syn

Skills Beyond School Synthesis Report

Higher level vocational education and training (VET) programmes are facing rapid change and intensifying challenges. What type of training is needed to meet the needs of changing economies? How should the programmes be funded? How should they be linked to academic and university programmes?




syn

TDPC Ministerial 2013 Synopsis

The summary document of the TDPC Ministerial held in Marseille on 5-6 December 2013 is now availalble.




syn

Syngenta CEO Erik Fyrwald

The Swiss agricultural chief is overseeing a merger with state-owned ChemChina





syn

Three children in New York die from a rare inflammatory syndrome that may be linked to coronavirus

Three children in New York have died and 73 more cases have been reported of a rare inflammatory syndrome exhibiting symptoms similar to Kawasaki disease or toxic shock-like syndrome.




syn

The Reservation syndrome


There has been a needless focus on the Right to Education Act's provision of aspirational seats in private schools. Only a small fraction of public schools students can benefit from this, writes E S Ramamurthy.




syn

What is syndicalism?

Syndicalism is a form of trade unionism and has its origins in France. It aims at the abolition of the capitalist owners and the appropriation - by the workers - of all the methods used in an industry, and the products resulting therefrom.




syn

World Down Syndrome Day: ಮಗು ಡೌನ್‌ ಸಿಂಡ್ರೋಮ್‌ನಿಂದ ಹುಟ್ಟಲು ಕಾರಣವೇನು?

ಮಗು ಡೌನ್‌ ಸಿಂಡ್ರೋಮ್‌ನಿಂದ(ವಿಶೇಷ ಚೇತನವಾಗಿ) ಹುಟ್ಟಲು ಕಾರಣವೇನೆಂದು ವೈದ್ಯರು ಹೇಳಿದರೂ ಹಾಗೇಕೆ ಹುಟ್ಟುತ್ತಾರೆ ಎಂಬುವುದು ಇನ್ನೂ ತಿಳಿದು ಬಂದಿಲ್ಲ. ಆದ್ದರಿಂದ ಮಗು ಡೌನ್‌ ಸಿಂಡ್ರೋಮ್‌ನಿಂದ ಹುಟ್ಟುವ ಸಾಧ್ಯತೆ ಇದೆಯೇ ಎಂದು ಹೇಳಲು ಸಾಧ್ಯವಾಗುವುದಿಲ್ಲ. ಡೌನ್ ಸಿಂಡ್ರೋಮ್‌ನಿಂದ ಮಕ್ಕಳು ಹುಟ್ಟುವ ಸಮಸ್ಯೆ ವಿಶ್ವದ ಎಲ್ಲಾ ಕಡೆ ಕಂಡು ಬರುತ್ತದೆ. ವಿಶ್ವದಲ್ಲಿ ಹುಟ್ಟುವ ಮಕ್ಕಳಲ್ಲಿ ಶ. 3ರಿಂದ




syn

Synthetic bedding 'can cause asthma'

A new study has claimed synthetic bedding can aggravate asthma more than feather products as it contains high levels of fungal cells.




syn

Rare syndrome tied to COVID-19 kills three children in New York, Cuomo says

Three children in New York have died from a rare inflammatory syndrome believed to be linked to the novel coronavirus, Governor Andrew Cuomo said on Saturday, a development that may augur a pandemic risk for the very young.




syn

Rare syndrome tied to COVID-19 kills three children in New York, Cuomo says

Three children in New York have died from a rare inflammatory syndrome believed to be linked to the novel coronavirus, Governor Andrew Cuomo said on Saturday, a development that may augur a pandemic risk for the very young.




syn

Rare syndrome tied to COVID-19 kills three children in New York, Cuomo says

Three children in New York have died from a rare inflammatory syndrome believed to be linked to the novel coronavirus, Governor Andrew Cuomo said on Saturday, a development that may augur a pandemic risk for the very young.




syn

Synopsis of the signal systems based upon the dot and dash and two-arm semaphore codes.

Archives, Room Use Only - UG582.S4 S96 1914




syn

Asynchronous stack traces: why `await` beats `Promise#then()`

Compared to using promises directly, not only can async and await make code more readable for developers — they enable some interesting optimizations in JavaScript engines, too! This write-up is about one such optimization involving stack traces for asynchronous code.




syn

Mixing and matching genes of marine and terrestrial origin in the biosynthesis of the mupirocin antibiotics

Chem. Sci., 2020, Advance Article
DOI: 10.1039/C9SC06192D, Edge Article
Open Access
  This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
Luoyi Wang, Zhongshu Song, Paul R. Race, James Spencer, Thomas J. Simpson, Matthew P. Crump, Christine L. Willis
Where the sea meets the land: the mupirocin biosynthetic gene cluster (BGC) from the terrestrial bacterium Pseudomonas fluorescens was repurposed via a plug-and-play approach with heterologous genes from the marine strain that produces thiomarinol.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




syn

Fast identification of mineral inclusions in diamond at GSECARS using synchrotron X-ray microtomography, radiography and diffraction

