z Samsung Galaxy Z Flip 5 Review By www.digit.in Published On :: 2023-09-22T13:09:00+05:30 Read the in depth Review of Samsung Galaxy Z Flip 5 Mobile Phones. Know detailed info about Samsung Galaxy Z Flip 5 configuration, design and performance quality along with pros & cons, Digit rating, verdict based on user opinions/feedback. Full Article Mobile Phones
z Infinix Zero 30 5G Review By www.digit.in Published On :: 2023-09-22T13:09:00+05:30 Read the in depth Review of Infinix Zero 30 5G Mobile Phones. Know detailed info about Infinix Zero 30 5G configuration, design and performance quality along with pros & cons, Digit rating, verdict based on user opinions/feedback. Full Article Mobile Phones
z iQOO Z7 Pro Review By www.digit.in Published On :: 2023-09-22T13:09:00+05:30 Read the in depth Review of iQOO Z7 Pro Mobile Phones. Know detailed info about iQOO Z7 Pro configuration, design and performance quality along with pros & cons, Digit rating, verdict based on user opinions/feedback. Full Article Mobile Phones
z HP OMEN 16 (Ryzen 7 7840HS + RTX 4060) Review By www.digit.in Published On :: 2023-09-22T13:09:00+05:30 Read the in depth Review of HP OMEN 16 (Ryzen 7 7840HS + RTX 4060) Laptops. Know detailed info about HP OMEN 16 (Ryzen 7 7840HS + RTX 4060) configuration, design and performance quality along with pros & cons, Digit rating, verdict based on user opinions/feedback. Full Article Laptops
z AMD Ryzen™ 6000 series offers exceptional speed and long battery life for thin and light laptops By www.digit.in Published On :: 2022-12-28T13:09+05:30 Full Article videoDefault
z Top 3 AMD Ryzen™-powered laptops under INR 50,000 By www.digit.in Published On :: 2022-12-28T14:30+05:30 Full Article videoDefault
z Lenovo Yoga AIO 7 Review (AMD Ryzen 7 5800H + Radeon RX 6600M) By www.digit.in Published On :: 2023-01-04T13:30+05:30 Full Article videoDefault
z The BEST Gadgets of 2022 - Digit Zero1 Awards 2022 By www.digit.in Published On :: 2023-01-31T03:20+05:30 Full Article videoDefault
z The correlogram: Visualize correlations by fitting angles By blogs.sas.com Published On :: Mon, 21 Oct 2024 09:27:01 +0000 A common way to visualize the sample correlations between many numeric variables is to display a heat map that shows the Pearson correlation for each pair of variables, as shown in the image to the right. The correlation is a number in the range [-1, 1], where -1 indicated perfect [...] The post The correlogram: Visualize correlations by fitting angles appeared first on The DO Loop. Full Article Uncategorized Data Analysis Optimization Statistical Programming
z Levy flight and vectorizing a simulation in SAS By blogs.sas.com Published On :: Mon, 04 Nov 2024 10:23:55 +0000 A previous article shows a simulation of two different models of a foraging animal. The first model is a random walk, which assumes that the animal chooses a random direction, then takes a step that is distributed according to a Gaussian random variable. In the second model, the animal again [...] The post Levy flight and vectorizing a simulation in SAS appeared first on The DO Loop. Full Article Uncategorized Simulation vectorization
z How containers have moved us to next-gen virtualization By blogs.sas.com Published On :: Mon, 07 Feb 2022 17:45:46 +0000 With containers, you can build once, run anywhere – no worries about underlying dependencies. The post How containers have moved us to next-gen virtualization appeared first on The Data Roundtable. Full Article Uncategorized cloud cloud computing containers virtual machines
z Hezbollah's Hassan Nasrallah: The Most Powerful Man In Lebanon By www.ndtv.com Published On :: Thu, 19 Sep 2024 22:33:31 +0530 Backed by Iran and hated by Israel, Hezbollah chief Hassan Nasrallah is Lebanon's most powerful man. He enjoys cult status among his Shiite supporters and holds sway over the country's institutions. Full Article
z Programming Prodigy To Meta CEO: Inside The Life Of Mark Zuckerberg By www.ndtv.com Published On :: Tue, 22 Oct 2024 18:01:08 +0530 Think of social media, and the first name that almost immediately comes to mind is Mark Zuckerberg. Full Article
z Mike Waltz: The Combat Veteran Turned National Security Adviser By www.ndtv.com Published On :: Tue, 12 Nov 2024 11:36:41 +0530 US President-elect Donald Trump has named Mike Waltz, a Congressman from Florida and co-chair of the India Caucus, as the new National Security Adviser. Full Article
z Battered Reliance Shares To Make A Comeback? This Analyst Sees 29% Upside Ahead - Benzinga India By news.google.com Published On :: Wed, 13 Nov 2024 04:54:40 GMT Battered Reliance Shares To Make A Comeback? This Analyst Sees 29% Upside Ahead Benzinga IndiaReliance Industries shares may see 30% upside according to CLSA, who cites this key trigger CNBCTV18RIL shares are down 20% from record high, oversold on charts; here's what analysts say Business TodaySix of India’s top 10 most valuable firms shed Rs 1.55 lakh crore in market value MoneycontrolReliance Industries Share Price Today on 13-11-2024: Reliance Industries share price are down by -0.63%, Nifty down by -0.8% Mint Full Article
z BREAKING| 'Bulldozer Reminds Of Lawlessness' : Supreme Court Says Properties Can't Be Demolished Merely... - Live Law - Indian Legal News By news.google.com Published On :: Wed, 13 Nov 2024 05:35:32 GMT BREAKING| 'Bulldozer Reminds Of Lawlessness' : Supreme Court Says Properties Can't Be Demolished Merely... Live Law - Indian Legal News"Officials To Pay From Salary": Top Court Guidelines On 'Bulldozer Justice' NDTV‘Heavens won’t fall on authorities if they hold their hands for some period’: SC sets pan India guidelines against bulldozer action The Financial ExpressExecutive Can't Become Judge, Pronounce Guilt Of Persons & Punish Them By Demolishing Their Properties :... Live Law - Indian Legal News‘Officials will pay for demolitions from their salary’: 5 Key SC observations on ‘chilling’ side of ‘bulldozer justice’ Mint Full Article
z Samsung Galaxy Z Flip FE chipset of choice could surprise you By phandroid.com Published On :: Tue, 12 Nov 2024 07:40:54 +0000 According to the latest rumors, the Samsung Galaxy Z Flip FE could be powered by the Exynos 2400 chipset which is surprising. The post Samsung Galaxy Z Flip FE chipset of choice could surprise you appeared first on Phandroid. Full Article Devices Handsets News Exynos Foldable Phones Galaxy Z Flip Samsung
z Grab the Samsung Galaxy Z Fold 6 and Flip 6 at incredible Black Friday prices! By phandroid.com Published On :: Tue, 12 Nov 2024 08:40:35 +0000 Samsung is running some Black Friday deals for its foldables like the Galaxy Z Fold 6 and Flip 6, so what are you waiting for? The post Grab the Samsung Galaxy Z Fold 6 and Flip 6 at incredible Black Friday prices! appeared first on Phandroid. Full Article Deals Devices Handsets Foldable Phones Galaxy Z Flip 6 Galaxy Z Fold 6 Samsung
z Zomato CEO Reveals How He Knew He Would "End Up Marrying" His Wife By www.ndtv.com Published On :: Sun, 10 Nov 2024 20:58:08 +0530 Kapil Sharma wasted no time in diving into their personal stories, focusing on how Deepinder met his Mexican wife. Full Article
z Zomato Launches 'Rescue' Service To Combat Food Wastage. How Does It Work? By www.ndtv.com Published On :: Mon, 11 Nov 2024 06:54:03 +0530 Zomato witnesses approximately 400,000 cancelled orders monthly which prompted it to launch the initiative. Full Article
z US Woman Stopped For Orange Juice, Ended Up Winning $250,000 Lottery Prize By www.ndtv.com Published On :: Mon, 11 Nov 2024 17:55:09 +0530 The $20 Merry Multiplier scratch-off ticket she chose turned out to be a $250,000 top prize winner. Full Article
z Mumbai, Delhi, Bengaluru, Hyderabad Airports Won’t Be Sold To Private Investors: Privatization Plan Put On Hold By trak.in Published On :: Mon, 05 Dec 2022 04:58:50 +0000 The government is temporarily freezing the proposed sale of AAI’s stakes in the private joint ventures operating the airports at Delhi, Mumbai, Hyderabad and Bangalore. Reason The finance ministry has decided to defer for now the sale of the AAI’s residual stakes in these four joint ventures, the reason being that the valuations could be […] Full Article Aviation Business Dipam NMP privatisation
z Amazon Can Fire 20,000 Employees: 6% Workforce Can Be Fired Which Is 100% More Than We Expected By trak.in Published On :: Wed, 07 Dec 2022 05:36:19 +0000 Latest report reveals that the layoffs announced by the Jeff Bezos founded e-commerce giant Amazon are likely to impact double the number of employees than reported earlier. Amazon Layoffs Affecting Mass Workforce This new report indicates that internet giant Amazon is planning to cut around 10,000 jobs in corporate and technology roles following the massive […] Full Article Business amazon amazon firing
