del

The history of model railroading the the Walthers 1970 O Scale Catalog

Tangled Bank posted a photo:




del

Asymptotic normality of estimators for all parameters in the Vasicek model by discrete observations

Olha Prykhodko and Kostiantyn Ralchenko
Theor. Probability and Math. Statist. 111 (), 123-135.
Abstract, references and article information




del

Woman tells Dave Ramsey that her husband has been unemployed for 13 years — and he delivered some hard truths




del

Molecular architecture and domain arrangement of the placental malaria protein VAR2CSA suggests a model for carbohydrate binding [Glycobiology and Extracellular Matrices]

VAR2CSA is the placental-malaria–specific member of the antigenically variant Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family. It is expressed on the surface of Plasmodium falciparum-infected host red blood cells and binds to specific chondroitin-4-sulfate chains of the placental proteoglycan receptor. The functional ∼310 kDa ectodomain of VAR2CSA is a multidomain protein that requires a minimum 12-mer chondroitin-4-sulfate molecule for specific, high affinity receptor binding. However, it is not known how the individual domains are organized and interact to create the receptor-binding surface, limiting efforts to exploit its potential as an effective vaccine or drug target. Using small angle X-ray scattering and single particle reconstruction from negative-stained electron micrographs of the ectodomain and multidomain constructs, we have determined the structural architecture of VAR2CSA. The relative locations of the domains creates two distinct pores that can each accommodate the 12-mer of chondroitin-4-sulfate, suggesting a model for receptor binding. This model has important implications for understanding cytoadherence of infected red blood cells and potentially provides a starting point for developing novel strategies to prevent and/or treat placental malaria.




del

Theranostics for Meningioma on the Rise: New EANM/EANO/RANO/SNMMI Guidelines Pave the Way to Improved Patient Outcomes Using Radiolabeled Somatostatin Receptor Ligands




del

SNMMI Procedure Standard/EANM Practice Guideline for Brain [18F]FDG PET Imaging, Version 2.0

PREAMBLE

The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and professional organization founded in 1954 to promote the science, technology, and practical application of nuclear medicine. The European Association of Nuclear Medicine (EANM) is a professional nonprofit medical association that facilitates communication worldwide between individuals pursuing clinical and research excellence in nuclear medicine. The EANM was founded in 1985. The EANM was founded in 1985. SNMMI and EANM members are physicians, technologists, and scientists specializing in the research and practice of nuclear medicine.

The SNMMI and EANM will periodically define new guidelines for nuclear medicine practice to help advance the science of nuclear medicine and to improve the quality of service to patients throughout the world. Existing practice guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated.

Each practice guideline, representing a policy statement by the SNMMI/EANM, has undergone a thorough consensus process in which it has been subjected to extensive review. The SNMMI and EANM recognize that the safe and effective use of diagnostic nuclear medicine imaging requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guideline by those entities not providing these services is not authorized.

These guidelines are an educational tool designed to assist practitioners in providing appropriate care for patients. They are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, both the SNMMI and the EANM caution against the use of these guidelines in litigation in which the clinical decisions of a practitioner are called into question.

The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the physician or medical physicist in light of all the circumstances presented. Thus, there is no implication that an approach differing from the guidelines, standing alone, is below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of the guidelines.

The practice of medicine includes both the art and the science of the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment.

Therefore, it should be recognized that adherence to these guidelines will not ensure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of these guidelines is to assist practitioners in achieving this objective.




del

Modeling PET Data Acquired During Nonsteady Conditions: What If Brain Conditions Change During the Scan?

Researchers use dynamic PET imaging with target-selective tracer molecules to probe molecular processes. Kinetic models have been developed to describe these processes. The models are typically fitted to the measured PET data with the assumption that the brain is in a steady-state condition for the duration of the scan. The end results are quantitative parameters that characterize the molecular processes. The most common kinetic modeling endpoints are estimates of volume of distribution or the binding potential of a tracer. If the steady state is violated during the scanning period, the standard kinetic models may not apply. To address this issue, time-variant kinetic models have been developed for the characterization of dynamic PET data acquired while significant changes (e.g., short-lived neurotransmitter changes) are occurring in brain processes. These models are intended to extract a transient signal from data. This work in the PET field dates back at least to the 1990s. As interest has grown in imaging nonsteady events, development and refinement of time-variant models has accelerated. These new models, which we classify as belonging to the first, second, or third generation according to their innovation, have used the latest progress in mathematics, image processing, artificial intelligence, and statistics to improve the sensitivity and performance of the earliest practical time-variant models to detect and describe nonsteady phenomena. This review provides a detailed overview of the history of time-variant models in PET. It puts key advancements in the field into historical and scientific context. The sum total of the methods is an ongoing attempt to better understand the nature and implications of neurotransmitter fluctuations and other brief neurochemical phenomena.