Mineral inclusions in natural diamond are widely studied for the insight that they provide into the geochemistry and dynamics of the Earth's interior. A major challenge in achieving thorough yet high rates of analysis of mineral inclusions in diamond derives from the micrometre-scale of most inclusions, often requiring synchrotron radiation sources for diffraction. Centering microinclusions for diffraction with a highly focused synchrotron beam cannot be achieved optically because of the very high index of refraction of diamond. A fast, high-throughput method for identification of micromineral inclusions in diamond has been developed at the GeoSoilEnviro Center for Advanced Radiation Sources (GSECARS), Advanced Photon Source, Argonne National Laboratory, USA. Diamonds and their inclusions are imaged using synchrotron 3D computed X-ray microtomography on beamline 13-BM-D of GSECARS. The location of every inclusion is then pinpointed onto the coordinate system of the six-circle goniometer of the single-crystal diffractometer on beamline 13-BM-C. Because the bending magnet branch 13-BM is divided and delivered into 13-BM-C and 13-BM-D stations simultaneously, numerous diamonds can be examined during coordinated runs. The fast, high-throughput capability of the methodology is demonstrated by collecting 3D diffraction data on 53 diamond inclusions from Juína, Brazil, within a total of about 72 h of beam time.




syn

An enlightening procedure to explain the extreme power of synchrotron radiation

A simple approach exploits quantum properties to justify the dependence on γ4 of the total synchrotron emitted power. It also clarifies some apparent puzzles and brings to light the underlying, multiple relativistic phenomena.




syn

Coherence properties of the high-energy fourth-generation X-ray synchrotron sources

An analysis of the coherence properties of the fourth-generation high-energy storage rings with emittance values of 10 pm rad is performed. It is presently expected that a storage ring with these low emittance values will reach diffraction limit at hard X-rays. Simulations of coherence properties were performed with the XRT software and an analytical approach for different photon energies from 500 eV to 50 keV. It was demonstrated that a minimum photon emittance (diffraction limit) reached at such storage rings is λ/2π. Using mode decomposition it is shown that, for the parameters of the storage ring considered in this work, the diffraction limit will be reached for soft X-ray energies of 500 eV. About ten modes will contribute to the radiation field at 12 keV photon energy and even more modes give a contribution at higher photon energies. Energy spread effects of the electron beam in a low-emittance storage ring were analysed in detail. Simulations were performed at different relative energy spread values from zero to 2 × 10−3. A decrease of the degree of coherence with an increase of the relative energy spread value was observed. This analysis shows that, to reach the diffraction limit for high photon energies, electron beam emittance should go down to 1 pm rad and below.




syn

Methods for dynamic synchrotron X-ray respiratory imaging in live animals

Small-animal physiology studies are typically complicated, but the level of complexity is greatly increased when performing live-animal X-ray imaging studies at synchrotron and compact light sources. This group has extensive experience in these types of studies at the SPring-8 and Australian synchrotrons, as well as the Munich Compact Light Source. These experimental settings produce unique challenges. Experiments are always performed in an isolated radiation enclosure not specifically designed for live-animal imaging. This requires equipment adapted to physiological monitoring and test-substance delivery, as well as shuttering to reduce the radiation dose. Experiment designs must also take into account the fixed location, size and orientation of the X-ray beam. This article describes the techniques developed to overcome the challenges involved in respiratory X-ray imaging of live animals at synchrotrons, now enabling increasingly sophisticated imaging protocols.




syn

The HARE chip for efficient time-resolved serial synchrotron crystallography

Serial synchrotron crystallography (SSX) is an emerging technique for static and time-resolved protein structure determination. Using specifically patterned silicon chips for sample delivery, the `hit-and-return' (HARE) protocol allows for efficient time-resolved data collection. The specific pattern of the crystal wells in the HARE chip provides direct access to many discrete time points. HARE chips allow for optical excitation as well as on-chip mixing for reaction initiation, making a large number of protein systems amenable to time-resolved studies. Loading of protein microcrystals onto the HARE chip is streamlined by a novel vacuum loading platform that allows fine-tuning of suction strength while maintaining a humid environment to prevent crystal dehydration. To enable the widespread use of time-resolved serial synchrotron crystallography (TR-SSX), detailed technical descriptions of a set of accessories that facilitate TR-SSX workflows are provided.





syn

Structure of the 4-hydroxy-tetrahydrodipicolinate synthase from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV and the phylogeny of the aminotransferase pathway

The enzyme 4-hydroxy-tetrahydrodipicolinate synthase (DapA) is involved in the production of lysine and precursor molecules for peptidoglycan synthesis. In a multistep reaction, DapA converts pyruvate and l-aspartate-4-semialdehyde to 4-hydroxy-2,3,4,5-tetrahydrodipicolinic acid. In many organisms, lysine binds allosterically to DapA, causing negative feedback, thus making the enzyme an important regulatory component of the pathway. Here, the 2.1 Å resolution crystal structure of DapA from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV is reported. The enzyme crystallized as a contaminant of a protein preparation from native biomass. Genome analysis reveals that M. fumariolicum SolV utilizes the recently discovered aminotransferase pathway for lysine biosynthesis. Phylogenetic analyses of the genes involved in this pathway shed new light on the distribution of this pathway across the three domains of life.




syn

The crystal structure of the heme d1 biosynthesis-associated small c-type cytochrome NirC reveals mixed oligomeric states in crystallo

The crystal structure of the c-type cytochrome NirC from Pseudomonas aeruginosa has been determined and reveals the simultaneous presence of monomers and 3D domain-swapped dimers in the same asymmetric unit.




syn

Synthesis and crystal structure of [Cs([2.2.2]crypt)]2[Mo(CO)5]