z Vesper closes $23M Series B for its sensor-based microphone: Amazon Alexa Fund among investors By www.postscapes.com Published On :: 2018-05-21T05:00:00-07:00 Vesper, the maker of piezoelectric sensors used in microphone production and winner of CES Innovation Award 2018 raised a $23M Series B round. American Family Ventures led the investment with participation from Accomplice, Amazon Alexa Fund, Baidu, Bose Ventures, Hyperplane, Sands Capital, Shure, Synaptics, ZZ Capital and some undisclosed investors. Vesper VM1000 Vesper’s innovative sensors can be used in consumer electronics like TV remote controls, smart speakers, smartphones, intelligent sensor nodes, and hearables. The company will use the funding proceeds to scale-up its functions like mass production of its microphones and support expanded research and development, hiring, and establishing international sales offices. The main product of Vesper is VM1000, a low noise, high range,single-ended analog output piezoelectric MEMS microphone. It consists of a piezoelectric sensor and circuitry to buffer and amplify the output. Vesper VM1010 The hot-selling product of Vesper is VM1010 with ZeroPower Listening which is the first MEMS microphone that enables voice activation to battery-powered consumer devices. The unique selling point of Vesper’s products is they are built to operate in rugged environments that have dust and moisture. "Vesper's ZeroPower Listening capabilities coupled with its ability to withstand water, dust, oil, and particulate contaminants enables users that have never before been possible," said Katelyn Johnson, principal of American Family Ventures. "We are excited about Vesper's quest to transform our connected world, including IoT devices." Other recent funding news include $24 raised by sensor-based baby sock maker Owlet, IFTTT banks $24M from Salesforce to scale its IoT Enterprise offering, and Intel sells its Wind River Software to TPG. Full Article
z Gauteng Police to Raid Spaza Shops in Food Safety Crackdown - South African News Briefs - November 11, 2024 By allafrica.com Published On :: Mon, 11 Nov 2024 05:59:38 GMT [allAfrica] Full Article Food and Agriculture Education Health and Medicine Legal and Judicial Affairs South Africa Southern Africa
z Debate Rages Over Spaza Shop Regulation - South African News Briefs - November 12, 2024 By allafrica.com Published On :: Tue, 12 Nov 2024 05:31:48 GMT [allAfrica] Full Article Economy Business and Finance Environment Governance Legal and Judicial Affairs South Africa Southern Africa Water and Sanitation
z How Cadence Is Revolutionizing Automotive Sensor Fusion By community.cadence.com Published On :: Tue, 06 Aug 2024 07:53:00 GMT The automotive industry is currently on the cusp of a radical evolution, steering towards a future where cars are not just vehicles but sophisticated, software-defined vehicles (SDV). This shift is marked by an increased reliance on automation and a significant increase in the use of sensors to improve safety and reliability. However, the increasing number of sensors has led to higher compute demands and poses challenges in managing a wide variety of data. The traditional method of using separate processors to manage each sensor's data is becoming obsolete. The current trends necessitate a unified processing system that can deal with multimodal sensor data, utilizing traditional Digital Signal Processing (DSP) and AI-driven algorithms. This approach allows for more efficient and reliable sensor fusion, significantly enhancing vehicle perception. Developers often face difficulties adhering to stringent power, performance, area, and cost (PPAC) and timing constraints while designing automotive SoCs. Cadence, with its groundbreaking products and AI-powered processors, is enabling designers and automotive manufacturers to meet the future sensor fusion demands within the automotive sector. At the recent CadenceLive Silicon Valley 2024, Amol Borkar, product marketing director at Cadence, showcased the company's dedication and forward-thinking solutions in a captivating presentation titled "Addressing Tomorrow’s Sensor Fusion Needs in Automotive Computing with Cadence." This blog aims to encapsulate the pivotal takeaways from the presentation. If you missed the chance to watch this presentation live, please click here to watch it. Significant Trends in the Automotive Market – Industry Landscape We are witnessing a revolution in automotive technology. Innovations like occupant and driver monitoring systems (OMS, DMS), 4D radar imaging, LiDAR technology, and 360-degree view are pushing the boundaries of what's possible, leading us into an era of remarkable autonomy levels—ranging from no feet or hands required to eventually no eyes needed on the road. Sensor Fusion and Increasing Processing Demands—Sensor fusion effectively integrates data from different sensors to help vehicles understand their surroundings better. Its main benefit is in overcoming the limitations of individual sensors. For example, cameras provide detailed visual information but struggle in low-light or lousy weather. On the other hand, radar is excellent at detecting objects in these conditions but lacks the detail that cameras provide. By combining the data from multiple sensors, automotive computing can take advantage of their strengths while compensating for their weaknesses, resulting in a more reliable and robust system overall. One thing to note is that the increased number of sensors produces various data types, leading to more pre-processing. On-Device Processing—As the industry moves towards autonomy, there is an increasing need for on-device data processing instead of cloud computing to enable vehicles to make informed decisions. Embracing on-device processing is a significant advancement for facilitating real-time decisions and avoiding round-trip latency. AI Adoption—AI has become integral to automotive applications, driving safety, efficiency, and user experience advancements. AI models offer superior performance and adaptability, making future-proofing a crucial consideration for automotive manufacturers. AI significantly enhances sensor fusion algorithms, offering scalability and adaptability beyond traditional rule-based approaches. Neural networks enable various fusion techniques, such as early fusion, late fusion, and mid-fusion, to optimize the integration and processing of sensor data. Future Sensor Fusion Needs Automotive architectures are continually evolving. With current trends and AI integration into radar and sensor fusion applications, SoCs should be modular, flexible, and programmable to meet market demands. Heterogeneous Architecture- Today's vehicles are loaded with various sensors, each with a unique processing requirement. Running the application on the most suitable processor is essential to achieve the best PPA. To meet such requirements, modern automotive solutions require a heterogeneous compute approach, integrating domain-specific digital signal processors (DSPs), neural processing units (NPUs), central processing unit (CPU) clusters, graphics processing unit (GPU) clusters, and hardware accelerator blocks. A balanced heterogeneous architecture gives the best PPA solution. Flexibility and Programmability- The industry has come a long way from using computer vision algorithms such as HOG (Histogram Oriented Gradient) to detect people and objects, HAR classifier to detect faces, etc., to CNN and LSTM-based AI to Transformer models and graphical neural networks (GNN). AI has evolved tremendously over the last ten years and continues to evolve. To keep up with the evolving rate of AI, SoC design must be flexible and programmable for updates if needed in the future. Addressing the Sensor Fusion Needs with Cadence Cadence offers a complete suite of hardware and software products to address the increasing compute requirements in automotive. The comprehensive portfolio of Tensilica products built on the robust 32-bit RISC architecture caters to various automotive CPU and AI needs. What makes them particularly appealing is their scalability, flexibility, and configurability, offering many options to meet diverse needs. The Xtensa family of products offers high-quality, power-efficient CPUs. Tensilica family also includes AI processors like Neo NPUs for the best power, performance, and area (PPA) for AI inference on devices or more extensive applications. Cadence also offers