Gra78] for this problem is optimal up to the second-order term. We determine that second-order term explicitly.




rat

Sharp p-bounds for maximal operators on finite graphs. (arXiv:2005.03146v1 [math.CA])

Let $G=(V,E)$ be a finite graph and $M_G$ be the centered Hardy-Littlewood maximal operator defined there. We found the optimal value $C_{G,p}$ such that the inequality $$Var_{p}(M_{G}f)le C_{G,p}Var_{p}(f)$$ holds for every every $f:V o mathbb{R},$ where $Var_p$ stands for the $p$-variation, when: (i)$G=K_n$ (complete graph) and $pin [frac{ln(4)}{ln(6)},infty)$ or $G=K_4$ and $pin (0,infty)$;(ii) $G=S_n$(star graph) and $1ge pge frac{1}{2}$; $pin (0,frac{1}{2})$ and $nge C(p)<infty$ or $G=S_3$ and $pin (1,infty).$ We also found the optimal value $L_{G,2}$ such that the inequality $$|M_{G}f|_2le L_{G,2}|f|_2$$ holds for every $f:V o mathbb{R}$, when: (i)$G=K_n$ and $nge 3$;(ii)$G=S_n$ and $nge 3.$




rat

Anti-symplectic involutions on rational symplectic 4-manifolds. (arXiv:2005.03142v1 [math.SG])

This is an expanded version of the talk given be the first author at the conference "Topology, Geometry, and Dynamics: Rokhlin - 100". The purpose of this talk was to explain our current results on classification of rational symplectic 4-manifolds equipped with an anti-symplectic involution. Detailed exposition will appear elsewhere.




rat

On solving quadratic congruences. (arXiv:2005.03129v1 [math.NT])

The paper proposes a polynomial formula for solution quadratic congruences in $mathbb{Z}_p$. This formula gives the correct answer for quadratic residue and zeroes for quadratic nonresidue. The general form of the formula for $p=3 ; m{mod},4$, $p=5 ; m{mod},8$ and for $p=9 ; m{mod},16$ are suggested.




rat

Quantum arithmetic operations based on quantum Fourier transform on signed integers. (arXiv:2005.00443v2 [cs.IT] UPDATED)

The quantum Fourier transform brings efficiency in many respects, especially usage of resource, for most operations on quantum computers. In this study, the existing QFT-based and non-QFT-based quantum arithmetic operations are examined. The capabilities of QFT-based addition and multiplication are improved with some modifications. The proposed operations are compared with the nearest quantum arithmetic operations. Furthermore, novel QFT-based subtraction and division operations are presented. The proposed arithmetic operations can perform non-modular operations on all signed numbers without any limitation by using less resources. In addition, novel quantum circuits of two's complement, absolute value and comparison operations are also presented by using the proposed QFT based addition and subtraction operations.




rat

Generative Adversarial Networks in Digital Pathology: A Survey on Trends and Future Potential. (arXiv:2004.14936v2 [eess.IV] UPDATED)

Image analysis in the field of digital pathology has recently gained increased popularity. The use of high-quality whole slide scanners enables the fast acquisition of large amounts of image data, showing extensive context and microscopic detail at the same time. Simultaneously, novel machine learning algorithms have boosted the performance of image analysis approaches. In this paper, we focus on a particularly powerful class of architectures, called Generative Adversarial Networks (GANs), applied to histological image data. Besides improving performance, GANs also enable application scenarios in this field, which were previously intractable. However, GANs could exhibit a potential for introducing bias. Hereby, we summarize the recent state-of-the-art developments in a generalizing notation, present the main applications of GANs and give an outlook of some chosen promising approaches and their possible future applications. In addition, we identify currently unavailable methods with potential for future applications.




rat

The growth rate over trees of any family of set defined by a monadic second order formula is semi-computable. (arXiv:2004.06508v3 [cs.DM] UPDATED)

Monadic second order logic can be used to express many classical notions of sets of vertices of a graph as for instance: dominating sets, induced matchings, perfect codes, independent sets or irredundant sets. Bounds on the number of sets of any such family of sets are interesting from a combinatorial point of view and have algorithmic applications. Many such bounds on different families of sets over different classes of graphs are already provided in the literature. In particular, Rote recently showed that the number of minimal dominating sets in trees of order $n$ is at most $95^{frac{n}{13}}$ and that this bound is asymptotically sharp up to a multiplicative constant. We build on his work to show that what he did for minimal dominating sets can be done for any family of sets definable by a monadic second order formula.

