sensor fusion How Cadence Is Revolutionizing Automotive Sensor Fusion By community.cadence.com Published On :: Tue, 06 Aug 2024 07:53:00 GMT The automotive industry is currently on the cusp of a radical evolution, steering towards a future where cars are not just vehicles but sophisticated, software-defined vehicles (SDV). This shift is marked by an increased reliance on automation and a significant increase in the use of sensors to improve safety and reliability. However, the increasing number of sensors has led to higher compute demands and poses challenges in managing a wide variety of data. The traditional method of using separate processors to manage each sensor's data is becoming obsolete. The current trends necessitate a unified processing system that can deal with multimodal sensor data, utilizing traditional Digital Signal Processing (DSP) and AI-driven algorithms. This approach allows for more efficient and reliable sensor fusion, significantly enhancing vehicle perception. Developers often face difficulties adhering to stringent power, performance, area, and cost (PPAC) and timing constraints while designing automotive SoCs. Cadence, with its groundbreaking products and AI-powered processors, is enabling designers and automotive manufacturers to meet the future sensor fusion demands within the automotive sector. At the recent CadenceLive Silicon Valley 2024, Amol Borkar, product marketing director at Cadence, showcased the company's dedication and forward-thinking solutions in a captivating presentation titled "Addressing Tomorrow’s Sensor Fusion Needs in Automotive Computing with Cadence." This blog aims to encapsulate the pivotal takeaways from the presentation. If you missed the chance to watch this presentation live, please click here to watch it. Significant Trends in the Automotive Market – Industry Landscape We are witnessing a revolution in automotive technology. Innovations like occupant and driver monitoring systems (OMS, DMS), 4D radar imaging, LiDAR technology, and 360-degree view are pushing the boundaries of what's possible, leading us into an era of remarkable autonomy levels—ranging from no feet or hands required to eventually no eyes needed on the road. Sensor Fusion and Increasing Processing Demands—Sensor fusion effectively integrates data from different sensors to help vehicles understand their surroundings better. Its main benefit is in overcoming the limitations of individual sensors. For example, cameras provide detailed visual information but struggle in low-light or lousy weather. On the other hand, radar is excellent at detecting objects in these conditions but lacks the detail that cameras provide. By combining the data from multiple sensors, automotive computing can take advantage of their strengths while compensating for their weaknesses, resulting in a more reliable and robust system overall. One thing to note is that the increased number of sensors produces various data types, leading to more pre-processing. On-Device Processing—As the industry moves towards autonomy, there is an increasing need for on-device data processing instead of cloud computing to enable vehicles to make informed decisions. Embracing on-device processing is a significant advancement for facilitating real-time decisions and avoiding round-trip latency. AI Adoption—AI has become integral to automotive applications, driving safety, efficiency, and user experience advancements. AI models offer superior performance and adaptability, making future-proofing a crucial consideration for automotive manufacturers. AI significantly enhances sensor fusion algorithms, offering scalability and adaptability beyond traditional rule-based approaches. Neural networks enable various fusion techniques, such as early fusion, late fusion, and mid-fusion, to optimize the integration and processing of sensor data. Future Sensor Fusion Needs Automotive architectures are continually evolving. With current trends and AI integration into radar and sensor fusion applications, SoCs should be modular, flexible, and programmable to meet market demands. Heterogeneous Architecture- Today's vehicles are loaded with various sensors, each with a unique processing requirement. Running the application on the most suitable processor is essential to achieve the best PPA. To meet such requirements, modern automotive solutions require a heterogeneous compute approach, integrating domain-specific digital signal processors (DSPs), neural processing units (NPUs), central processing unit (CPU) clusters, graphics processing unit (GPU) clusters, and hardware accelerator blocks. A balanced heterogeneous architecture gives the best PPA solution. Flexibility and Programmability- The industry has come a long way from using computer vision algorithms such as HOG (Histogram Oriented Gradient) to detect people and objects, HAR classifier to detect faces, etc., to CNN and LSTM-based AI to Transformer models and graphical neural networks (GNN). AI has evolved tremendously over the last ten years and continues to evolve. To keep up with the evolving rate of AI, SoC design must be flexible and programmable for updates if needed in the future. Addressing the Sensor Fusion Needs with Cadence Cadence offers a complete suite of hardware and software products to address the increasing compute requirements in automotive. The comprehensive portfolio of Tensilica products built on the robust 32-bit RISC architecture caters to various automotive CPU and AI needs. What makes them particularly appealing is their scalability, flexibility, and configurability, offering many options to meet diverse needs. The Xtensa family of products offers high-quality, power-efficient CPUs. Tensilica family also includes AI processors like Neo NPUs for the best power, performance, and area (PPA) for AI inference on devices or more extensive applications. Cadence also offers domain-specific products for DSPs such as HIFI DSPs, specialized DSPs and accelerators for radar and vision-based processing, and a general-purpose family of products for floating point applications. The ConnX family offers a wide range of DSPs, from compact and low-power to high-performance, optimized for radar, lidar, and communications applications in ADAS, autonomous driving, V2X, 5G/LTE/4G, wireless communications, drones, and robotics. Tensilica's ISO26262 certification ensures compliance with automotive safety standards, making it a trusted partner for advanced automotive solutions. The Cadence NeuroWeave Software Development Kit (SDK) provides customers with a uniform, scalable, and configurable ML interface and tooling that significantly improves time to market and better prepares them for a continuously evolving AI market. Cadence Tensilica offers an entire ecosystem of software frameworks and compilers for all programming styles. Tensilica's comprehensive software stack supports programming for DSPs, NPUs, and accelerators using C++, OpenCL, Halide, and various neural network approaches. Middleware libraries facilitate applications such as SLAM, radar processing, and Eigen libraries, providing robust support for automotive software development. Conclusion Cadence’s Tensilica products offer a development toolchain and various IPs tailored for the automotive industry, covering audio, vision, radar, unified DSPs, and NPUs. With ISO certification and a robust partner ecosystem, Tensilica solutions are designed to meet the future needs of automotive computing, ensuring safety, efficiency, and innovation. Learn More Cadence Automotive Solutions Cadence Automotive IP Sensor Fusion and ADAS in TSMC Automotive Processes Revolution on the Road: How Cadence is Driving the Future of Automotive Design! Taming Design Complexity in Chiplet-Based Automotive Electronics UCIe and Automotive Electronics: Pioneering the Chiplet Revolution Full Article Automotive Sensor Processing sensor fusion Automotive SoC automotive IP NPU AI