domain-specific products for DSPs such as HIFI DSPs, specialized DSPs and accelerators for radar and vision-based processing, and a general-purpose family of products for floating point applications. The ConnX family offers a wide range of DSPs, from compact and low-power to high-performance, optimized for radar, lidar, and communications applications in ADAS, autonomous driving, V2X, 5G/LTE/4G, wireless communications, drones, and robotics. Tensilica's ISO26262 certification ensures compliance with automotive safety standards, making it a trusted partner for advanced automotive solutions. The Cadence NeuroWeave Software Development Kit (SDK) provides customers with a uniform, scalable, and configurable ML interface and tooling that significantly improves time to market and better prepares them for a continuously evolving AI market. Cadence Tensilica offers an entire ecosystem of software frameworks and compilers for all programming styles. Tensilica's comprehensive software stack supports programming for DSPs, NPUs, and accelerators using C++, OpenCL, Halide, and various neural network approaches. Middleware libraries facilitate applications such as SLAM, radar processing, and Eigen libraries, providing robust support for automotive software development. Conclusion Cadence’s Tensilica products offer a development toolchain and various IPs tailored for the automotive industry, covering audio, vision, radar, unified DSPs, and NPUs. With ISO certification and a robust partner ecosystem, Tensilica solutions are designed to meet the future needs of automotive computing, ensuring safety, efficiency, and innovation. Learn More Cadence Automotive Solutions Cadence Automotive IP Sensor Fusion and ADAS in TSMC Automotive Processes Revolution on the Road: How Cadence is Driving the Future of Automotive Design! Taming Design Complexity in Chiplet-Based Automotive Electronics UCIe and Automotive Electronics: Pioneering the Chiplet Revolution Full Article Automotive Sensor Processing sensor fusion Automotive SoC automotive IP NPU AI
z what is "cell with Zero maximum clock transition time" ? By community.cadence.com Published On :: Thu, 25 Apr 2024 09:01:00 GMT anyone know what is "cell with Zero maximum clock transition time" ? not zero transition, not maximum transtion, it is zero maximum clock transition time. it means X0 cell? (drive-strength) can you explain? thanks :-) Full Article
z can't resize window by mouse By community.cadence.com Published On :: Sun, 03 Nov 2024 13:36:50 GMT Hi guys, I see that inside VNC I can’t resize window boxes by mouse. While pressing the arrow at the box edge and dragging it nothing happens: is it a bug, or setup change require? Noted, it only happens when trying to resize window box from left and right side.. Thx Full Article
z O-M-Gosh, I’ve Been Zeked! (Part 1) By community.cadence.com Published On :: Tue, 13 Sep 2022 16:37:00 GMT by Sherry Hess In this new blog series, Max Maxfield gets to know Zeke, an amazing 11-year-old with a dream to speak with the astronauts on the International Space Station (ISS). His first step on this journey however began with becoming a HAM r...(read more) Full Article awr HAM radio microwave design antennas
z μWaveRiders: Scoring Goals with the Latest AWR Design Environment Optimizer By community.cadence.com Published On :: Mon, 21 Nov 2022 09:55:00 GMT AWR V22.1 software introduces the Pointer-Hybrid optimization method which uses a combination of optimization methods, switching back and forth between methods to efficiently find the lowest optimization error function cost. The optimization algorithm automatically determines when to switch to a different optimization method, making this a superior method over manual selection of algorithms. This method is particularly robust in regards to finding the global minima without getting stuck in a local minima well.(read more) Full Article featured AWR Design Environment Pointer-Hybrid optimizer RF design microwave office global minima Optimization cost Optimizer goals Optimizer methods
z Designing a 30MHz to 1000MHz 10W GaN HEMT Power Amplifier By community.cadence.com Published On :: Tue, 03 Oct 2023 21:17:00 GMT By David Vye, Senior Product Marketing Manager, AWR, Cadence When designing multi-octave high-power amplifiers, it is a challenge to achieve both broadband gain and power matching using a combination of lumped and distributed techniques. One approach...(read more) Full Article AWR Design Environment Power amplifier RF design microwave office
z In Simvision, how do I change the waveform font size of the signal names? By community.cadence.com Published On :: Mon, 27 Mar 2023 09:01:44 GMT Hi Cadence, I use simvision 20.09-s007 but my computer screen resolution is very high. As a result, the texts are too small. In ~/.simvision/Xdefaults I changed that number to 16, from 12. But the signal names in the waveform traces don't reflect the change. Simvision*Font: -adobe-helvetica-medium-r-normal--16-*-*-*-*-*-*-* Other .font changes seem to reflect on the simvision correctly, except the signal names. How do I fix that? I dont mind a single variable to change all the texts fonts to 16. Thank you! PS: I found the answer with another post. I change Preference/Waveform/Display/Signal Height. Full Article
z Conformal LEC can't finish at analyze abort step. How do I proceed? By community.cadence.com Published On :: Mon, 07 Aug 2023 02:19:35 GMT Hi Cadence & forumers, I am running a conformal LEC with a flattened netlist against RTL. The run hang for 5 days at the "analyze abort" step which is automatically launched by the compare. The netlist is flattened at some levels so hierarchical flow which I tried didn't help much. The flattened/highly optimized netlist is from customer and the ultimate goal. How shall I proceed now? On the a side note, a test run with a hierarchical netlist from a simple DC "compile -map_effort medium" command finished after 1 day or so. Thank you! // Command: vpx compare -verbose -ABORT_Print -NONEQ_Print -TIMEstamp// Starting multithreaded comparison ... Comparing 241112 points in parallel. // Multithreading Overhead: 38% Gates: 8501606/6168138// Multithreaded processing completed. ================================================================================Compared points PO DFF DLAT BBOX CUT Total --------------------------------------------------------------------------------Equivalent 1025 241638 30 75 21 242789 --------------------------------------------------------------------------------Abort 0 124 0 0 0 124 ================================================================================Compare results of instance/output/pin equivalences and/or sequential merge ================================================================================Compared points DFF Total --------------------------------------------------------------------------------Equivalent 204 204 ================================================================================// Warning: 512 DFFs/DLATs have 1 disabled clock port: skipped data cone comparison// Resolving aborts by analyze abort... Full Article
z Coalesce Xcelium Apps to Maximize Performance by 10X and Catch More Bugs By community.cadence.com Published On :: Tue, 02 Aug 2022 04:30:00 GMT Xcelium Simulator has been in the industry for years and is the leading high-performance simulation platform. As designs are getting more and more complex and verification is taking longer than ever, the need of the hour is plug-and-play apps that ar...(read more) Full Article performance SoC apps xcelium simulation verification