Reduction of the heteroleptic metal carbonyl complex Mo(CO)3(η5-Cp)H with the metallic salt Cs5Bi4 in the presence of [2.2.2]crypt (= 4,7,13,16,21,24-hexa­oxa-1,10-di­aza­bicyclo­[8.8.8]hexa­cosa­ne) in liquid ammonia led to single crystals of bis­[(4,7,13,16,21,24-hexa­oxa-1,10-di­aza­bicyclo­[8.8.8]hexa­cosa­ne)caesium] penta­carbonyl­molybdate, [Cs(C18H36N2O6)]2[Mo(CO)5] or [Cs([2.2.2]crypt)]2[Mo(CO)5]. The twofold negatively charged anionic complex corresponds to the 18 valence electron rule. It consists of an Mo atom coordinated by five carbonyl ligands in a shape inter­mediate between trigonal–bipyramidal and square-pyramidal. The Mo—C distances range from 1.961 (3) to 2.017 (3) Å, and the C≡O distances from 1.164 (3) to 1.180 (4) Å.




syn

Some chalcones derived from thio­phene-3-carbaldehyde: synthesis and crystal structures

The synthesis, spectroscopic data and crystal and mol­ecular structures of four 3-(3-phenyl­prop-1-ene-3-one-1-yl)thio­phene derivatives, namely 1-(4-hydroxy­phen­yl)-3-(thio­phen-3-yl)prop-1-en-3-one, C13H10O2S, (1), 1-(4-meth­oxy­phen­yl)-3-(thio­phen-3-yl)prop-1-en-3-one, C14H12O2S, (2), 1-(4-eth­oxy­phen­yl)-3-(thio­phen-3-yl)prop-1-en-3-one, C15H14O2S, (3), and 1-(4-­bromophen­yl)-3-(thio­phen-3-yl)prop-1-en-3-one, C13H9BrOS, (4), are described. The four chalcones have been synthesized by reaction of thio­phene-3-carbaldehyde with an aceto­phenone derivative in an absolute ethanol solution containing potassium hydroxide, and differ in the substituent at the para position of the phenyl ring: –OH for 1, –OCH3 for 2, –OCH2CH3 for 3 and –Br for 4. The thio­phene ring in 4 was found to be disordered over two orientations with occupancies 0.702 (4) and 0.298 (4). The configuration about the C=C bond is E. The thio­phene and phenyl rings are inclined by 4.73 (12) for 1, 12.36 (11) for 2, 17.44 (11) for 3 and 46.1 (6) and 48.6 (6)° for 4, indicating that the –OH derivative is almost planar and the –Br derivative deviates the most from planarity. However, the substituent has no real influence on the bond distances in the α,β-unsaturated carbonyl moiety. The mol­ecular packing of 1 features chain formation in the a-axis direction by O—H⋯O contacts. In the case of 2 and 3, the packing is characterized by dimer formation through C—H⋯O inter­actions. In addition, C—H⋯π(thio­phene) inter­actions in 2 and C—H⋯S(thio­phene) inter­actions in 3 contribute to the three-dimensional architecture. The presence of C—H⋯π(thio­phene) contacts in the crystal of 4 results in chain formation in the c-axis direction. The Hirshfeld surface analysis shows that for all four derivatives, the highest contribution to surface contacts arises from contacts in which H atoms are involved.




syn

Synthesis, crystal structure and Hirshfeld surface analysis of 2-chloro-3-[(E)-(2-phenyl­hydrazinyl­idene)meth­yl]quinoline

A new quinoline-based hydrazone, C16H12ClN3, was synthesized by a condensation reaction of 2-chloro-3-formyl­quinoline with phenyl­hydrazine. The quinoline ring system is essentially planar (r.m.s. deviation = 0.012 Å), and forms a dihedral angle of 8.46 (10)° with the phenyl ring. The mol­ecule adopts an E configuration with respect to the central C=N bond. In the crystal, mol­ecules are linked by a C—H⋯π-phenyl inter­action, forming zigzag chains propagating along the [10overline{3}] direction. The N—H hydrogen atom does not participate in hydrogen bonding but is directed towards the phenyl ring of an adjacent mol­ecule, so linking the chains via weak N—H⋯π inter­actions to form of a three-dimensional structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (35.5%), C⋯H/H⋯C (33.7%), Cl⋯H/H⋯Cl (12.3%), N⋯H/H⋯N (9.5%) contacts.




syn

Crystal structure of 3,14-diethyl-2,13-di­aza-6,17-diazo­niatri­cyclo­[16.4.0.07,12]docosane dinitrate dihydrate from synchrotron X-ray data

The crystal structure of title salt, C22H46N42+·2NO3−·2H2O, has been determined using synchrotron radiation at 220 K. The structure determination reveals that protonation has occurred at diagonally opposite amine N atoms. The asymmetric unit contains half a centrosymmetric dication, one nitrate anion and one water mol­ecule. The mol­ecular dication, C22H46N42+, together with the nitrate anion and hydrate water mol­ecule are involved in an extensive range of hydrogen bonds. The mol­ecule is stabilized, as is the conformation of the dication, by forming inter­molecular N—H⋯O, O—H⋯O, together with intra­molecular N—H⋯N hydrogen bonds.




syn

Crystal structure, synthesis and thermal properties of tetra­kis­(4-benzoyl­pyridine-κN)bis­(iso­thio­cyanato-κN)iron(II)

