human

Economic rights as human rights


Krishna Rupanagunta urges a determined beginning to counting the true costs of hardship in labour.




human

A gross violation of human rights


Manhole is a scathing celluloid indictment on the state of manual sewer cleaners in India, writes Shoma A. Chatterji.




human

'Inhuman' comments about Shah's health 'extremely condemnable': Nadda

New Delhi, May 09: BJP president J P Nadda said on Saturday that making "inhuman" comments about the health of Home Minister Amit Shah is "extremely condemnable". "Making inhuman comments about the health of Home Minister Amit Shah




human

Does COVID-19 Evolve In Humans? Know How It Poses Challenges To Vaccine Development

COVID-19 is currently the biggest, health and economic threat to the world. Researchers and scientists across the world are constantly making efforts to find its treatment and develop a vaccine to combat it. The biggest challenge in developing the vaccine




human

Scientists discover human genome regions that influence risk of developing melanoma




human

Human-driven pollution affecting world's cave systems




human

UN chief says funding of WHO, humanitarians should not be cut amid COVID-19




human

Be more humane, Punjab CM tells police




human

Binding site asymmetry in human transthyretin: insights from a joint neutron and X-ray crystallographic analysis using perdeuterated protein

A neutron crystallographic study of perdeuterated transthyretin reveals important aspects of the structure relating to its stability and its propensity to form fibrils, as well as evidence of a single water molecule that affects the symmetry of the two binding pockets.





human

Crystal and solution structures of fragments of the human leucocyte common antigen-related protein

The crystal and solution SAXS structures of a fragment of human leucocyte common antigen-related protein show that it is less flexible than the homologous proteins tyrosine phosphatase receptors δ and σ.




human

Engineering a surrogate human heteromeric α/β glycine receptor orthosteric site exploiting the structural homology and stability of acetylcholine-binding protein

Protein-engineering methods have been exploited to produce a surrogate system for the extracellular neurotransmitter-binding site of a heteromeric human ligand-gated ion channel, the glycine receptor. This approach circumvents two major issues: the inherent experimental difficulties in working with a membrane-bound ion channel and the complication that a heteromeric assembly is necessary to create a key, physiologically relevant binding site. Residues that form the orthosteric site in a highly stable ortholog, acetylcholine-binding protein, were selected for substitution. Recombinant proteins were prepared and characterized in stepwise fashion exploiting a range of biophysical techniques, including X-ray crystallography, married to the use of selected chemical probes. The decision making and development of the surrogate, which is termed a glycine-binding protein, are described, and comparisons are provided with wild-type and homomeric systems that establish features of molecular recognition in the binding site and the confidence that the system is suited for use in early-stage drug discovery targeting a heteromeric α/β glycine receptor.




human

Structural and kinetic insights into flavin-containing monooxygenase and calponin-homology domains in human MICAL3

MICAL is an oxidoreductase that participates in cytoskeleton reorganization via actin disassembly in the presence of NADPH. Although three MICALs (MICAL1, MICAL2 and MICAL3) have been identified in mammals, only the structure of mouse MICAL1 has been reported. Here, the first crystal structure of human MICAL3, which contains the flavin-containing monooxygenase (FMO) and calponin-homology (CH) domains, is reported. MICAL3 has an FAD/NADP-binding Rossmann-fold domain for mono­oxygenase activity like MICAL1. The FMO and CH domains of both MICAL3 and MICAL1 are highly similar in structure, but superimposition of the two structures shows a different relative position of the CH domain in the asymmetric unit. Based on kinetic analyses, the catalytic efficiency of MICAL3 dramatically increased on adding F-actin only when the CH domain was available. However, this did not occur when two residues, Glu213 and Arg530, were mutated in the FMO and CH domains, respectively. Overall, MICAL3 is structurally highly similar to MICAL1, which suggests that they may adopt the same catalytic mechanism, but the difference in the relative position of the CH domain produces a difference in F-actin substrate specificity.




human

The structural study of mutation-induced inactivation of human muscarinic receptor M4