z TSN-PTP: A Real-Time Network Clock Synchronizing Protocol By community.cadence.com Published On :: Mon, 12 Sep 2022 06:45:00 GMT In a network containing multiple nodes, the need for synchronization between the various nodes is not just instrumental but also a complicated and highly complex process. This process becomes even more tricky if we synchronize the clocks between the Manager and the Peripheral. As we know, in a real-time network, some of the nodes would behave like Managers while some would be a Peripheral. If we must make the communication process smooth, then the local clocks of these nodes must be synchronized. The problem with this synchronization is that we have the clock running in the Manager as well. If we send the value of the Manager clock to the Peripheral, the synchronization doesn’t happen as we have a propagation delay of the messages, along with the propagation delay of the electronic circuits of Manager and the Peripheral. The cherry on the cake is that these electronic circuit propagation delays are not random and remain constant, so we can add a time offset to it to match the clock. To tackle this challenge, IEEE has come up with a protocol named “Precision Timing Protocol.” Operation of PTP: To synchronize the clocks, a Sync message is sent by the Manager to the Peripheral, which then timestamps the receiving time of the same. Following this, a ‘Follow up’ message is issued by the Manager stating the timestamp at which the Sync message was sent. The Peripheral then finds the difference between the two values and adds this to its current time. After this, the time difference between the Manager and the Peripheral narrows down to only the propagation delay of the messages. To overcome this, the Peripheral issues a ‘Delay Request’ to the Manager, and the Manager, in turn, issues a ‘Delay Response.’ Both these messages have the timestamp of when they were issued. The time at which they are received is then noted. Since two messages are sent, one from the Peripheral and the other from the Manager, there are two propagation delays. Then half of this value is our propagation delay. The Peripheral then adds this propagation delay to its clock, and hence the clock gets synchronized. Advantages of PTP: It provides accurate time stamping. It is a well-known clock synchronization protocol. It provides intensified security inside the premises. It provides the possibility of setting coordinated actions and synchronized communication. There are various versions of PTP that have been developed over time, namely PTPv1, PTPv2, PTPv2_1, and the latest PTP-AS. Cadence Verification IP for Ethernet is available to support the newer version of PTP, allowing simulation of the device for efficient IP, SoC, and system-level design verification. Semiconductor companies can start using it to fully verify their controller design and achieve functional verification closure on it within no time. Full Article Verification IP uvm 5G Network Ethernet VIP Functional Verification Cadence VIP portfolio VIP Automotive Ethernet Ethernet TSN PTP precision timing protocol verification
z BoardSurfers: Optimizing RF Routing and Impedance Using Allegro X PCB Editor By community.cadence.com Published On :: Thu, 18 Jul 2024 21:15:00 GMT Achieving optimal power transfer in RF PCBs hinges on meticulously routed traces that meet specific impedance requirements. Impedance matching is essential to ensure that traces have the same impedance to prevent signal reflection and inefficient pow...(read more) Full Article RF PCB Routing Allegro X PCB Editor BoardSurfers RF design PCB design shapes allegro x
z BoardSurfers: Optimizing Designs with PCB Editor-Topology Workbench Flow By community.cadence.com Published On :: Wed, 09 Oct 2024 09:12:00 GMT When it comes to system integration, PCB designers need to collaborate with the signal analysis or integrity team to run pre-route or post-route analysis and modify constraints, floorplan, or topology based on the results. Allegro PCB Edito...(read more) Full Article Allegro X PCB Editor BoardSurfers Topology Workbench Allegro X Advanced Package Designer SPB PCB Editor PCB design Allegro PCB Editor system integration allegro x Allegro
z How to export and import symbols and component properties through Die Text wizards By community.cadence.com Published On :: Thu, 04 Jan 2024 15:50:39 GMT Starting SPB 23.1, Allegro X APD lets you import/export the symbol and component properties by using Die Text-In/Out wizards. Exporting the symbol You can export the symbol by using File > Export > Die Text-Out Wizard. In the Die Text-Out Wizard window, you can see the newly added options, that is, Component Properties and Symbol Properties. This entire information including the properties will be saved in a text file. Importing the symbol You can import the same text file in Allegro X APD by using Die Text-In Wizard. Choose the text file you want to import. Symbol properties added in the text file will be visible in the Die Text-In Wizard window. Full Article
z Maximizing Display Performance with Display Stream Compression (DSC) By community.cadence.com Published On :: Wed, 11 Sep 2024 12:50:00 GMT Display Stream Compression (DSC) is a lossless or near-lossless image compression standard developed by the Video Electronics Standards Association (VESA) for reducing the bandwidth required to transmit high-resolution video and images. DSC compresses video streams in real-time, allowing for higher resolutions, refresh rates, and color depths while minimizing the data load on transmission interfaces such as DisplayPort, HDMI, and embedded display interfaces. Why Is DSC Needed? In the ever-evolving landscape of display technology, the pursuit of higher resolutions and better visual quality is relentless. As display capabilities advance, so do the challenges of managing the immense amounts of data required to drive these high-performance screens. This is where DSC steps in. DSC is designed to address the challenges of transmitting ultra-high-definition content without sacrificing quality or performance. As displays grow in resolution and capability, the amount of data they need to transmit increases exponentially. DSC addresses these issues by compressing video streams in real-time, significantly reducing the bandwidth needed while preserving image quality. DSC Use in End-to-end System DSC Key Features Encoding tools: Modified Median-Adaptive Prediction (MMAP) Block Prediction (BP) Midpoint Prediction (MPP) Indexed color history (ICH) Entropy coding using delta size unit-variable length coding (DSU-VLC) The DSC bitstream and decoding process are designed to facilitate the decoding of 3 pixels/clock in practical hardware decoder implementations. Hardware encoder implementations are possible at 1 pixel/clock. DSC uses an intra-frame, line-based coding algorithm, which results in very low latency for encoding and decoding. DSC encoding algorithm Compression can be done to a fractional bpp. The compressed bits per pixel ranges from 6 to 63.9375. For validation/compliance certification of DSC compression and decompression engines, cyclic redundancy checks (CRCs) are used to verify the correctness of the bitstream and the reconstructed image. DSC supports more color bit depths, including 8, 10, 12, 14, and 16 bpc. DSC supports RGB and YCbCr input format, supporting 4:4:4, 4:2:2, and 4:2:0 sampling. Maximum decompressor-supported bits/pixel values are as listed in the Maximum Allowed Bit Rate column in the table below DP DSC Source device shall program the bit rate within the range of Minimum Allowed Bit Rate column in the table: Summary Display Stream Compression (DSC) is a technology used in DisplayPort to enable higher resolutions and refresh rates while maintaining high image quality. It works by compressing the video data transmitted from the source to the display, effectively reducing the bandwidth required. DSC uses a visually lossless algorithm, meaning that the compression is designed to be imperceptible to the human eye, preserving the fidelity of the image. This technology allows for smoother, more detailed visuals at higher resolutions, such as 4K or 8K, without requiring a significant increase in data bandwidth. More Information Cadence has a very mature Verification IP solution. Verification over many different configurations can be used with DisplayPort 2.1 and DisplayPort 1.4 designs, so you can choose the best version for your specific needs. The DisplayPort VIP provides a full-stack solution for Sink and Source devices with a comprehensive coverage model, protocol checkers, and an extensive test suite. More details are available on the DisplayPort Verification IP product page, Simulation VIP pages. If you have any queries, feel free to contact us at talk_to_vip_expert@cadence.com Full Article resolution DisplayPort Display Stream Compression lossless