del

Addressing Climate Catastrophe Concerns in Asthma Medication Delivery: Rethinking Inhaler Use for Environmental and Clinical Efficacy




del

Mutation-independent Proteomic Signatures of Pathological Progression in Murine Models of Duchenne Muscular Dystrophy

Tirsa L. E. van Westering
Dec 1, 2020; 19:2047-2067
Research




del

Hsa-miRNA-23a-3p promotes atherogenesis in a novel mouse model of atherosclerosis

Jiayan Guo
Dec 1, 2020; 61:1764-1775
Research Articles




del

PLRP2 selectively localizes synaptic membrane proteins via acyl-chain remodeling of phospholipids

Hideaki Kuge
Dec 1, 2020; 61:1747-1763
Research Articles




del

Depletion of essential isoprenoids and ER stress induction following acute liver-specific deletion of HMG-CoA reductase

Marco De Giorgi
Dec 1, 2020; 61:1675-1686
Research Articles




del

Myeloid deletion and therapeutic activation of AMPK do not alter atherosclerosis in male or female mice

Nicholas D. LeBlond
Dec 1, 2020; 61:1697-1706
Research Articles




del

Deletion of lysophosphatidylcholine acyltransferase3 in myeloid cells worsens hepatic steatosis after a high fat diet

Thibaut Bourgeois
Dec 11, 2020; 0:jlr.RA120000737v1-jlr.RA120000737
Research Articles




del

rHDL modelling and the anchoring mechanism of LCAT activation

Tommaso Laurenzi
Dec 2, 2020; 0:jlr.RA120000843v1-jlr.RA120000843
Research Articles




del

Generation and validation of a conditional knockout mouse model for the study of the Smith-Lemli-Opitz Syndrome

Babunageswararao Kanuri
Nov 17, 2020; 0:jlr.RA120001101v1-jlr.RA120001101
Research Articles




del

Problem Notes for SAS®9 - 66537: SAS Customer Intelligence Studio becomes non-responsive when you delete a calculated variable from the Edit Value dialog box

In SAS Customer Intelligence Studio, you might notice that the user interface becomes unresponsive, as shown below: imgalt="SAS Customer Intelligence Studio UI becomes unresponsive" src="{fusion_66537




del

Problem Notes for SAS®9 - 66401: Using SAS Model Manager to publish a model to SAS Metadata Repository fails and generates an error

When you publish a model to SAS Metadata Repository by using SAS Model Manager, the publishing process fails and the following error is generated: "The model model-name has a function of ';Transformation';, which is not supported for




del

Hepatic Deletion of Mboat7 (Lpiat1) Causes Activation of SREBP-1c and Fatty Liver [Research Articles]

Genetic variants that increase the risk of fatty liver disease (FLD) and cirrhosis have recently been identified in the proximity of membrane bound O-acyltransferase domain-containing 7 (MBOAT7).  To elucidate the link between these variants and FLD we characterized Mboat7 liver-specific knock-out mice (Mboat7-LSKO).  Chow-fed Mboat7-LSKO mice developed fatty livers and associated liver injury.  Lipidomic analysis of liver using mass spectrometry revealed a pronounced reduction in 20-carbon polyunsaturated fatty acid content in phosphatidylinositols (PIs), but not in other phospholipids. The change in fatty acid composition of PIs in these mice was associated with a marked increase in de novo lipogenesis due to activation of SREBP-1c, a transcription factor that coordinates the activation of genes encoding enzymes in the fatty acid biosynthesis pathway. Hepatic removal of both SREBP cleavage activating protein (Scap) and Mboat7 normalized hepatic triglycerides relative to Scap only hepatic knock-out showing increased SREBP-1c processing is required for Mboat7 induced steatosis.  This study reveals a clear relationship between PI fatty acid composition and regulation of hepatic fat synthesis and delineates the mechanism by which mutations in MBOAT7 cause hepatic steatosis.




del

Lipid and Metabolic Syndrome Traits in Coronary Artery Disease: A Mendelian Randomization Study [Patient-Oriented and Epidemiological Research]