The asymmetric unit of the title compound, [Fe(NCS)2(C12H9NO)4], consists of an FeII ion that is located on a centre of inversion, as well as two 4-benzoyl­pyridine ligands and one thio­cyanate anion in general positions. The FeII ions are coordinated by two N-terminal-bonded thio­cyanate anions and four 4-benzoyl­pyridine ligands into discrete complexes with a slightly distorted octa­hedral geometry. These complexes are further linked by weak C—H⋯O hydrogen bonds into chains running along the c-axis direction. Upon heating, this complex loses half of the 4-benzoyl­pyridine ligands and transforms into a compound with the composition Fe(NCS)2(4-benzoyl­pyridine)2, that might be isotypic to the corresponding MnII compound and for which the structure is unknown.




syn

Synthesis, characterization, and crystal structure of aqua­bis­(4,4'-dimeth­oxy-2,2'-bi­pyridine)[μ-(2R,3R)-tartrato(4−)]dicopper(II) octa­hydrate

Typical electroless copper baths (ECBs), which are used to chemically deposit copper on printed circuit boards, consist of an aqueous alkali hydroxide solution, a copper(II) salt, formaldehyde as reducing agent, an l-(+)-tartrate as complexing agent, and a 2,2'-bi­pyridine derivative as stabilizer. Actual speciation and reactivity are, however, largely unknown. Herein, we report on the synthesis and crystal structure of aqua-1κO-bis­(4,4'-dimeth­oxy-2,2'-bi­pyri­dine)-1κ2N,N';2κ2N,N'-[μ-(2R,3R)-2,3-dioxidosuccinato-1κ2O1,O2:2κ2O3,O4]dicopper(II) octa­hydrate, [Cu2(C12H12N2O2)2(C4H2O6)(H2O)]·8H2O, from an ECB mock-up. The title compound crystallizes in the Sohncke group P21 with one chiral dinuclear complex and eight mol­ecules of hydrate water in the asymmetric unit. The expected retention of the tartrato ligand's absolute configuration was confirmed via determination of the absolute structure. The complex mol­ecules exhibit an ansa-like structure with two planar, nearly parallel bi­pyridine ligands, each bound to a copper atom that is connected to the other by a bridging tartrato `handle'. The complex and water mol­ecules give rise to a layered supra­molecular structure dominated by alternating π stacks and hydrogen bonds. The understanding of structures ex situ is a first step on the way to prolonged stability and improved coating behavior of ECBs.




syn

Synthesis and crystal structure of calcium hydrogen phosphite, CaHPO3

The hydro­thermal synthesis and crystal structure of the simple inorganic compound CaHPO3, which crystallizes in the chiral space group P43212, are reported. The structure is built up from distorted CaO7 capped trigonal prisms and HPO3 pseudo pyramids, which share corners and edges to generate a three-dimensional network.




syn

Syntheses, crystal structures, and comparisons of rare-earth oxyapatites Ca2RE8(SiO4)6O2 (RE = La, Nd, Sm, Eu, or Yb) and NaLa9(SiO4)6O2

Six different rare-earth oxyapatites, including Ca2RE8(SiO4)6O2 (RE = La, Nd, Sm, Eu, or Yb) and NaLa9(SiO4)6O2, were synthesized using solution-based processes followed by cold pressing and sinter­ing. The crystal structures of the synthesized oxyapatites were determined from powder X-ray diffraction (P-XRD) and their chemistries verified with electron probe microanalysis (EPMA). All the oxyapatites were isostructural within the hexa­gonal space group P63/m and showed similar unit-cell parameters. The isolated [SiO4]4− tetra­hedra in each crystal are linked by the cations at the 4f and 6h sites occupied by RE3+ and Ca2+ in Ca2RE8(SiO4)6O2 or La3+ and Na+ in NaLa9(SiO4)6O2. The lattice parameters, cell volumes, and densities of the synthesized oxyapatites fit well to the trendlines calculated from literature values.




syn

Synthesis, detailed geometric analysis and bond-valence method evaluation of the strength of π-arene bonding of two isotypic cationic prehnitene tin(II) complexes: [{1,2,3,4-(CH3)4C6H2}2Sn2Cl2][MCl4]2 (M = Al and Ga)