Human muscarinic receptor M4 belongs to the class A subfamily of the G-protein-coupled receptors (GPCRs). M4 has emerged as an attractive drug target for the treatment of Alzheimer's disease and schizophrenia. Recent results showed that M4-mediated cholinergic transmission is related to motor symptoms in Parkinson's disease. Selective ligand design for the five muscarinic acetylcholine receptor (mAchR) subtypes currently remains challenging owing to the high sequence and structural similarity of their orthosteric binding pockets. In order to obtain M4-selective antagonists, a new approach was tried to lock M4 into an inactive form by rationally designing an N4497.49R mutation, which mimics the allosteric sodium binding in the conserved sodium site usually found in class A GPCRs. In addition, the crystal structure of the mutation-induced inactive M4 was determined. By comparative analysis with other mAchR structures, followed by functional assays, the N4497.49R mutation was shown to stabilize M4 into an inactive state. Virtual screening of a focused ligand library using the crystal structure showed that the inactive M4 prefers antagonists much more than agonists. This study provides a powerful mutation strategy to stabilize GPCRs in inactive states and facilitate their structure determination.




human

Plasmodium vivax and human hexokinases share similar active sites but display distinct quaternary architectures

Malaria is a devastating disease caused by a protozoan parasite. It affects over 300 million individuals and results in over 400 000 deaths annually, most of whom are young children under the age of five. Hexokinase, the first enzyme in glucose metabolism, plays an important role in the infection process and represents a promising target for therapeutic intervention. Here, cryo-EM structures of two conformational states of Plasmodium vivax hexokinase (PvHK) are reported at resolutions of ∼3 Å. It is shown that unlike other known hexokinase structures, PvHK displays a unique tetrameric organization (∼220 kDa) that can exist in either open or closed quaternary conformational states. Despite the resemblance of the active site of PvHK to its mammalian counterparts, this tetrameric organization is distinct from that of human hexokinases, providing a foundation for the structure-guided design of parasite-selective antimalarial drugs.




human

A complete compendium of crystal structures for the human SEPT3 subgroup reveals functional plasticity at a specific septin interface

Human septins 3, 9 and 12 are the only members of a specific subgroup of septins that display several unusual features, including the absence of a C-terminal coiled coil. This particular subgroup (the SEPT3 septins) are present in rod-like octameric protofilaments but are lacking in similar hexameric assemblies, which only contain representatives of the three remaining subgroups. Both hexamers and octamers can self-assemble into mixed filaments by end-to-end association, implying that the SEPT3 septins may facilitate polymerization but not necessarily function. These filaments frequently associate into higher order complexes which associate with biological membranes, triggering a wide range of cellular events. In the present work, a complete compendium of crystal structures for the GTP-binding domains of all of the SEPT3 subgroup members when bound to either GDP or to a GTP analogue is provided. The structures reveal a unique degree of plasticity at one of the filamentous interfaces (dubbed NC). Specifically, structures of the GDP and GTPγS complexes of SEPT9 reveal a squeezing mechanism at the NC interface which would expel a polybasic region from its binding site and render it free to interact with negatively charged membranes. On the other hand, a polyacidic region associated with helix α5', the orientation of which is particular to this subgroup, provides a safe haven for the polybasic region when retracted within the interface. Together, these results suggest a mechanism which couples GTP binding and hydrolysis to membrane association and implies a unique role for the SEPT3 subgroup in this process. These observations can be accounted for by constellations of specific amino-acid residues that are found only in this subgroup and by the absence of the C-terminal coiled coil. Such conclusions can only be reached owing to the completeness of the structural studies presented here.




human

Structural comparison of protiated, H/D-exchanged and deuterated human carbonic anhydrase IX

Human carbonic anhydrase IX (CA IX) expression is upregulated in hypoxic solid tumours, promoting cell survival and metastasis. This observation has made CA IX a target for the development of CA isoform-selective inhibitors. To enable structural studies of CA IX–inhibitor complexes using X-ray and neutron crystallography, a CA IX surface variant (CA IXSV; the catalytic domain with six surface amino-acid substitutions) has been developed that can be routinely crystallized. Here, the preparation of protiated (H/H), H/D-exchanged (H/D) and deuterated (D/D) CA IXSV for crystallographic studies and their structural comparison are described. Four CA IXSV X-ray crystal structures are compared: two H/H crystal forms, an H/D crystal form and a D/D crystal form. The overall active-site organization in each version is essentially the same, with only minor positional changes in active-site solvent, which may be owing to deuteration and/or resolution differences. Analysis of the crystal unit-cell packing reveals different crystallographic and noncrystallographic dimers of CA IXSV compared with previous reports. To our knowledge, this is the first report comparing three different deuterium-labelled crystal structures of the same protein, marking an important step in validating the active-site structure of CA IXSV for neutron protein crystallography.