We first show that, for any monadic second order formula over graphs that characterizes a given kind of subset of its vertices, the maximal number of such sets in a tree can be expressed as the extit{growth rate of a bilinear system}. This mostly relies on well known links between monadic second order logic over trees and tree automata and basic tree automata manipulations. Then we show that this "growth rate" of a bilinear system can be approximated from above.We then use our implementation of this result to provide bounds on the number of independent dominating sets, total perfect dominating sets, induced matchings, maximal induced matchings, minimal perfect dominating sets, perfect codes and maximal irredundant sets on trees. We also solve a question from D. Y. Kang et al. regarding $r$-matchings and improve a bound from G'orska and Skupie'n on the number of maximal matchings on trees. Remark that this approach is easily generalizable to graphs of bounded tree width or clique width (or any similar class of graphs where tree automata are meaningful).




rat

Testing Scenario Library Generation for Connected and Automated Vehicles: An Adaptive Framework. (arXiv:2003.03712v2 [eess.SY] UPDATED)

How to generate testing scenario libraries for connected and automated vehicles (CAVs) is a major challenge faced by the industry. In previous studies, to evaluate maneuver challenge of a scenario, surrogate models (SMs) are often used without explicit knowledge of the CAV under test. However, performance dissimilarities between the SM and the CAV under test usually exist, and it can lead to the generation of suboptimal scenario libraries. In this paper, an adaptive testing scenario library generation (ATSLG) method is proposed to solve this problem. A customized testing scenario library for a specific CAV model is generated through an adaptive process. To compensate the performance dissimilarities and leverage each test of the CAV, Bayesian optimization techniques are applied with classification-based Gaussian Process Regression and a new-designed acquisition function. Comparing with a pre-determined library, a CAV can be tested and evaluated in a more efficient manner with the customized library. To validate the proposed method, a cut-in case study was performed and the results demonstrate that the proposed method can further accelerate the evaluation process by a few orders of magnitude.




rat

Continuous speech separation: dataset and analysis. (arXiv:2001.11482v3 [cs.SD] UPDATED)

This paper describes a dataset and protocols for evaluating continuous speech separation algorithms. Most prior studies on speech separation use pre-segmented signals of artificially mixed speech utterances which are mostly emph{fully} overlapped, and the algorithms are evaluated based on signal-to-distortion ratio or similar performance metrics. However, in natural conversations, a speech signal is continuous, containing both overlapped and overlap-free components. In addition, the signal-based metrics have very weak correlations with automatic speech recognition (ASR) accuracy. We think that not only does this make it hard to assess the practical relevance of the tested algorithms, it also hinders researchers from developing systems that can be readily applied to real scenarios. In this paper, we define continuous speech separation (CSS) as a task of generating a set of non-overlapped speech signals from a extit{continuous} audio stream that contains multiple utterances that are emph{partially} overlapped by a varying degree. A new real recorded dataset, called LibriCSS, is derived from LibriSpeech by concatenating the corpus utterances to simulate a conversation and capturing the audio replays with far-field microphones. A Kaldi-based ASR evaluation protocol is also established by using a well-trained multi-conditional acoustic model. By using this dataset, several aspects of a recently proposed speaker-independent CSS algorithm are investigated. The dataset and evaluation scripts are available to facilitate the research in this direction.




rat

Maximal Closed Set and Half-Space Separations in Finite Closure Systems. (arXiv:2001.04417v2 [cs.AI] UPDATED)

Several problems of artificial intelligence, such as predictive learning, formal concept analysis or inductive logic programming, can be viewed as a special case of half-space separation in abstract closure systems over finite ground sets. For the typical scenario that the closure system is given via a closure operator, we show that the half-space separation problem is NP-complete. As a first approach to overcome this negative result, we relax the problem to maximal closed set separation, give a greedy algorithm solving this problem with a linear number of closure operator calls, and show that this bound is sharp. For a second direction, we consider Kakutani closure systems and prove that they are algorithmically characterized by the greedy algorithm. As a first special case of the general problem setting, we consider Kakutani closure systems over graphs, generalize a fundamental characterization result based on the Pasch axiom to graph structured partitioning of finite sets, and give a sufficient condition for this kind of closures systems in terms of graph minors. For a second case, we then focus on closure systems over finite lattices, give an improved adaptation of the greedy algorithm for this special case, and present two applications concerning formal concept and subsumption lattices. We also report some experimental results to demonstrate the practical usefulness of our algorithm.




rat

Novel Deep Learning Framework for Wideband Spectrum Characterization at Sub-Nyquist Rate. (arXiv:1912.05255v2 [eess.SP] UPDATED)

Introduction of spectrum-sharing in 5G and subsequent generation networks demand base-station(s) with the capability to characterize the wideband spectrum spanned over licensed, shared and unlicensed non-contiguous frequency bands. Spectrum characterization involves the identification of vacant bands along with center frequency and parameters (energy, modulation, etc.) of occupied bands. Such characterization at Nyquist sampling is area and power-hungry due to the need for high-speed digitization. Though sub-Nyquist sampling (SNS) offers an excellent alternative when the spectrum is sparse, it suffers from poor performance at low signal to noise ratio (SNR) and demands careful design and integration of digital reconstruction, tunable channelizer and characterization algorithms. In this paper, we propose a novel deep-learning framework via a single unified pipeline to accomplish two tasks: 1)~Reconstruct the signal directly from sub-Nyquist samples, and 2)~Wideband spectrum characterization. The proposed approach eliminates the need for complex signal conditioning between reconstruction and characterization and does not need complex tunable channelizers. We extensively compare the performance of our framework for a wide range of modulation schemes, SNR and channel conditions. We show that the proposed framework outperforms existing SNS based approaches and characterization performance approaches to Nyquist sampling-based framework with an increase in SNR. Easy to design and integrate along with a single unified deep learning framework make the proposed architecture a good candidate for reconfigurable platforms.