From solutions of prehnitene and the ternary halides (SnCl)[MCl4] (M = Al, Ga) in chloro­benzene, the new cationic SnII–π-arene complexes catena-poly[[chlorido­aluminate(III)]-tri-μ-chlorido-4':1κ2Cl,1:2κ4Cl-[(η6-1,2,3,4-tetra­meth­yl­benzene)­tin(II)]-di-μ-chlorido-2:3κ4Cl-[(η6-1,2,3,4-tetra­methyl­benzene)­tin(II)]-di-μ-chlorido-3:4κ4Cl-[chlorido­aluminate(III)]-μ-chlorido-4:1'κ2Cl], [Al2Sn2Cl10(C10H14)2]n, (1) and catena-poly[[chlorido­gallate(III)]-tri-μ-chlor­ido-4':1κ2Cl,1:2κ4Cl-[(η6-1,2,3,4-tetra­methyl­benzene)­tin(II)]-di-μ-chlorido-2:3κ4Cl-[(η6-1,2,3,4-tetra­methyl­benzene)­tin(II)]-di-μ-chlorido-3:4κ4Cl-[chlor­ido­gallate(III)]-μ-chlorido-4:1'κ2Cl], [Ga2Sn2Cl10(C10H14)2]n, (2), were isolated. In these first main-group metal–prehnitene complexes, the distorted η6 arene π-bonding to the tin atoms of the Sn2Cl22+ moieties in the centre of [{1,2,3,4-(CH3)4C6H2}2Sn2Cl2][MCl4]2 repeating units (site symmetry overline{1}) is characterized by: (i) a significant ring slippage of ca 0.4 Å indicated by the dispersion of Sn—C distances [1: 2.881 (2)–3.216 (2) Å; 2: 2.891 (3)–3.214 (3) Å]; (ii) the non-methyl-substituted arene C atoms positioned closest to the SnII central atom; (iii) a pronounced tilt of the plane of the arene ligand against the plane of the central (Sn2Cl2)2+ four-membered ring species [1: 15.59 (11)°, 2: 15.69 (9)°]; (iv) metal–arene bonding of medium strength as illustrated by application of the bond-valence method in an indirect manner, defining the π-arene bonding inter­action of the SnII central atoms as s(SnII—arene) = 2 − Σs(SnII—Cl), that gives s(SnII—arene) = 0.37 and 0.38 valence units for the aluminate and the gallate, respectively, indicating that comparatively strong main-group metal–arene bonding is present and in line with the expectation that [AlCl4]− is the slightly weaker coordinating anion as compared to [GaCl4]−.




syn

Synthesis and crystal structure of a new hybrid organic–inorganic material containing neutral mol­ecules, cations and hepta­molybdate anions

The title compound, hexa­kis­(2-methyl-1H-imidazol-3-ium) hepta­molybdate 2-methyl-1H-imidazole disolvate dihydrate, (C4H7N2)6[Mo7O24]·2C4H6N2·2H2O, was prepared from 2-methyl­imidazole and ammonium hepta­molybdate tetra­hydrate in acid solution. The [Mo7O24]6− hepta­molybdate cluster anion is accompanied by six protonated (C4H7N2)+ 2-methyl­imidazolium cations, two neutral C4H6N2 2-methyl­imidazole mol­ecules and two water mol­ecules of crystallization. The cluster consists of seven distorted MoO6 octa­hedra sharing edges or vertices. In the crystal, the components are linked by N—H⋯N, N—H⋯O, O—H⋯O, N—H⋯(O,O) and O—H⋯(O,O) hydrogen bonds, generating a three-dimensional network. Weak C—H⋯O inter­actions consolidate the packing.




syn

Syntheses, crystal structures and Hirshfeld surface analyses of (3aR,4S,7R,7aS)-2-(perfluoro­pyridin-4-yl)-3a,4,7,7a-tetra­hydro-4,7-methano­iso­indole-1,3-dione and (3aR,4S,7R,7aS)-2-[(perfluoro­pyridin-4-yl)­oxy]-3a,4,7,7a-

The syntheses and crystal structures of the title compounds, C14H8F4N2O2 and C14H8F4N2O3, are reported. In each crystal, the packing is driven by C—H⋯F inter­tactions, along with a variety of C—H⋯O, C—O⋯π, and C—F⋯π contacts. Hirshfeld surface analysis was conducted to aid in the visualization of these various influences on the packing: they showed that the largest contributions to the surface contacts arise from H⋯F/F⋯H inter­actions, followed by H⋯H and O⋯H/H⋯O.




syn

(3,5-Di­methyl­adamantan-1-yl)ammonium methane­sulfonate (memanti­nium mesylate): synthesis, structure and solid-state properties

The asymmetric unit of the title compound, C12H22N+·CH3O3S−, consists of three (3,5-di­methyl­adamantan-1-yl)ammonium cations, C12H22N+, and three methane­sulfonate anions, CH3O3S−. In the crystal, the cations and anions associate via N—H⋯O hydrogen bonds into layers, parallel to the (001) plane, which include large supra­molecular hydrogen-bonded rings.




syn

Syntheses and crystal structures of a new family of hybrid perovskites: C5H14N2·ABr3·0.5H2O (A = K, Rb, Cs)

The syntheses and crystal structures of three hybrid perovskites, viz. poly[1-methyl­piperizine-1,4-diium [tri-μ-bromido-potassium] hemihydrate], {(C5H14N2)[KBr3]·0.5H2O}n, (I), poly[1-methyl­piperizine-1,4-diium [tri-μ-bromido-rubidium] hemihydrate], {(C5H14N2)[RbBr3]·0.5H2O}n, (II), and poly[1-methyl­piperizine-1,4-diium [tri-μ-bromido-caesium] hemihydrate], {(C5H14N2)[CsBr3]·0.5H2O}n, (III), are described. These isostructural (space group Amm2) phases contain a three-dimensional, corner-sharing network of distorted ABr6 octa­hedra (A = K, Rb, Cs) with the same topology as the classical perovskite structure. The doubly protonated C5H14N22+ cations occupy inter­stices bounded by eight octa­hedra and the water mol­ecules lie in square sites bounded by four octa­hedra. N—H⋯Br, N—H⋯(Br,Br), N—H⋯O and O—H⋯Br hydrogen bonds consolidate the structures.




syn

Syntheses and structures of piperazin-1-ium ABr2 (A = Cs or Rb): hybrid solids containing `curtain wall' layers of face- and edge-sharing ABr6 trigonal prisms