human

Controlled dehydration, structural flexibility and gadolinium MRI contrast compound binding in the human plasma glycoprotein afamin

Afamin, which is a human blood plasma glycoprotein, a putative multifunctional transporter of hydrophobic molecules and a marker for metabolic syndrome, poses multiple challenges for crystallographic structure determination, both practically and in analysis of the models. Several hundred crystals were analysed, and an unusual variability in cell volume and difficulty in solving the structure despite an ∼34% sequence identity with nonglycosylated human serum albumin indicated that the molecule exhibits variable and context-sensitive packing, despite the simplified glycosylation in insect cell-expressed recombinant afamin. Controlled dehydration of the crystals was able to stabilize the orthorhombic crystal form, reducing the number of molecules in the asymmetric unit from the monoclinic form and changing the conformational state of the protein. An iterative strategy using fully automatic experiments available on MASSIF-1 was used to quickly determine the optimal protocol to achieve the phase transition, which should be readily applicable to many types of sample. The study also highlights the drawback of using a single crystallographic structure model for computational modelling purposes given that the conformational state of the binding sites and the electron density in the binding site, which is likely to result from PEGs, greatly varies between models. This also holds for the analysis of nonspecific low-affinity ligands, where often a variety of fragments with similar uncertainty can be modelled, inviting interpretative bias. As a promiscuous transporter, afamin also seems to bind gadoteridol, a magnetic resonance imaging contrast compound, in at least two sites. One pair of gadoteridol molecules is located near the human albumin Sudlow site, and a second gadoteridol molecule is located at an intermolecular site in proximity to domain IA. The data from the co-crystals support modern metrics of data quality in the context of the information that can be gleaned from data sets that would be abandoned on classical measures.




human

Identification of Ca-rich dense granules in human platelets using scanning transmission X-ray microscopy

Whole-mount (WM) platelet preparation followed by transmission electron microscopy (TEM) observation is the standard method currently used to assess dense granule (DG) deficiency (DGD). However, due to the electron-density-based contrast mechanism in TEM, other granules such as α-granules might cause false DG detection. Here, scanning transmission X-ray microscopy (STXM) was used to identify DGs and minimize false DG detection of human platelets. STXM image stacks of human platelets were collected at the calcium (Ca) L2,3 absorption edge and then converted to optical density maps. Ca distribution maps, obtained by subtracting the optical density maps at the pre-edge region from those at the post-edge region, were used to identify DGs based on the Ca richness. DGs were successfully detected using this STXM method without false detection, based on Ca maps for four human platelets. Spectral analysis of granules in human platelets confirmed that DGs contain a richer Ca content than other granules. The Ca distribution maps facilitated more effective DG identification than TEM which might falsely detect DGs. Correct identification of DGs would be important to assess the status of platelets and DG-related diseases. Therefore, this STXM method is proposed as a promising approach for better DG identification and diagnosis, as a complementary tool to the current WM TEM approach.




human

Hard X-ray phase-contrast-enhanced micro-CT for quantifying interfaces within brittle dense root-filling-restored human teeth

Phase-contrast enhanced micro-computed tomography reveals huge discontinuities at the interfaces between dental fillings and the tooth substrate. Despite the complex micromorphology, gaps in bonding could be visualized and quantified in 3D.




human

Crystal structure of an oxidized mutant of human mitochondrial branched-chain aminotransferase