z Unveiling the Capabilities of Verisium Manager for Optimized Operations By community.cadence.com Published On :: Thu, 17 Oct 2024 06:13:06 GMT In SoC development, the verification cycle is a crucial phase that ensures products meet their specifications and function correctly. However, the complexity of modern SoC projects, with their constant data flow, multiple validation teams working in parallel, and tight schedules, presents significant challenges. This article explores these challenges and introduces Verisium Manager as a solution that embodies the 'One Tool Fits All' concept. This means that Verisium Manager is designed to handle all aspects of the verification process for SoC development, from planning to coverage analysis to regression testing, thereby addressing the complex needs of SoC verification. The Hurdles in Traditional Validation Cycles A typical validation process involves planning, coverage analysis, and regression testing. This complexity is compounded by using separate tools for each activity, leading to multiple control environments, APIs, and databases, not to mention the array of tool owners. Such fragmentation results in constant data transfer and translation between systems, from the planning tool to the coverage analysis tool and then to the regression testing tool. This continuous movement of data causes delays, system instability, poor user experiences, and, ultimately, a dip in the quality of the validation process. The use of multiple platforms leads to inefficiency and reduced productivity. What's needed is a unified system that can streamline the workflow, simplify the verification process, and enhance its effectiveness. Envisioning the Ideal Solution: Verisium Manager The cornerstone of an efficient validation cycle is integration and simplicity. The ideal solution is a singular platform that consolidates planning, coverage analysis, and regression management into one smooth, unified process. Verisium Manager emerges as this much-needed solution, encompassing all the functionalities necessary to streamline the validation process. Its comprehensive nature instills confidence in its ability to handle all aspects of the verification cycle. It can be fully customized to address and enforce any validation methodology and can facilitate smooth integration into any customer environment. Features that stand out in Verisium Manager include: Unified Workflow: It acts as a single cockpit from which all activities are orchestrated, ensuring the validation teams' work is uninterrupted and seamlessly integrated. Customization and Integration: Verisium Manager supports customizing test-plan structures and mapping results per project, ensuring a perfect fit for various project requirements. Its ability to smoothly integrate into the project's environment and compute platforms is unparalleled. Support for Continuous Updates and Migration: The tool accommodates constant updates to project data and supports the migration of legacy data, ensuring that no historical data is lost in the transition to a new system. Addressing Project-Specific Needs Verisium Manager recognizes diversity in different projects and offers project-specific solutions, including: Enforcing Project Test-Plan Structures and Attributes: It supports and enforces each project's unique test-plan structure and mapping guidelines. Unified Data Views and Measurements: Verisium Manager promotes a unified view of data across all teams and enforces unified measurements, ensuring consistency and clarity in the validation process. Enabling Project-Specific Actions and Integrations: The tool is designed to support project-specific actions directly from its graphical user interface and allows for smooth integration with in-house databases, dashboards, and the project execution stack. Verisium Manager is the epitome of efficiency in software/hardware validation. Its differentiating features, such as support for customization, unified data view, and comprehensive coverage and regression requirements, make it an indispensable tool for any validation team looking to elevate their workflow. Full Article validation vPlan verisium Verisium Manager vManager verification
z Solutions to Maximize Data Center Performance Featured at OCP Global Summit 2024 By community.cadence.com Published On :: Wed, 06 Nov 2024 00:21:00 GMT The demand for higher compute performance, energy efficiency, and faster time-to-market drove the conversations at this year's Open Compute Project (OCP) Global Summit in San Jose, California. It was the scene of showcasing groundbreaking innovations, expert-led sessions, and networking opportunities to drive the future of data center technology. For those who didn't get to attend or stop by our booth, here's a recap of Cadence's comprehensive solutions that enable next-generation compute technology, AI data center design, analysis, and optimization. Optimized Data Center Design and Operations As the data center community increasingly faces demands for enhanced efficiency, thermal management, sustainability, and performance optimization, data center operators, IT managers, and executives are looking for solutions to these challenges. At the Cadence booth, attendees explored the Cadence Reality Digital Twin Platform and Celsius EC Solver. These technologies are pivotal in achieving high-performance standards for AI data centers, providing advanced digital twin modeling capabilities that redefine next-generation data center design and operation. The Celsius EC Solver demonstration showed how it solves challenging thermal and electronics cooling management problems with precision and speed. CadenceCONNECT: Take the Heat Out of Your AI Data Center Cadence hosted a networking reception on October 16 titled "Take the Heat Out of Your AI Data Center." In today's AI era, managing the heat generated by high-density computing environments is more critical than ever. This reception offered insights into current and emerging data center technologies, digital twin cooling strategies that deliver energy-saving operations, and a chance to engage with industry leaders, Cadence experts, and peers to explore the latest cooling, AI, and GPU acceleration advancements. Here's a recap: Researcher, author, and entrepreneur Dr. Jon Koomey highlighted the inefficiency of data centers in his talk "The Rise of Zombie Data Centers," noting that 20-30% of their capacity is stranded and unused. He advocated for organizational changes and technological solutions like digital twins to reduce wasted energy and improve computational effectiveness as AI deployments increase. In "A New Millennium in Multiphysics System Analysis," Cadence Corporate VP Ben Gu explained the company's significant strides in multiphysics system analysis, evolving from chip simulation to a broader application of computational software for simulating various physical systems, including entire data centers. He noted that the latest Cadence venture, a digital twin platform for data center optimization, opened the opportunity to use simulation technology to optimize the efficiency of data centers. Senior Software Engineering Group Director Albert Zeng highlighted the Cadence Reality DC suite's ability to transform data center operations through simulation, emphasizing its multi-phase engine for optimal thermal performance and the integration of AI capabilities for enhanced design and management. A panel discussion titled "Turning AI Factory Blueprints into Reality at the Speed of Light" featured industry experts from NVIDIA, Norman Wright Precision Environmental and Power, NV5, Switch Data Centers, and Cadence, who explored the evolving requirements and multidimensional challenges of AI factories, emphasizing the need for collaboration across the supply chain to achieve high-performing and sustainable data centers. Watch the highlights. Transforming Designs from Chips to Data Centers The OCP Global Summit 2024 has reaffirmed its status as a pivotal event for data center professionals seeking to stay at the forefront of technological advancements. Cadence's contributions, from groundbreaking digital twin technologies to innovative cooling strategies, have shed light on the path forward for efficient, sustainable data centers. For data center professionals, IT managers, and engineers, the insights gained at this summit are invaluable in navigating the challenges and opportunities presented by the burgeoning AI era. Partnering with Arm Arm Total Design Cadence is a member of the Arm Total Design program. At an invitation-only special Arm event, Cadence's VP of Research and Development, Lokesh Korlipara, delivered a presentation focusing on data center challenges and design solutions with Arm Neoverse Compute Subsystem (CSS). The session highlighted: Efficient integration of Arm Neoverse CSS into system on chips (SoCs) with pre-integrated connectivity IP Performance analysis and verification of the Neoverse CSS integration into the SoC through Cadence's System VIP verification suite and automated testbench creation, enhancing both quality and productivity Jumpstarting designs through Cadence's collaboration with Arm for 3D-IC system planning, chiplets, and interposers Design Services readiness and global scale to support and/or deliver the most demanding Arm Neoverse CSS-based SoC design projects Cadence Supports Arm CSS in Arm Booth During the event, Cadence conducted a demo in the Arm booth that showcased the Cadence System VIP verification suite. The demo highlighted automated testbench creation and performance analysis for integrating the Arm CSS into SoCs while enhancing verification quality and productivity. Summary Cadence offers data center solutions for designing everything from the compute and networking chips to the board, racks, data centers, and campuses. Stay connected with Cadence and other industry leaders to continue exploring the innovations set to redefine the future of data centers. Learn More Cadence Joins Arm Total Design Cadence Arm-Based Solutions Cadence Reality Digital Twin Platform Full Article