rat

Imitation Learning for Human-robot Cooperation Using Bilateral Control. (arXiv:1909.13018v2 [cs.RO] UPDATED)

Robots are required to operate autonomously in response to changing situations. Previously, imitation learning using 4ch-bilateral control was demonstrated to be suitable for imitation of object manipulation. However, cooperative work between humans and robots has not yet been verified in these studies. In this study, the task was expanded by cooperative work between a human and a robot. 4ch-bilateral control was used to collect training data for training robot motion. We focused on serving salad as a task in the home. The task was executed with a spoon and a fork fixed to robots. Adjustment of force was indispensable in manipulating indefinitely shaped objects such as salad. Results confirmed the effectiveness of the proposed method as demonstrated by the success of the task.




rat

A Shift Selection Strategy for Parallel Shift-Invert Spectrum Slicing in Symmetric Self-Consistent Eigenvalue Computation. (arXiv:1908.06043v2 [math.NA] UPDATED)

The central importance of large scale eigenvalue problems in scientific computation necessitates the development of massively parallel algorithms for their solution. Recent advances in dense numerical linear algebra have enabled the routine treatment of eigenvalue problems with dimensions on the order of hundreds of thousands on the world's largest supercomputers. In cases where dense treatments are not feasible, Krylov subspace methods offer an attractive alternative due to the fact that they do not require storage of the problem matrices. However, demonstration of scalability of either of these classes of eigenvalue algorithms on computing architectures capable of expressing massive parallelism is non-trivial due to communication requirements and serial bottlenecks, respectively. In this work, we introduce the SISLICE method: a parallel shift-invert algorithm for the solution of the symmetric self-consistent field (SCF) eigenvalue problem. The SISLICE method drastically reduces the communication requirement of current parallel shift-invert eigenvalue algorithms through various shift selection and migration techniques based on density of states estimation and k-means clustering, respectively. This work demonstrates the robustness and parallel performance of the SISLICE method on a representative set of SCF eigenvalue problems and outlines research directions which will be explored in future work.




rat

Space-Efficient Vertex Separators for Treewidth. (arXiv:1907.00676v3 [cs.DS] UPDATED)

For $n$-vertex graphs with treewidth $k = O(n^{1/2-epsilon})$ and an arbitrary $epsilon>0$, we present a word-RAM algorithm to compute vertex separators using only $O(n)$ bits of working memory. As an application of our algorithm, we give an $O(1)$-approximation algorithm for tree decomposition. Our algorithm computes a tree decomposition in $c^k n (log log n) log^* n$ time using $O(n)$ bits for some constant $c > 0$.

We finally use the tree decomposition obtained by our algorithm to solve Vertex Cover, Independent Set, Dominating Set, MaxCut and $3$-Coloring by using $O(n)$ bits as long as the treewidth of the graph is smaller than $c' log n$ for some problem dependent constant $0 < c' < 1$.




rat

A Fast and Accurate Algorithm for Spherical Harmonic Analysis on HEALPix Grids with Applications to the Cosmic Microwave Background Radiation. (arXiv:1904.10514v4 [math.NA] UPDATED)

The Hierarchical Equal Area isoLatitude Pixelation (HEALPix) scheme is used extensively in astrophysics for data collection and analysis on the sphere. The scheme was originally designed for studying the Cosmic Microwave Background (CMB) radiation, which represents the first light to travel during the early stages of the universe's development and gives the strongest evidence for the Big Bang theory to date. Refined analysis of the CMB angular power spectrum can lead to revolutionary developments in understanding the nature of dark matter and dark energy. In this paper, we present a new method for performing spherical harmonic analysis for HEALPix data, which is a central component to computing and analyzing the angular power spectrum of the massive CMB data sets. The method uses a novel combination of a non-uniform fast Fourier transform, the double Fourier sphere method, and Slevinsky's fast spherical harmonic transform (Slevinsky, 2019). For a HEALPix grid with $N$ pixels (points), the computational complexity of the method is $mathcal{O}(Nlog^2 N)$, with an initial set-up cost of $mathcal{O}(N^{3/2}log N)$. This compares favorably with $mathcal{O}(N^{3/2})$ runtime complexity of the current methods available in the HEALPix software when multiple maps need to be analyzed at the same time. Using numerical experiments, we demonstrate that the new method also appears to provide better accuracy over the entire angular power spectrum of synthetic data when compared to the current methods, with a convergence rate at least two times higher.