This study presents the crystal structure of a thiol variant of the human mitochondrial branched-chain aminotransferase protein. Human branched-chain aminotransferase (hBCAT) catalyzes the transamination of the branched-chain amino acids leucine, valine and isoleucine and α-ketoglutarate to their respective α-keto acids and glutamate. hBCAT activity is regulated by a CXXC center located approximately 10 Å from the active site. This redox-active center facilitates recycling between the reduced and oxidized states, representing hBCAT in its active and inactive forms, respectively. Site-directed mutagenesis of the redox sensor (Cys315) results in a significant loss of activity, with no loss of activity reported on the mutation of the resolving cysteine (Cys318), which allows the reversible formation of a disulfide bond between Cys315 and Cys318. The crystal structure of the oxidized form of the C318A variant was used to better understand the contributions of the individual cysteines and their oxidation states. The structure reveals the modified CXXC center in a conformation similar to that in the oxidized wild type, supporting the notion that its regulatory mechanism depends on switching the Cys315 side chain between active and inactive conformations. Moreover, the structure reveals conformational differences in the N-terminal and inter-domain region that may correlate with the inactivated state of the CXXC center.




human

Hall of Human Origins to open at Smithsonian’s Natural History Museum, March 17, 2010

A major new exhibition hall dedicated to the discovery and understanding of human origins will open next year at the Smithsonian's National Museum of Natural History: The David H. Koch Hall of Human Origins

The post Hall of Human Origins to open at Smithsonian’s Natural History Museum, March 17, 2010 appeared first on Smithsonian Insider.




human

New Hall of Human Origins points to environmental change as major force in evolution of hominins

Based on decades of cutting-edge research, the 15,000-square-foot Hall of Human Origins offers visitors an immersive, interactive journey through 6 million years of human evolution spelling out how defining characteristics of the human species have evolved during millions of years in response to a changing world.

The post New Hall of Human Origins points to environmental change as major force in evolution of hominins appeared first on Smithsonian Insider.




human

Ancient bond between humans and dogs revealed in isotopic signatures of their bones

In recent research on Santa Rosa Island off the coast of Southern California, isotope readings of carbon and nitrogen found in the bones of Chumash Indians and domestic dogs excavated from archaeological sites show that both humans and dogs have nearly identical signatures of stable isotopes.

The post Ancient bond between humans and dogs revealed in isotopic signatures of their bones appeared first on Smithsonian Insider.




human

Artist’s recreation of 7- to 6-million-year-old early human unveiled in Hall of Human Origins

Meet Sahelanthropus tchadensis. This newly unveiled bust by artist John Gurche is now on view in the the Hall of Human Origins at the Smithsonian's National Museum of Natural History.

The post Artist’s recreation of 7- to 6-million-year-old early human unveiled in Hall of Human Origins appeared first on Smithsonian Insider.




human

Scientists show that modern humans never co-existed with Homo erectus

New excavations in Indonesia and dating analyses by scientists at the Smithsonian and their colleagues show that modern humans never co-existed with Homo erectus.

The post Scientists show that modern humans never co-existed with <em>Homo erectus</em> appeared first on Smithsonian Insider.




human

Research on tungara frogs may be applicable to hearing loss/attention deficits in humans

A new study has revealed information about the way tungara frogs in the tropical rain forest hear, sort, and process sounds which is very similar to the way humans do. The knowledge could be applicable to communication disorders associated with hearing loss and attention deficits or difficulties.

The post Research on tungara frogs may be applicable to hearing loss/attention deficits in humans appeared first on Smithsonian Insider.




human

Dodo bird a resilient island survivor before the arrival of humans, study reveals

A new study on the dodo’s island home of Mauritius in the Indian Ocean, paints a picture of this unusual bird as an intrepid survivor on par with the giant tortoise for its resiliency.

The post Dodo bird a resilient island survivor before the arrival of humans, study reveals appeared first on Smithsonian Insider.




human

2013 exhibition to celebrate first complete human genome sequence

To celebrate the 10th anniversary of researchers producing the first complete human genome sequence — the genetic blueprint of the human body — the Smithsonian’s National Museum of Natural History, will open a new high-tech, high-intensity exhibition in 2013.

The post 2013 exhibition to celebrate first complete human genome sequence appeared first on Smithsonian Insider.




human

Report paints a new picture of early human impact on the Amazon River Basin

The newly reported reconstruction of Amazonian prehistory by a Smithsonian scientist, Dolores R. Piperno, and her colleagues suggests that large areas of western Amazonia were sparsely inhabited.