The isostructural title compounds, poly[piperazin-1-ium [di-μ-bromido-caesium]], {(C4H11N2)[CsBr2]}n, and poly[piperazin-1-ium [di-μ-bromido-rubidium]], {(C4H11N2)[RbBr2]}n, contain singly-protonated piperazin-1-ium cations and unusual ABr6 (A = Cs or Rb) trigonal prisms. The prisms are linked into a distinctive `curtain wall' arrangement propagating in the (010) plane by face and edge sharing. In each case, a network of N—H⋯N, N—H⋯Br and N—H⋯(Br,Br) hydrogen bonds consolidates the structure.




syn

Synthesis and structure of 2,4,6-tri­cyclo­butyl-1,3,5-trioxane

The synthesis and structure of 2,4,6,-tri­cyclo­butyl-1,3,5-trioxane, C15H24O3 1, is described. It was formed in 39% yield during the work-up of the Swern oxidation of cyclo­butyl­methanol and may serve as a stable precursor of the cyclo­butane carbaldehyde. The mol­ecule of 1 occupies a special position (3.m) located at the center of its 1,3,5-trioxane ring. The latter is in a chair conformation, with the symmetry-independent O and C atoms deviating by 0.651 (4) Å from the least-squares plane of the other atoms of the trioxane ring. All three cyclo­butane substituents, which have a butterfly conformation with an angle between the two planes of 25.7 (3)°, are in the cis conformation relative to the 1,3,5-trioxane ring. Inter­molecular C—H⋯O inter­actions between the 1,3,5-trioxane rings consolidate the crystal structure, forming stacks along the c-axis direction. The crystal studied was refined a as a racemic twin.




syn

Synthesis and structure of push–pull merocyanines based on barbituric and thio­barbituric acid

Two compounds, 1,3-diethyl-5-{(2E,4E)-6-[(E)-1,3,3-tri­methyl­indolin-2-yl­idene]hexa-2,4-dien-1-yl­idene}pyrimidine-2,4,6(1H,3H,5H)-trione or TMI, C25H29N3O3, and 1,3-diethyl-2-sulfanyl­idene-5-[2-(1,3,3-tri­methyl­indolin-2-yl­idene)ethyl­idene]di­hydro­pyrimidine-4,6(1H,5H)-dione or DTB, C21H25N3O2S, have been crystallized and studied. These compounds contain the same indole derivative donor group and differ in their acceptor groups (in TMI it contains oxygen in the para position, and in DTB sulfur) and the length of the π-bridge. In both materials, mol­ecules are packed in a herringbone manner with differences in the twist and fold angles. In both structures, the mol­ecules are connected by weak C—H⋯O and/or C—H⋯S bonds.




syn

Synthesis and crystal structure of 1,3-bis­(4-hy­droxy­phen­yl)-1H-imidazol-3-ium chloride

Imidazolium salts are common building blocks for functional materials and in the synthesis of N-heterocyclic carbene (NHC) as σ-donor ligands for stable metal complexes. The title salt, 1,3-bis­(4-hy­droxy­phen­yl)-1H-imidazol-3-ium chloride (IOH·Cl), C15H13N2O2+·Cl−, is a new imidazolium salt with a hy­droxy functionality. The synthesis of IOH·Cl was achieved in high yield via a two-step procedure involving a di­aza­butadiene precursor followed by ring closure using tri­methylchloro­silane and paraformaldehyde. The structure of IOH·Cl consists of a central planar imidazolium ring (r.m.s. deviation = 0.0015 Å), with out-of-plane phenolic side arms. The dihedral angles between the 4-hy­droxy­phenyl substituents and the imidazole ring are 55.27 (7) and 48.85 (11)°. In the crystal, O—H⋯Cl hydrogen bonds connect the distal hy­droxy groups and Cl− anions in adjacent asymmetric units, one related by inversion (−x + 1, −y + 1, −z + 1) and one by the n-glide (x − {1over 2}, −y + {1over 2}, z − {1over 2}), with donor–acceptor distances of 2.977 (2) and 3.0130 (18) Å, respectively. The phenolic rings are each π–π stacked with their respective inversion-related [(−x + 1, −y + 1, −z + 1) and (−x, −y + 1, −z + 1)] counterparts, with inter­planar distances of 3.560 (3) and 3.778 (3) Å. The only other noteworthy inter­molecular inter­action is an O⋯O (not hydrogen bonded) close contact of 2.999 (3) Å between crystallographically different hy­droxy O atoms on translationally adjacent mol­ecules (x + 1, y, x + 1).




syn

Syntheses and crystal structures of 2-methyl-1,1,2,3,3-penta­phenyl-2-sila­propane and 2-methyl-1,1,3,3-tetra­phenyl-2-silapropan-2-ol

The sterically hindered silicon compound 2-methyl-1,1,2,3,3-penta­phenyl-2-sila­propane, C33H30Si (I), was prepared via the reaction of two equivalents of di­phenyl­methyl­lithium (benzhydryllithium) and di­chloro­methyl­phenyl­silane. This bis­benzhydryl-substituted silicon compound was then reacted with tri­fluoro­methane­sulfonic acid, followed by hydrolysis with water to give the silanol 2-methyl-1,1,3,3-tetra­phenyl-2-silapropan-2-ol, C27H26OSi (II). Key geometric features for I are the Si—C bond lengths that range from 1.867 (2) to 1.914 (2) Å and a τ4 descriptor for fourfold coordination around the Si atom of 0.97 (indicating a nearly perfect tetra­hedron). Key geometric features for compound II include Si—C bond lengths that range from 1.835 (4) to 1.905 (3) Å, a Si—O bond length of 1.665 (3) Å, and a τ4 descriptor for fourfold coordination around the Si atom of 0.96. In compound II, there is an intra­molecular C—H⋯O hydrogen bond present. In the crystal of I, mol­ecules are linked by two pairs of C—H⋯π inter­actions, forming dimers that are linked into ribbons propagating along the b-axis direction. In the crystal of II, mol­ecules are linked by C—H⋯π and O—H⋯π inter­actions that result in the formation of ribbons that run along the a-axis direction.