Mendelian randomization (MR) of lipid traits in coronary artery disease (CAD) has provided evidence for causal associations of low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG) in CAD, but many lipid trait genetic variants have pleiotropic effects on other cardiovascular risk factors that may bias MR associations. The goal of this study was to evaluate pleiotropic effects of lipid trait genetic variants and to account for these effects in MR of lipid traits in CAD. We performed multivariable MR using inverse variance-weighted (IVW) and MR-Egger methods in large (n ≥ 300,000) GWAS datasets. We found that 30% of lipid trait genetic variants have effects on metabolic syndrome traits, including body mass index (BMI), type 2 diabetes (T2D), and systolic blood pressure (SBP). Nonetheless, in multivariable MR analysis, LDL-C, high-density lipoprotein cholesterol (HDL-C), TG, BMI, T2D, and SBP are independently associated with CAD, and each of these associations is robust to adjustment for directional pleiotropy. MR at loci linked to direct effects on HDL-C and TG suggests locus- and mechanism-specific causal effects of these factors on CAD.




del

Generation and validation of a conditional knockout mouse model for the study of the Smith-Lemli-Opitz Syndrome [Research Articles]

Smith-Lemli-Opitz Syndrome (SLOS) is a developmental disorder (OMIM #270400) caused by autosomal recessive mutations in the Dhcr7 gene, which encodes the enzyme 3β-hydroxysterol-7 reductase. SLOS patients present clinically with dysmorphology and neurological, behavioral and cognitive defects, with characteristically elevated levels of 7-dehydrocholesterol (7-DHC) in all bodily tissues and fluids. Previous mouse models of SLOS have been hampered by postnatal lethality when Dhcr7 is knocked out globally, while a hypomorphic mouse model showed improvement in the biochemical phenotype with ageing, and did not manifest most other characteristic features of SLOS. We report the generation of a conditional knockout of Dhcr7 (Dhcr7flx/flx), validated by generating a mouse with a liver-specific deletion (Dhcr7L-KO). Phenotypic characterization of liver-specific knockout mice revealed no significant changes in viability, fertility, growth curves, liver architecture, hepatic triglyceride secretion, or parameters of systemic glucose homeostasis. Furthermore, qPCR and RNA-Seq analyses of livers revealed no perturbations in pathways responsible for cholesterol synthesis, either in male or female Dhcr7L-KO mice, suggesting hepatic disruption of post-squalene cholesterol synthesis leads to minimal impact on sterol metabolism in the liver. This validated conditional Dhcr7 knockout model may now allow us to systematically explore the pathophysiology of SLOS, by allowing for temporal, cell and tissue-specific loss of DHCR7.




del

rHDL modelling and the anchoring mechanism of LCAT activation [Research Articles]

Lecithin:cholesterol-acyl-transferase (LCAT) plays a major role in cholesterol metabolism as it is the only extracellular enzyme able to esterify cholesterol. LCAT activity is required for lipoprotein remodelling and, most specifically, for the growth and maturation of HDLs. In fact, genetic alterations affecting LCAT func- tionality may cause a severe reduction in plasma levels of HDL-cholesterol with important clinical consequences. Although several hypotheses were formulated, the exact molecular recognition mechanism between LCAT and HDLs is still unknown. We employed a combination of structural bioinformatics procedures to deepen the insights into the HDL-LCAT interplay that promotes LCAT activation and cholesterol esterification. We have generated a data-driven model of reconstituted HDL (rHDL) and studied the dynamics of an assembled rHDL::LCAT supramolecular complex, pinpointing the conformational changes originating from the interaction between LCAT and apolipoprotein A-I (apoA-I) that are necessary for LCAT activation. Specifically, we propose a mechanism in which the anchoring of LCAT lid to apoA-I helices allows the formation of a hydrophobic hood that expands LCAT active site and shields it from the solvent, allowing the enzyme to process large hydrophobic substrates.




del

Deletion of lysophosphatidylcholine acyltransferase3 in myeloid cells worsens hepatic steatosis after a high fat diet [Research Articles]