The post Report paints a new picture of early human impact on the Amazon River Basin appeared first on Smithsonian Insider.




human

As robins disperse, West Nile mosquitoes switch diet to humans: Q&A with Smithsonian ornithologist Peter Marra

A rising spike in West Nile virus is taking health officials across the country by surprise as this year more than 2,600 people in 45 states and the District of Columbia, have been stricken with severe symptoms of this mosquito-transmitted disease.

The post As robins disperse, West Nile mosquitoes switch diet to humans: Q&A with Smithsonian ornithologist Peter Marra appeared first on Smithsonian Insider.





human

Human shadow cast over the Caribbean slows coral growth

Striking Caribbean sunsets occur when particles in the air scatter incoming sunlight. But a particulate shadow over the sea may have effects underwater. A research […]

The post Human shadow cast over the Caribbean slows coral growth appeared first on Smithsonian Insider.




human

Forensic analysis of 17th-century human remains at Jamestown, Va., reveals evidence of survival cannibalism

Douglas Owsley, the division head for physical anthropology at the Smithsonian’s National Museum of Natural History, presented today a forensic analysis of 17th-century human remains […]

The post Forensic analysis of 17th-century human remains at Jamestown, Va., reveals evidence of survival cannibalism appeared first on Smithsonian Insider.




human

Effects of human impact are long lasting for forests in Northeast U.S.

Grow fast, die young is not a lifestyle normally associated with trees. But in the forests of the Northeastern United States the red maple follows […]

The post Effects of human impact are long lasting for forests in Northeast U.S. appeared first on Smithsonian Insider.




human

Losing large mammals increases human risk from rodent-borne diseases

Save the Rhinos! Save the Elephants! Save the humans?! It seems strange to be connecting our own fate to that of wildlife but new research […]

The post Losing large mammals increases human risk from rodent-borne diseases appeared first on Smithsonian Insider.




human

Interstellar exploration – five planets where humans may (or may not) be able to live someday

Unless you live under a lunar rock, you’ve probably heard about or seen director Christopher Nolan’s latest blockbuster “Interstellar.” Starring Anne Hathaway and Matthew McConaughey, […]

The post Interstellar exploration – five planets where humans may (or may not) be able to live someday appeared first on Smithsonian Insider.




human

Smithsonian Scientists Trace Anthropocene Roots to Early Human Activity

A new analysis of the fossil record by scientists at the Smithsonian’s National Museum of Natural History has revealed that the structure of plant and […]

The post Smithsonian Scientists Trace Anthropocene Roots to Early Human Activity appeared first on Smithsonian Insider.




human

Human health risks of eating sea turtle eggs could benefit species

According to a new study, eating sea turtle eggs increases the health risk of heavy metal exposure in local communities in Panama and may provide […]

The post Human health risks of eating sea turtle eggs could benefit species appeared first on Smithsonian Insider.




human

Crystal and solution structures of fragments of the human leucocyte common antigen-related protein

Leucocyte common antigen-related protein (LAR) is a post-synaptic type I transmembrane receptor protein that is important for neuronal functionality and is genetically coupled to neuronal disorders such as attention deficit hyperactivity disorder (ADHD). To understand the molecular function of LAR, structural and biochemical studies of protein fragments derived from the ectodomain of human LAR have been performed. The crystal structure of a fragment encompassing the first four FNIII domains (LARFN1–4) showed a characteristic L shape. SAXS data suggested limited flexibility within LARFN1–4, while rigid-body refinement of the SAXS data using the X-ray-derived atomic model showed a smaller angle between the domains defining the L shape compared with the crystal structure. The capabilities of the individual LAR fragments to interact with heparin was examined using microscale thermophoresis and heparin-affinity chromatography. The results showed that the three N-terminal immunoglobulin domains (LARIg1–3) and the four C-terminal FNIII domains (LARFN5–8) both bound heparin, while LARFN1–4 did not. The low-molecular-weight heparin drug Innohep induced a shift in hydrodynamic volume as assessed by size-exclusion chromatography of LARIg1–3 and LARFN5–8, while the chemically defined pentameric heparin drug Arixtra did not. Together, the presented results suggest the presence of an additional heparin-binding site in human LAR.