z Randomization considerations for PCIe Integrity and Data Encryption Verification Challenges By community.cadence.com Published On :: Fri, 08 Nov 2024 05:00:00 GMT Peripheral Component Interconnect Express (PCIe) is a high-speed interface standard widely used for connecting processors, memory, and peripherals. With the increasing reliance on PCIe to handle sensitive data and critical high-speed data transfer, ensuring data integrity and encryption during verification is the most essential goal. As we know, in the field of verification, randomization is a key technique that drives robust PCIe verification. It introduces unpredictability to simulate real-world conditions and uncover hidden bugs from the design. This blog examines the significance of randomization in PCIe IDE verification, focusing on how it ensures data integrity and encryption reliability, while also highlighting the unique challenges it presents. For more relevant details and understanding on PCIe IDE you can refer to Introducing PCIe's Integrity and Data Encryption Feature . The Importance of Data Integrity and Data Encryption in PCIe Devices Data Integrity : Ensures that the transmitted data arrives unchanged from source to destination. Even minor corruption in data packets can compromise system reliability, making integrity a critical aspect of PCIe verification. Data Encryption : Protects sensitive data from unauthorized access during transmission. Encryption in PCIe follows a standard to secure information while operating at high speeds. Maintaining both data integrity and data encryption at PCIe’s high-speed data transfer rate of 64GT/s in PCIe 6.0 and 128GT/s in PCIe 7.0 is essential for all end point devices. However, validating these mechanisms requires comprehensive testing and verification methodologies, which is where randomization plays a very crucial role. You can refer to Why IDE Security Technology for PCIe and CXL? for more details on this. Randomization in PCIe Verification Randomization refers to the generation of test scenarios with unpredictable inputs and conditions to expose corner cases. In PCIe verification, this technique helps us to ensure that all possible behaviors are tested, including rare or unexpected situations that could cause data corruption or encryption failures that may cause serious hindrances later. So, for PCIe IDE verification, we are considering the randomization that helps us verify behavior more efficiently. Randomization for Data Integrity Verification Here are some approaches of randomized verifications that mimic real-world traffic conditions, uncovering subtle integrity issues that might not surface in normal verification methods. 1. Randomized Packet Injection: This technique randomized data packets and injected into the communication stream between devices. Here we Inject random, malformed, or out-of-sequence packets into the PCIe link and mix valid and invalid IDE-encrypted packets to check the system’s ability to detect and reject unauthorized or invalid packets. Checking if encryption/decryption occurs correctly across packets. On verifying, we check if the system logs proper errors or alerts when encountering invalid packets. It ensures coverage of different data paths and robust protocol check. This technique helps assess the resilience of the IDE feature in PCIe in below terms: (i) Data corruption: Detecting if the system can maintain data integrity. (ii) Encryption failures: Testing the robustness of the encryption under random data injection. (iii) Packet ordering errors: Ensuring reordering does not affect data delivery. 2. Random Errors and Fault Injection: It involves simulating random bit flips, PCRC errors, or protocol violations to help validate the robustness of error detection and correction mechanisms of PCIe. These techniques help assess how well the PCIe IDE implementation: (i) Detects and responds to unexpected errors. (ii) Maintains secure communication under stress. (iii) Follows the PCIe error recovery and reporting mechanisms (AER – Advanced Error Reporting). (iv) Ensures encryption and decryption states stay synchronized across endpoints. 3. Traffic Pattern Randomization: Randomizing the sequence, size, and timing of data packets helps test how the device maintains data integrity under heavy, unpredictable traffic loads. Randomization for Data Encryption Verification Encryption adds complexity to verification, as encrypted data streams are not readable for traditional checks. Randomization becomes essential to test how encryption behaves under different scenarios. Randomization in data encryption verification ensures that vulnerabilities, such as key reuse or predictable patterns, are identified and mitigated. 1. Random Encryption Keys and Payloads: Randomly varying keys and payloads help validate the correctness of encryption without hardcoding assumptions. This ensures that encryption logic behaves correctly across all possible inputs. 2. Randomized Initialization Vectors (IVs): Many encryption protocols require a unique IV for each transaction. Randomized IVs ensure that encryption does not repeat patterns. To understand the IDE Key management flow, we can follow the below diagram that illustrates a detailed example key programming flow using the IDE_KM protocol. Figure 1: IDE_KM Example As Figure 1 shows, the functionality of the IDE_KM protocol involves Start of IDE_KM Session, Device Capability Discovery, Key Request from the Host, Key Programming to PCIe Device, and Key Acknowledgment. First, the Host starts the IDE_KM session by detecting the presence of the PCIe devices; if the device supports the IDE protocol, the system continues with the key programming process. Then a query occurs to discover the device’s encryption capabilities; it ensures whether the device supports dynamic key updates or static keys. Then the host sends a request to the Key Management Entity to obtain a key suitable for the devices. Once the key is obtained, the host programs the key into the IDE Controller on the PCIe endpoint. Both the host and the device now share the same key to encrypt and authenticate traffic. The device acknowledges that it has received and successfully installed the encryption key and the acknowledgment message is sent back to the host. Once both the host and the PCIe endpoint are configured with the key, a secure communication channel is established. From this point, all data transmitted over the PCIe link is encrypted to maintain confidentiality and integrity. IDE_KM plays a crucial role in distributing keys in a secure manner and maintaining encryption and integrity for PCIe transactions. This key programming flow ensures that a secure communication channel is established between the host and the PCIe device. Hence, the Randomized key approach ensures that the encryption does not repeat patterns. 