Recent studies have highlighted an important role for lysophosphatidylcholine acyltransferase 3 (LPCAT3) in controlling the PUFA composition of cell membranes in the liver and intestine. In these organs, LPCAT3 critically supports cell membrane-associated processes such as lipid absorption or lipoprotein secretion. However, the role of LPCAT3 in macrophages remains controversial. Here, we investigated LPCAT3’s role in macrophages both in vitro and in vivo in mice with atherosclerosis and obesity. To accomplish this, we used the LysMCre strategy to develop a mouse model with conditional Lpcat3 deficiency in myeloid cells (Lpcat3KOMac). We observed that partial Lpcat3 deficiency (approx. 75% reduction) in macrophages alters the PUFA composition of all phospholipid (PL) subclasses, including phosphatidylinositols and phosphatidylserines. A reduced incorporation of C20 PUFAs (mainly arachidonic acid [AA]) into PLs was associated with a redistribution of these FAs toward other cellular lipids such as cholesteryl esters. Lpcat3 deficiency had no obvious impact on macrophage inflammatory response or endoplasmic reticulum (ER) stress; however, Lpcat3KOMac macrophages exhibited a reduction in cholesterol efflux in vitro. In vivo, myeloid Lpcat3 deficiency did not affect atherosclerosis development in LDL receptor deficient mouse (Ldlr-/-) mice. Lpcat3KOMac mice on a high-fat diet displayed a mild increase in hepatic steatosis associated with alterations in several liver metabolic pathways and in liver eicosanoid composition. We conclude that alterations in AA metabolism along with myeloid Lpcat3 deficiency may secondarily affect AA homeostasis in the whole liver, leading to metabolic disorders and triglyceride accumulation.




del

{beta}-Carotene conversion to vitamin A delays atherosclerosis progression by decreasing hepatic lipid secretion in mice [Research Articles]

Atherosclerosis is characterized by the pathological accumulation of cholesterol-laden macrophages in the arterial wall. Atherosclerosis is also the main underlying cause of CVDs, and its development is largely driven by elevated plasma cholesterol. Strong epidemiological data find an inverse association between plasma β-carotene with atherosclerosis, and we recently showed that β-carotene oxygenase 1 (BCO1) activity, responsible for β-carotene cleavage to vitamin A, is associated with reduced plasma cholesterol in humans and mice. In this study, we explore whether intact β-carotene or vitamin A affects atherosclerosis progression in the atheroprone LDLR-deficient mice. Compared with control-fed Ldlr–/– mice, β-carotene-supplemented mice showed reduced atherosclerotic lesion size at the level of the aortic root and reduced plasma cholesterol levels. These changes were absent in Ldlr–/–/Bco1–/– mice despite accumulating β-carotene in plasma and atherosclerotic lesions. We discarded the implication of myeloid BCO1 in the development of atherosclerosis by performing bone marrow transplant experiments. Lipid production assays found that retinoic acid, the active form of vitamin A, reduced the secretion of newly synthetized triglyceride and cholesteryl ester in cell culture and mice. Overall, our findings provide insights into the role of BCO1 activity and vitamin A in atherosclerosis progression through the regulation of hepatic lipid metabolism.




del

Assessing the role of glycosphingolipids in the phenotype severity of Fabry disease mouse model [Research Articles]

Fabry disease is caused by deficient activity of α-galactosidase A, an enzyme that hydrolyzes the terminal α-galactosyl moieties from glycolipids and glycoproteins, and subsequent accumulation of glycosphingolipids, mainly globotriaosylceramide (Gb3), globotriaosylsphingosine (lyso-Gb3), and galabiosylceramide. However, there is no known link between these compounds and disease severity. In this study, we compared Gb3 isoforms (various fatty acids) and lyso-Gb3 analogs (various sphingosine modifications) in two strains of Fabry disease mouse models: a pure C57BL/6 (B6) background or a B6/129 mixed background, with the latter exhibiting more prominent cardiac and renal hypertrophy and thermosensation deficits. Total Gb3 and lyso-Gb3 levels in the heart, kidney, and dorsal root ganglion (DRG) were similar in the two strains. However, levels of the C20-fatty acid isoform of Gb3 and particular lyso-Gb3 analogs (+18, +34) were significantly higher in Fabry-B6/129 heart tissue when compared with Fabry-B6. By contrast, there was no difference in Gb3 and lyso-Gb3 isoforms/analogs in the kidneys and DRG between the two strains. Furthermore, using immunohistochemistry, we found that Gb3 massively accumulated in DRG mechanoreceptors, a sensory neuron subpopulation with preserved function in Fabry disease. However, Gb3 accumulation was not observed in nonpeptidergic nociceptors, the disease-relevant subpopulation that has remarkably increased isolectin-B4 (the marker of nonpeptidergic nociceptors) binding and enlarged cell size. These findings suggest that specific species of Gb3 or lyso-Gb3 may play major roles in the pathogenesis of Fabry disease, and that Gb3 and lyso-Gb3 are not responsible for the pathology in all tissues or cell types.