syn

Crystal structure and Hirshfeld surface analysis of lapachol acetate 80 years after its first synthesis

Lapachol acetate [systematic name: 3-(3-methyl­but-2-en­yl)-1,4-dioxonaph­thalen-2-yl acetate], C17H16O4, was prepared using a modified high-yield procedure and its crystal structure is reported for the first time 80 years after its first synthesis. The full spectroscopic characterization of the mol­ecule is reported. The mol­ecular conformation shows little difference with other lapachol derivatives and lapachol itself. The packing is directed by inter­molecular π–π and C—H⋯O inter­actions, as described by Hirshfeld surface analysis. The former inter­actions make the largest contributions to the total packing energy in a ratio of 2:1 with respect to the latter.




syn

Synthesis, characterization, crystal structure and supra­molecularity of ethyl (E)-2-cyano-3-(3-methyl­thio­phen-2-yl)acrylate and a new polymorph of ethyl (E)-2-cyano-3-(thio­phen-2-yl)acrylate

The synthesis, crystal structure and structural motif of two thio­phene-based cyano­acrylate derivatives, namely, ethyl (E)-2-cyano-3-(3-methyl­thio­phen-2-yl)acrylate (1), C11H11NO2S, and ethyl (E)-2-cyano-3-(thio­phen-2-yl)acrylate (2), C10H9NO2S, are reported. Derivative 1 crystallized with two independent molecules in the asymmetric unit, and derivative 2 represents a new monoclinic (C2/m) polymorph. The mol­ecular conformations of 1 and the two polymorphs of 2 are very similar, as all non-H atoms are planar except for the methyl of the ethyl groups. The inter­molecular inter­actions and crystal packing of 1 and 2 are described and compared with that of the reported monoclinic (C2/m) polymorph of derivative 2 [Castro Agudelo et al. (2017). Acta Cryst. E73, 1287–1289].




syn

Synthesis and crystal structure of tert-butyl 1-(2-iodo­benzo­yl)cyclo­pent-3-ene-1-carboxyl­ate

1-(2-Iodo­benzo­yl)-cyclo­pent-3-ene-1-carboxyl­ates are novel substrates to construct bi­cyclo­[3.2.1]octa­nes with anti­bacterial and anti­thrombotic activities. In this context, tert-butyl 1-(2-iodo­benzo­yl)-cyclo­pent-3-ene-1-carboxyl­ate, C17H19IO3, was synthesized and structurally characterized. The 2-iodo­benzoyl group is attached to the tertiary C atom of the cyclo­pent-3-ene ring. The dihedral angle between the benzene ring and the mean plane of the envelope-type cyclo­pent-3-ene ring is 26.0 (3)°. In the crystal, pairs of C-H⋯O hydrogen bonds link the mol­ecules to form inversion dimers.




syn

The synthesis and crystal structure of bis­[3,3-diethyl-1-(phenyl­imino-κN)thio­urea-κS]silver hexa­fluorido­phosphate

The structure of the title complex, [Ag(C11H15N3S)2]PF6, has monoclinic (P21/c) symmetry, and the silver atom has a distorted square-planar geometry. The coordination complex crystallized from mixing silver hexa­fluorido­phosphate with a concentrated tetra­hydro­furan solution of N,N-di­ethyl­phenyl­azo­thio­formamide [ATF; systematic name: 3,3-diethyl-1-(phenyl­imino)­thio­urea] under ambient conditions. The resultant coordination complex exhibits a 2:1 ligand-to-metal ratio, with the silver(I) atom having a fourfold AgN2S2 coordination sphere, with a single PF6 counter-ion. In the crystal, however, one sulfur atom from an ATF ligand of a neighboring complex coordinates to the silver atom, with a bond distance of 2.9884 (14) Å. This creates a polymeric zigzag chain propagating along the c-axis direction. The chains are linked by C—H⋯F hydrogen bonds, forming slabs parallel to the ac plane.




syn

Synthesis and redetermination of the crystal structure of salicyl­aldehyde N(4)-morpholino­thio­semi­carbazone

The structure of the title compound (systematic name: N-{[(2-hy­droxy­phen­yl)methyl­idene]amino}­morpholine-4-carbo­thio­amide), C12H15N3O2S, was prev­iously determined (Koo et al., 1977) using multiple-film equi-inclination Weissenberg data, but has been redetermined with higher precision to explore its conformation and the hydrogen-bonding patterns and supra­molecular inter­actions. The mol­ecular structure shows intra­molecular O—H⋯N and C—H⋯S inter­actions. The configuration of the C=N bond is E. The mol­ecule is slightly twisted about the central N—N bond. The best planes through the phenyl ring and the morpholino ring make an angle of 43.44 (17)°. In the crystal, the mol­ecules are connected into chains by N—H⋯O and C—H⋯O hydrogen bonds, which combine to generate sheets lying parallel to (002). The most prominent contribution to the surface contacts are H⋯H contacts (51.6%), as concluded from a Hirshfeld surface analysis.