3. Randomization PHE: Partial Header Encryption (PHE) is an additional mechanism added to Integrity and Data Encryption (IDE) in PCIe 6.0. PHE validation using a variety of traffic; incorporating randomization in APIs provided for validating PHE feature can add more robust Encryption to the data. Partial Header Encryption in Integrity and Data Encryption for PCIe has more detailed information on this. Figure 2: High-Level Flow for Partial Header Encryption 4. Randomization on IDE Address Association Register values: IDE Address Association Register 1/2/3 are supposed to be configured considering the memory address range of IDE partner ports. The fields of IDE address registers are split multiple values such as Memory Base Lower, Memory Limit Lower, Memory Base Upper, and Memory Limit Upper. IDE implementation can have multiple register blocks considering addresses with 32 or 64, different registers sizes, 0-255 selective streams, 0-15 address blocks, etc. This Randomization verification can help verify all the corner cases. Please refer to Figure 2. Figure 3: IDE Address Association Register 5. Random Faults During Encryption: Injecting random faults (e.g., dropped packets or timing mismatches) ensures the system can handle disruptions and prevent data leakage. Challenges of IDE Randomization and its Solution Randomization introduces a vast number of scenarios, making it computationally intensive to simulate every possibility. Constrained randomization limits random inputs to valid ranges while still covering edge cases. Again, using coverage-driven verification to ensure critical scenarios are tested without excessive redundancy. Verifying encrypted data with random inputs increases complexity. Encryption masks data, making it hard to verify outputs without compromising security. Here we can implement various IDE checks on the IDE callback to analyze encrypted traffic without decrypting it. Randomization can trigger unexpected failures, which are often difficult to reproduce. By using seed-based randomization, a specific seed generates a repeatable random sequence. This helps in reproducing and analyzing the behavior more precisely. Conclusion Randomization is a powerful technique in PCIe verification, ensuring robust validation of both data integrity and data encryption. It helps us to uncover subtle bugs and edge cases that a non-randomized testing might miss. In Cadence PCIe VIP, we support full-fledged IDE Verification with rigorous randomized verification that ensures data integrity. Robust and reliable encryption mechanisms ensure secure and efficient data communication. However, randomization also brings various challenges, and to overcome them we adopt a combination of constrained randomization, seed-based testing, and coverage-driven verification. As PCIe continues to evolve with higher speeds and focuses on high security demands, our Cadence PCIe VIP ensures it is in line with industry demand and verify high-performance systems that safeguard data in real-world environments with excellence. For more information, you can refer to Verification of Integrity and Data Encryption(IDE) for PCIe Devices and Industry's First Adopted VIP for PCIe 7.0 . More Information: For more info on how Cadence PCIe Verification IP and TripleCheck VIP enables users to confidently verify IDE, see our VIP for PCI Express , VIP for Compute Express Link for and TripleCheck for PCI Express For more information on PCIe in general, and on the various PCI standards, see the PCI-SIG website . Full Article
z TensorFlow Optimization in DSVM: Azure and Cadence By community.cadence.com Published On :: Mon, 22 Oct 2018 12:41:39 GMT Hello Folks, Problem statement first: How does one properly setup tensorflow for running on a DSVM using a remote Docker environment? Can this be done in aml_config/*.runconfig? I receive the following message and I would like to be able to utilize the increased speeds of the extended FMA operations. tensorflow/core/platform/cpu_feature_guard.cc:140] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA Background: I utilize a local docker environment managed through Azure ML Workbench for initial testing and code validation so that I'm not running an expensive DSVM constantly. Once I assess that my code is to my liking, I then run it on a remote docker instance on an Azure DSVM. I want a consistent conda environment across my compute environments, so this works out extremely well. However, I cannot figure out how to control the tensorflow build to optimize for the hardware at hand (i.e. my local docker on macOS vs. remote docker on Ubuntu DSVM) Full Article
z Issue With Loudness Normalization By community.cadence.com Published On :: Thu, 21 Jan 2021 12:19:15 GMT Hello everyone. In recent days, I'm having a weird problem with sound output on my Windows 10 PC. In fact, I can't control the loudness of it. So is there any possibility of PCB of sound card being damaged? Full Article
z To Escalate or Not? This Is Modi’s Zugzwang Moment By indiauncut.com Published On :: 2019-03-03T03:19:05+00:00 This is the 17th installment of The Rationalist, my column for the Times of India. One of my favourite English words comes from chess. If it is your turn to move, but any move you make makes your position worse, you are in ‘Zugzwang’. Narendra Modi was in zugzwang after the Pulwama attacks a few days ago—as any Indian prime minister in his place would have been. An Indian PM, after an attack for which Pakistan is held responsible, has only unsavoury choices in front of him. He is pulled in two opposite directions. One, strategy dictates that he must not escalate. Two, politics dictates that he must. Let’s unpack that. First, consider the strategic imperatives. Ever since both India and Pakistan became nuclear powers, a conventional war has become next to impossible because of the threat of a nuclear war. If India escalates beyond a point, Pakistan might bring their nuclear weapons into play. Even a limited nuclear war could cause millions of casualties and devastate our economy. Thus, no matter what the provocation, India needs to calibrate its response so that the Pakistan doesn’t take it all the way. It’s impossible to predict what actions Pakistan might view as sufficient provocation, so India has tended to play it safe. Don’t capture territory, don’t attack military assets, don’t kill civilians. In other words, surgical strikes on alleged terrorist camps is the most we can do. Given that Pakistan knows that it is irrational for India to react, and our leaders tend to be rational, they can ‘bleed us with a thousand cuts’, as their doctrine states, with impunity. Both in 2001, when our parliament was attacked and the BJP’s Atal Bihari Vajpayee was PM, and in 2008, when Mumbai was attacked and the Congress’s Manmohan Singh was PM, our leaders considered all the options on the table—but were forced to do nothing. But is doing nothing an option in an election year? Leave strategy aside and turn to politics. India has been attacked. Forty soldiers have been killed, and the nation is traumatised and baying for blood. It is now politically impossible to not retaliate—especially for a PM who has criticized his predecessor for being weak, and portrayed himself as a 56-inch-chested man of action. I have no doubt that Modi is a rational man, and knows the possible consequences of escalation. But he also knows the possible consequences of not escalating—he could dilute his brand and lose the elections. Thus, he is forced to act. And after he acts, his Pakistan counterpart will face the same domestic pressure to retaliate, and will have to attack back. And so on till my home in Versova is swallowed up by a nuclear crater, right? Well, not exactly. There is a way to resolve this paradox. India and Pakistan can both escalate, not via military actions, but via optics. Modi and Imran Khan, who you’d expect to feel like the loneliest men on earth right now, can find sweet company in each other. Their incentives are aligned. Neither man wants this to turn into a full-fledged war. Both men want to appear macho in front of their domestic constituencies. Both men are masters at building narratives, and have a pliant media that will help them. Thus, India can carry out a surgical strike and claim it destroyed a camp, killed terrorists, and forced Pakistan to return a braveheart prisoner of war. Pakistan can say India merely destroyed two trees plus a rock, and claim the high moral ground by returning the prisoner after giving him good masala tea. A benign military equilibrium is maintained, and both men come out looking like strong leaders: a win-win game for the PMs that avoids a lose-lose game for their nations. They can give themselves a high-five in private when they meet next, and Imran can whisper to Modi, “You’re a good spinner, bro.” There is one problem here, though: what if the optics don’t work? If Modi feels that his public is too sceptical and he needs to do more, he might feel forced to resort to actual military escalation. The fog of politics might obscure the possible consequences. If the resultant Indian military action causes serious damage, Pakistan will have to respond in kind. In the chain of events that then begins, with body bags piling up, neither man may be able to back down. They could end up as prisoners of circumstance—and so could we. *** Also check out: Why Modi Must Learn to Play the Game of Chicken With Pakistan—Amit Varma The Two Pakistans—Episode 79 of The Seen and the Unseen India in the Nuclear Age—Episode 80 of The Seen and the Unseen The India Uncut Blog © 2010 Amit Varma. All rights reserved. Follow me on Twitter. Full Article