human

Maturation and phenotype of pathophysiological neuronal excitability of human cells in tau-related dementia [RESEARCH ARTICLE]

Olga Kopach, Noemi Esteras, Selina Wray, Dmitri A. Rusakov, and Andrey Y. Abramov

Frontotemporal dementia and parkinsonism (FTDP-17) caused by the 10+16 splice-site mutation in the MAPT provides an established platform to model tau-related dementia in vitro. Human iPSC-derived neurons have been shown to recapitulate the neurodevelopmental profile of tau pathology during in vitro corticogenesis as in the adult human brain. However, the neurophysiological phenotype of these cells has remained unknown, leaving unanswered questions over the functional relevance and the gnostic power of this disease model. Here we used electrophysiology to explore the membrane properties and intrinsic excitability of the generated neurons to find that human cells mature by ~150 days of neurogenesis to become compatible with matured cortical neurons. In earlier FTDP-17, neurons, however, exhibited a depolarized resting membrane potential associated with increased resistance and reduced voltage-gated Na+- and K+-channel-mediated conductance. The Nav1.6 protein was reduced in FTDP-17. These led to a reduced cell capability of induced firing and changed action potential waveform in FTDP-17. The revealed neuropathology may thus contribute to the clinicopathological profile of the disease. This sheds new light on the significance of human models of dementia in vitro.




human

Wetlands sinking with human-built structures

Left to themselves, coastal wetlands can adapt to sea-level rise. But humans could be sabotaging some of their best defenses, according to a review paper […]

The post Wetlands sinking with human-built structures appeared first on Smithsonian Insider.




human

Human Evolution Rewritten: We owe our existence to our ancestor’s flexible response to climate change

Many traits unique to humans were long thought to have originated in the genus Homo between 2.4 and 1.8 million years ago in Africa. A […]

The post Human Evolution Rewritten: We owe our existence to our ancestor’s flexible response to climate change appeared first on Smithsonian Insider.




human

Beautiful plastic sculptures tell ugly story of human garbage in the ocean

Great white sharks, killer whales, sea lions, even polar bears—the ocean is full of giant predators. But one of the ocean’s worst enemies is not […]

The post Beautiful plastic sculptures tell ugly story of human garbage in the ocean appeared first on Smithsonian Insider.




human

Meet Our Scientist–Briana Pobiner, human origins researcher at the National Museum of Natural History

Digging up early human and animal remains from the field in Africa, performing examination and publishing research about her findings, then enticing and educating the public about the implications are all in a week's work for Briana Pobiner.

The post Meet Our Scientist–Briana Pobiner, human origins researcher at the National Museum of Natural History appeared first on Smithsonian Insider.




human

Human Origins Program team members at the National Museum of Natural History on why they love their job

Members of the Human Origins Program team at the Smithsonian's National Museum of Natural History describe why they love their job.

The post Human Origins Program team members at the National Museum of Natural History on why they love their job appeared first on Smithsonian Insider.






human

Beautiful Japan: Benten Festival 1917-1918, from the Smithsonian’s Human Studies Film Archive

This film is from the collections of the Human Studies Film Archives, Smithsonian Institution. Clip from silent film, Beautiful Japan (1917-18), by travel-lecturer Benjamin Brodsky. Benten Festival is celebrated on Shiraishi Island. Benten (Benzaiten) is the Goddess of the Sea and one of the Seven Lucky Gods of Japan.

The post Beautiful Japan: Benten Festival 1917-1918, from the Smithsonian’s Human Studies Film Archive appeared first on Smithsonian Insider.




human

Construction of Mount Rushmore National Memorial from the Smithsonian’s Human Studies Film Archives

Clip from silent edited film "Bryson Jones Travelogue: Lure of the West" (ca. 1927) shows Mount Rushmore National Memorial under construction, including blasting off cliff face, scaffolding, men working, and the completed monument.

The post Construction of Mount Rushmore National Memorial from the Smithsonian’s Human Studies Film Archives appeared first on Smithsonian Insider.