del

Hsa-miRNA-23a-3p promotes atherogenesis in a novel mouse model of atherosclerosis [Research Articles]

Of the known regulators of atherosclerosis, miRNAs have been demonstrated to play critical roles in lipoprotein homeostasis and plaque formation. Here, we generated a novel animal model of atherosclerosis by knocking in LDLRW483X in C57BL/6 mice, as the W483X mutation in LDLR is considered the most common newly identified pathogenic mutation in Chinese familial hypercholesterolemia (FH) individuals. Using the new in vivo mouse model combined with a well-established atherosclerotic in vitro human cell model, we identified a novel atherosclerosis-related miRNA, miR-23a-3p, by microarray analysis of mouse aortic tissue specimens and human aortic endothelial cells (HAECs). miR-23a-3p was consistently downregulated in both models, which was confirmed by qPCR. Bioinformatics analysis and further validation experiments revealed that the TNFα-induced protein 3 (TNFAIP3) gene was the key target of miR-23a-3p. The miR-23a-3p-related functional pathways were then analyzed in HAECs. Collectively, the present results suggest that miR-23a-3p regulates inflammatory and apoptotic pathways in atherogenesis by targeting TNFAIP3 through the NF-B and p38/MAPK signaling pathways.




del

PLRP2 selectively localizes synaptic membrane proteins via acyl-chain remodeling of phospholipids [Research Articles]

The plasma membrane of neurons consists of distinct domains, each of which carries specialized functions and a characteristic set of membrane proteins. While this compartmentalized membrane organization is essential for neuronal functions, it remains controversial how neurons establish these domains on the laterally fluid membrane. Here, using immunostaining, lipid-MS analysis and gene ablation with the CRISPR/Cas9 system, we report that the pancreatic lipase-related protein 2 (PLRP2), a phospholipase A1 (PLA1), is a key organizer of membrane protein localization at the neurite tips of PC12 cells. PLRP2 produced local distribution of 1-oleoyl-2-palmitoyl-PC at these sites through acyl-chain remodeling of membrane phospholipids. The resulting lipid domain assembled the syntaxin 4 (Stx4) protein within itself by selectively interacting with the transmembrane domain of Stx4. The localized Stx4, in turn, facilitated the fusion of transport vesicles that contained the dopamine transporter with the domain of the plasma membrane, which led to the localized distribution of the transporter to that domain. These results revealed the pivotal roles of PLA1, specifically PLRP2, in the formation of functional domains in the plasma membrane of neurons. In addition, our results suggest a mode of membrane organization in which the local acyl-chain remodeling of membrane phospholipids controls the selective localization of membrane proteins by regulating both lipid-protein interactions and the fusion of transport vesicles to the lipid domain.




del

Myeloid deletion and therapeutic activation of AMPK do not alter atherosclerosis in male or female mice [Research Articles]

The dysregulation of myeloid-derived cell metabolism can drive atherosclerosis. AMP-activated protein kinase (AMPK) controls various aspects of macrophage dynamics and lipid homeostasis, which are important during atherogenesis. Using LysM-Cre to drive the deletion of both the α1 and α2 catalytic subunits (MacKO), we aimed to clarify the role of myeloid-specific AMPK signaling in male and female mice made acutely atherosclerotic by injection of AAV vector encoding a gain-of-function mutant PCSK9 (PCSK9-AAV) and WD feeding. After 6 weeks of WD feeding, mice received a daily injection of either the AMPK activator A-769662 or a vehicle control for an additional 6 weeks. Following this (12 weeks total), we assessed myeloid cell populations and differences between genotype or sex were not observed. Similarly, aortic sinus plaque size, lipid staining, and necrotic area did not differ in male and female MacKO mice compared with their littermate floxed controls. Moreover, therapeutic intervention with A-769662 showed no treatment effect. There were also no observable differences in the amount of circulating total cholesterol or triglyceride, and only minor differences in the levels of inflammatory cytokines between groups. Finally, CD68+ area and markers of autophagy showed no effect of either lacking AMPK signaling or AMPK activation. Our data suggest that while defined roles for each catalytic AMPK subunit have been identified, complete deletion of myeloid AMPK signaling does not significantly impact atherosclerosis. Additionally, these findings suggest that intervention with the first-generation AMPK activator A-769662 is not able to stem the progression of atherosclerosis.