z Start Your Engines: Optimizing Mixed-Signal Simulation Efficiency By community.cadence.com Published On :: Wed, 05 Jun 2024 20:18:00 GMT During a mixed-signal simulation, the analog engine usually dominates the simulation time and resources. If you need to run only the analog engine in several windows, or if you would like to to run multiple tests of the same circuit with different stimuli or test pattern, then you need to run the simulation multiple times. View this blog to know more about the the two advanced technologies that Spectre AMS Designer provides to help you improve the efficiency of your mixed-signal designs and to increase the simulation speed.(read more) Full Article AMS mixed-signal methodology AMS Designer Start Your Engines AMS simulation
z Doc Assistant A-Z: Making the Most of the Cadence Cloud-Based Help Viewer: Pt. 2 By community.cadence.com Published On :: Wed, 26 Jun 2024 20:00:00 GMT At a bustling Cadence event, we met Adrian, an intern at a startup who immerses himself in Cadence tools for his research and work. Adrian was enthusiastic about the innovative technologies at his disposal but faced a significant challenge: internet access was limited to a single machine for new joiners, forcing interns to wait in line for their turn to use online resources. Adrian's excitement soared when he discovered a game-changing solution: Doc Assistant. The cloud-based help viewer, Doc Assistant, ships with all Cadence tools, enabling Adrian to access help resources offline from any machine equipped with the software. This meant Adrian could continue his research and work seamlessly, irrespective of internet availability! Meeting Cadence users and customers at such events has given us the opportunity to showcase how they can benefit from the diverse features that Doc Assistant offers. With that note, welcome back to our Doc Assistant A-Z blog series! In Part 1, we explored key features and benefits that our innovative viewer brings to the table. Today, in Part 2, we'll dive deeper into the advanced functionalities and customization options that make Doc Assistant indispensable for its users. Whether you're looking to streamline your workflow or enhance your user experience, this blog will provide the insights you need to fully leverage the capabilities of our documentation viewer. Let’s get started! What Makes Doc Assistant Stand Out? Here are a few (more) cool features of Doc Assistant! History and Bookmarks: Want to refer to the topic you read last week? Of course, you can! Doc Assistant stores your browsing activity as History. You can also bookmark topics and revisit them later. Indexing Capabilities: Looking for seamless search capabilities? The advanced indexing capabilities of Doc Assistant enhance the accessibility and manageability of documents. Doc Assistant automatically creates a search index if it is missing or broken. Jump Links: Worried about scrolling through lengthy topics? Fret no more! Use the jump links in each topic to quickly navigate to different sections within the same topic or across topics. Jump links reduce the need for excessive scrolling and let you access relevant content swiftly. Just-in-Time Notifications: Looking for alerts and messages? That’s supported. Doc Assistant displays notifications about important events, including errors, warnings, information, and success messages. Keyword-Based Search Suggestions: You somewhat know your search keyword, but not quite sure? No worries. Just start typing what you know. Keyword and page suggestions are displayed dynamically as you type, providing a more sophisticated and intuitive search experience. Library-Switch Support: Want to view documents from other libraries? Doc Assistant, by default, displays documents for the currently active release in your machine. You can access documents from other releases by configuring the associated documentation libraries. Multimedia Support: Want to view product demos? Multimedia support in Doc Assistant lets you play videos, listen to audio, and view images without opening any external application. Navigation Made Easy: Worried that you’ll get lost in an infinite doc loop? Not at all. The intuitive navigation controls in Doc Assistant are designed to provide you with a fluid and efficient experience. The Doc Assistant user interface is clean and logically organized, with easy-to-access documentation links. That's not all. We have more coming your way. Until next time, take care and stay tuned for our next edition! Want to Know More? Here's a video about Doc Assistant Visit the Doc Assistant web page Read the Doc Assistant FAQ document For any questions or general feedback, write to docassistant.support@cadence.com. Subscribe to receive email notifications about our latest Custom IC Design blog posts. Happy reading! -Priya Sriram, on behalf of the Doc Assistant Team Full Article In-Tool Help user documentation in-built help Cloud-Based Help Doc Assistant
z Doc Assistant A-Z: Making the Most of the Cadence Cloud-Based Help Viewer Part 3 By community.cadence.com Published On :: Tue, 01 Oct 2024 05:16:00 GMT Welcome back to the Doc Assistant A-Z blog series! Since the launch of Doc Assistant, we've been gathering feedback and input from our customers regarding their experiences with our latest documentation viewer. My interaction with Ralf was particularly useful and interesting. Ralf is a design engineer who works on complex schematics and intricate layouts. For each release, he is challenged with the task of verifying the tool and feature changes across multiple releases. He shared with me that he has been using Doc Assistant’s capabilities to help him achieve this. Ralf explained that he utilizes Doc Assistant to open and compare documents from different releases side-by-side, seamlessly tracking updates across multiple releases and verifying those updates in his Cadence tools. Additionally, in Doc Assistant’s online mode, he compares documents across previous tool versions, ensuring a thorough review of any changes. Finally, he was happy to share with me that Doc Assistant features have helped him significantly reduce the time he spends on identifying such changes. You, of course, can also achieve such productivity gains using several Doc Assistant features designed to help simplify such tasks! In previous editions of this blog series, we looked at some key features and benefits of Doc Assistant. If you've missed these editions, I would highly recommend that you read them: Doc Assistant A-Z: Making the Most of the Cadence Cloud-Based Help Viewer: Part 1 Doc Assistant A-Z: Making the Most of the Cadence Cloud-Based Help Viewer: Part 2 In this third installment, we're diving into some more of Doc Assistant's key capabilities. Open Multiple Documents Want to refer to multiple docs at the same time? That’s easy! Open each doc on a separate tab in Doc Assistant. Personalized Content Recommendations Is it a hassle to navigate through all docs each time? You don’t have to. You can tailor your Doc Assistant preferences to match your content requirements. PDF Support Do you prefer downloading and reading a PDF instead of an HTML? That’s also supported. Quick Access to Relevant Search Results Are you pressed for time, and yet want to run a comprehensive doc search? You’re covered. In online mode, search runs on all available product documentation, and the results are listed from multiple sources. Resource Links Looking for more information about a topic you’ve just read? That’s handy. Look out for content recommendations! Share Content Want to share a useful doc with the rest of your team? That’s easy. With a single click, Doc Assistant lets you share content with one or more readers. Submit Feedback Your feedback is important to us. Use the Submit Feedback feature to share your comments and inputs. To learn more about how to use the above features, check out the Doc Assistant User Guide. These are just a few of the productivity gain features in Doc Assistant. We’ll cover more in the next blog in the series. Want to Know More? Here's a video about Doc Assistant Visit the Doc Assistant web page Read the Doc Assistant FAQ document If you have any feedback on Doc Assistant or would like to request more information or a demo, please contact docassistant.support@cadence.com. Subscribe to receive email notifications about our latest Custom IC Design blog posts. Happy reading! - Priya Sriram, on behalf of the Doc Assistant Team Full Article In-Tool Help user documentation in-built help Cloud-Based Help Doc Assistant