syn

Crystal structures, syntheses, and spectroscopic and electrochemical measurements of two push–pull chromophores: 2-[4-(di­methyl­amino)­benzyl­idene]-1H-indene-1,3(2H)-dione and (E)-2-{3-[4-(di­meth­ylamino)­phen­yl

The title pull–push chromophores, 2-[4-(di­methyl­amino)­benzyl­idene]-1H-indene-1,3(2H)-dione, C18H15NO2 (ID[1]) and (E)-2-{3-[4-(di­methyl­amino)­phen­yl]allyl­idene}-1H-indene-1,3(2H)-dione, C20H17NO2 (ID[2]), have donor–π-bridge–acceptor structures. The mol­ecule with the short π-bridge, ID[1], is almost planar while for the mol­ecule with a longer bridge, ID[2], is less planar. The benzene ring is inclined to the mean plane of the 2,3-di­hydro-1H-indene unit by 3.19 (4)° in ID[1] and 13.06 (8)° in ID[2]. The structures of three polymorphs of compound ID[1] have been reported: the α-polymorph [space group P21/c; Magomedova & Zvonkova (1978). Kristallografiya, 23, 281–288], the β-polymorph [space group P21/c; Magomedova & Zvonkova (1980). Kristallografiya, 25 1183–1187] and the γ-polymorph [space group Pna21; Magomedova, Neigauz, Zvonkova & Novakovskaya (1980). Kristallografiya, 25, 400–402]. The mol­ecular packing in ID[1] studied here is centrosymmetric (space group P21/c) and corresponds to the β-polymorph structure. The mol­ecular packing in ID[2] is non-centrosymmetric (space group P21), which suggests potential NLO properties for this crystalline material. In both compounds, there is short intra­molecular C—H⋯O contact present, enclosing an S(7) ring motif. In the crystal of ID[1], mol­ecules are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming layers parallel to the bc plane. In the crystal of ID[2], mol­ecules are liked by C—H⋯O hydrogen bonds to form 21 helices propagating along the b-axis direction. The mol­ecules in the helix are linked by offset π–π inter­actions with, for example, a centroid–centroid distance of 3.9664 (13) Å (= b axis) separating the indene rings, and an offset of 1.869 Å. Spectroscopic and electrochemical measurements show the ability of these compounds to easily transfer electrons through the π-conjugated chain.




syn

Synthesis, crystal structure and Hirshfeld surface analysis of 4-[3-(4-hy­droxy­phen­yl)-4,5-di­hydro-1H-pyrazol-5-yl]-2-meth­oxy­phenol monohydrate

In the title pyrazoline derivative, C16H16N2O3·H2O, the pyrazoline ring has an envelope conformation with the substituted sp2 C atom on the flap. The pyrazoline ring makes angles of 86.73 (12) and 13.44 (12)° with the tris­ubstituted and disubstituted benzene rings, respectively. In the crystal structure, the mol­ecules are connected into chains running in the b-axis direction by O—H⋯N hydrogen bonding. Parallel chains inter­act through N—H⋯O hydrogen bonds and π–π stacking of the tris­ubstituted phenyl rings. The major contribution to the surface contacts are H⋯H contacts (44.3%) as concluded from a Hirshfeld surface analysis.




syn

High-pressure synthesis and crystal structure of SrGa4As4

Strontium tetra­gallate(II,III) tetra­arsenide, SrGa4As4, was synthesized in a Walker-type multianvil apparatus under high-pressure/high-temperature conditions of 8 GPa and 1573 K. The com­pound crystallizes in a new structure type (P3221, Z = 3) as a three-dimensional (3D) framework of corner-sharing SrAs8 quadratic anti­prisms with strontium situated on a twofold rotation axis (Wyckoff position 3b). This arrangement is surrounded by a 3D framework which can be described as alternately stacked layers of either condensed GaIIIAs4 tetra­hedra or honeycomb-like layers built up from distorted ethane-like GaII2As6 units com­prising Ga—Ga bonds.




syn

Crystal structure, synthesis and thermal properties of bis­(aceto­nitrile-κN)bis­(4-benzoyl­pyridine-κN)bis­(iso­thio­cyanato-κN)nickel(II)

In the crystal structure of the title com­pound, [Ni(NCS)2(CH3CN)2(C12H9NO)2] or Ni(NCS)2(4-benzoyl­pyridine)2(aceto­nitrile)2, the NiII ions are octa­hedrally coordinated by the N atoms of two thio­cyanate anions, two 4-benzoyl­pyridine ligands and two aceto­nitrile mol­ecules into discrete com­plexes that are located on centres of inversion. In the crystal, the discrete com­plexes are linked by centrosymmetric pairs of weak C—H⋯S hydrogen bonds into chains. Thermogravimetric measurements prove that, upon heating, the title com­plex loses the two aceto­nitrile ligands and transforms into a new crystalline modification of the chain com­pound [Ni(NCS)2(4-benzoyl­pyridine)2], which is different from that of the corresponding CoII, NiII and CdII coordination polymers reported in the literature. IR spectroscopic investigations indicate the presence of bridging thio­cyanate anions but the powder pattern cannot be indexed and, therefore, this structure is unknown.