del

Depletion of essential isoprenoids and ER stress induction following acute liver-specific deletion of HMG-CoA reductase [Research Articles]

HMG-CoA reductase (Hmgcr) is the rate-limiting enzyme in the mevalonate pathway and is inhibited by statins. In addition to cholesterol, Hmgcr activity is also required for synthesizing nonsterol isoprenoids, such as dolichol, ubiquinone, and farnesylated and geranylgeranylated proteins. Here, we investigated the effects of Hmgcr inhibition on nonsterol isoprenoids in the liver. We have generated new genetic models to acutely delete genes in the mevalonate pathway in the liver using AAV-mediated delivery of Cre-recombinase (AAV-Cre) or CRISPR/Cas9 (AAV-CRISPR). The genetic deletion of Hmgcr by AAV-Cre resulted in extensive hepatocyte apoptosis and compensatory liver regeneration. At the biochemical level, we observed decreased levels of sterols and depletion of the nonsterol isoprenoids, dolichol and ubiquinone. At the cellular level, Hmgcr-null hepatocytes showed ER stress and impaired N-glycosylation. We further hypothesized that the depletion of dolichol, essential for N-glycosylation, could be responsible for ER stress. Using AAV-CRISPR, we somatically disrupted dehydrodolichyl diphosphate synthase subunit (Dhdds), encoding a branch point enzyme required for dolichol biosynthesis. Dhdds-null livers showed ER stress and impaired N-glycosylation, along with apoptosis and regeneration. Finally, the combined deletion of Hmgcr and Dhdds synergistically exacerbated hepatocyte ER stress. Our data show a critical role for mevalonate-derived dolichol in the liver and suggest that dolichol depletion is at least partially responsible for ER stress and apoptosis upon potent Hmgcr inhibition.




del

Proteomics and Metaproteomics Add Functional, Taxonomic and Biomass Dimensions to Modeling the Ecosystem at the Mucosal-luminal Interface [Review]

Recent efforts in gut microbiome studies have highlighted the importance of explicitly describing the ecological processes beyond correlative analysis. However, we are still at the early stage of understanding the organizational principles of the gut ecosystem, partially because of the limited information provided by currently used analytical tools in ecological modeling practices. Proteomics and metaproteomics can provide a number of insights for ecological studies, including biomass, matter and energy flow, and functional diversity. In this Mini Review, we discuss proteomics and metaproteomics-based experimental strategies that can contribute to studying the ecology, in particular at the mucosal-luminal interface (MLI) where the direct host-microbiome interaction happens. These strategies include isolation protocols for different MLI components, enrichment methods to obtain designated array of proteins, probing for specific pathways, and isotopic labeling for tracking nutrient flow. Integration of these technologies can generate spatiotemporal and site-specific biological information that supports mathematical modeling of the ecosystem at the MLI.




del

Analytical Guidelines for co-fractionation Mass Spectrometry Obtained through Global Profiling of Gold Standard Saccharomyces cerevisiae Protein Complexes [Research]

Co-fractionation MS (CF-MS) is a technique with potential to characterize endogenous and unmanipulated protein complexes on an unprecedented scale. However this potential has been offset by a lack of guidelines for best-practice CF-MS data collection and analysis. To obtain such guidelines, this study thoroughly evaluates novel and published Saccharomyces cerevisiae CF-MS data sets using very high proteome coverage libraries of yeast gold standard complexes. A new method for identifying gold standard complexes in CF-MS data, Reference Complex Profiling, and the Extending 'Guilt-by-Association' by Degree (EGAD) R package are used for these evaluations, which are verified with concurrent analyses of published human data. By evaluating data collection designs, which involve fractionation of cell lysates, it is found that near-maximum recall of complexes can be achieved with fewer samples than published studies. Distributing sample collection across orthogonal fractionation methods, rather than a single high resolution data set, leads to particularly efficient recall. By evaluating 17 different similarity scoring metrics, which are central to CF-MS data analysis, it is found that two metrics rarely used in past CF-MS studies – Spearman and Kendall correlations – and the recently introduced Co-apex metric frequently maximize recall, whereas a popular metric—Euclidean distance—delivers poor recall. The common practice of integrating external genomic data into CF-MS data analysis is also evaluated, revealing that this practice may improve the precision and recall of known complexes but is generally unsuitable for predicting novel complexes in model organisms. If studying nonmodel organisms using orthologous genomic data, it is found that particular subsets of fractionation profiles (e.g. the lowest abundance quartile) should be excluded to minimize false discovery. These assessments are summarized in a series of universally applicable guidelines for precise, sensitive and efficient CF-MS studies of known complexes, and effective predictions of novel complexes for orthogonal experimental validation.




del

Mutation-independent Proteomic Signatures of Pathological Progression in Murine Models of Duchenne Muscular Dystrophy [Research]

The absence of the dystrophin protein in Duchenne muscular dystrophy (DMD) results in myofiber fragility and a plethora of downstream secondary pathologies. Although a variety of experimental therapies are in development, achieving effective treatments for DMD remains exceptionally challenging, not least because the pathological consequences of dystrophin loss are incompletely understood. Here we have performed proteome profiling in tibialis anterior muscles from two murine DMD models (mdx and mdx52) at three ages (8, 16, and 80 weeks of age), all n = 3. High-resolution isoelectric focusing liquid chromatography-tandem MS (HiRIEF-LC–MS/MS) was used to quantify the expression of 4974 proteins across all 27 samples. The two dystrophic models were found to be highly similar, whereas multiple proteins were differentially expressed relative to WT (C57BL/6) controls at each age. Furthermore, 1795 proteins were differentially expressed when samples were pooled across ages and dystrophic strains. These included numerous proteins associated with the extracellular matrix and muscle function that have not been reported previously. Pathway analysis revealed multiple perturbed pathways and predicted upstream regulators, which together are indicative of cross-talk between inflammatory, metabolic, and muscle growth pathways (e.g. TNF, INF, NF-B, SIRT1, AMPK, PGC-1α, PPARs, ILK, and AKT/PI3K). Upregulation of CAV3, MVP and PAK1 protein expression was validated in dystrophic muscle by Western blot. Furthermore, MVP was upregulated during, but not required for, the differentiation of C2C12 myoblasts suggesting that this protein may affect muscle regeneration. This study provides novel insights into mutation-independent proteomic signatures characteristic of the dystrophic phenotype and its progression with aging.




del

Bayesian Proteoform Modeling Improves Protein Quantification of Global Proteomic Measurements [Technology]

As the capability of mass spectrometry-based proteomics has matured, tens of thousands of peptides can be measured simultaneously, which has the benefit of offering a systems view of protein expression. However, a major challenge is that with an increase in throughput, protein quantification estimation from the native measured peptides has become a computational task. A limitation to existing computationally-driven protein quantification methods is that most ignore protein variation, such as alternate splicing of the RNA transcript and post-translational modifications or other possible proteoforms, which will affect a significant fraction of the proteome. The consequence of this assumption is that statistical inference at the protein level, and consequently downstream analyses, such as network and pathway modeling, have only limited power for biomarker discovery. Here, we describe a Bayesian model (BP-Quant) that uses statistically derived peptides signatures to identify peptides that are outside the dominant pattern, or the existence of multiple over-expressed patterns to improve relative protein abundance estimates. It is a research-driven approach that utilizes the objectives of the experiment, defined in the context of a standard statistical hypothesis, to identify a set of peptides exhibiting similar statistical behavior relating to a protein. This approach infers that changes in relative protein abundance can be used as a surrogate for changes in function, without necessarily taking into account the effect of differential post-translational modifications, processing, or splicing in altering protein function. We verify the approach using a dilution study from mouse plasma samples and demonstrate that BP-Quant achieves similar accuracy as the current state-of-the-art methods at proteoform identification with significantly better specificity. BP-Quant is available as a MatLab ® and R packages at https://github.com/PNNL-Comp-Mass-Spec/BP-Quant.




del

Translating Divergent Environmental Stresses into a Common Proteome Response through Hik33 in a Model Cyanobacterium [Research]

The histidine kinase Hik33 plays important roles in mediating cyanobacterial response to divergent types of abiotic stresses including cold, salt, high light (HL), and osmotic stresses. However, how these functions are regulated by Hik33 remains to be addressed. Using a hik33-deficient strain (hik33) of Synechocystis sp. PCC 6803 (Synechocystis) and quantitative proteomics, we found that Hik33 depletion induces differential protein expression highly similar to that induced by divergent types of stresses. This typically includes downregulation of proteins in photosynthesis and carbon assimilation that are necessary for cell propagation, and upregulation of heat shock proteins, chaperons, and proteases that are important for cell survival. This observation indicates that depletion of Hik33 alone mimics divergent types of abiotic stresses, and that Hik33 could be important for preventing abnormal stress response in the normal condition. Moreover, we found the majority of proteins of plasmid origin were significantly upregulated in hik33, though their biological significance remains to be addressed. Together, the systematically characterized Hik33-regulated cyanobacterial proteome, which is largely involved in stress responses, builds the molecular basis for Hik33 as a general regulator of stress responses.




del

Delivering Sustainable Food and Land Use Systems: The Role of International Trade

Delivering Sustainable Food and Land Use Systems: The Role of International Trade Research paper sysadmin 20 September 2019

This paper explores a set of core trade-related issues affecting the food and land use system, and proposes constructive ways forward in reconfiguring the global trading system towards delivering a more sustainable and healthy diet for all.

Aerial view of containers sitting stacked at Qingdao Port in the Shandong province of China. Photo by Han Jiajun/Visual China Group via Getty Images.

  • Meeting future global food security requirements is not just about quantity; it is also about meeting growing needs in a way that safeguards human as well as planetary health. But national priorities and policies often remain out of sync with aspirations for more sustainable and healthy food systems.
  • International trade and trade policies play an ambiguous role in the current food system. With 80 per cent of the world’s population depending on imports to meet at least part of their food and nutritional requirements, trade has a unique function in offsetting imbalances between supply and demand. However, in the absence of effective regulatory frameworks or pricing frameworks that internalize environmental, social or health costs, trade can exacerbate and globalize challenges associated with food production and land use trends such as deforestation, land degradation, greenhouse gas emissions, biodiversity loss and the shift to unhealthy diets.
  • Over the last two decades, trade in agricultural products (excluding intra-EU flows) has more than tripled in value, to reach $1.33 trillion. The geography of global food trade flows has also shifted, primarily towards South–South trade, which now accounts for roughly a quarter of total agricultural trade flows. The nature of global trade has changed drastically, with traditional exports such as wheat and coffee growing slowly at around 2 per cent per year, while products such as palm oil, fruit juice, soft drinks and other processed products have grown at 8 per cent or more annually.
  • This overall increase in trade in agricultural products raises questions about the growing utilization of resources, such as water or soil nutrients, that are embedded in those products through production and processing. Trade itself also causes negative environmental impacts, starting with greenhouse gas emissions associated with transport and storage. If the environmental cost associated with production and trade is not reflected in the final price of goods, trade may accelerate the depletion of resources or their unsustainable use.
  • It is critical to ensure that trade policy options pursued by producing and consuming countries alike will support a transition to more sustainable and healthier food and land use systems. The first step in addressing trade-related food systems challenges must involve rebuilding trust among policy actors. There is a need for new spaces for informal dialogue among actors, and ‘soft’ governance mechanisms that can help rebuild consensus on the best ways forward. Meeting these challenges also requires an appreciation of the complex interactions between sectoral policies (e.g. on water, land, food, etc.) and their multiple interfaces with trade policies.
  • Conditioning the use of subsidies on their sustainability and/or health impacts encourages the delivery of essential public goods in ways that are consistent with sustainability and health goals. A first step therefore is the removal of perverse incentives (e.g. subsidies encouraging the overuse of fertilizers or pesticides or the overproduction of certain commodities, as well as certain biofuels subsidies) and replacing them with market-correcting subsidies.
  • Trade facilitation measures for fruits and vegetables that are aimed at easing transit at the border, by cutting unnecessary bureaucracy and reducing waiting times, can improve their availability, reduce costs and improve food quality and safety for consumers. Similarly, measures aimed at improving sustainable cold storage and upgrading value chains can support better diets and consumption by increasing the availability of fresh produce on markets, especially in developing countries.
  • A global food stamps programme developed through the G20 and facilitated by the UN’s food agencies could address purchasing power imbalances and tackle malnutrition in developing countries. If carefully designed, such ‘safety net’ schemes can not only contribute to improving calorific intakes but also help deliver more balanced and healthier diets. Careful attention must be given to how such a scheme would work in practice, building on experience to date with similar initiatives.
  • Integrating the notion of sustainable food and inputs trade in the post-2020 global biodiversity framework can help to deliver more sustainable and healthier food and land use systems. This could be achieved by likeminded countries introducing a set of goals or targets aimed at mitigating the role of trade in placing indirect pressure on biodiversity, and to encourage trade in biodiversity-based products including natural ingredients produced ethically and following sustainability principles and criteria.
  • An SDG-oriented agenda for agricultural trade is needed. It could be formed by countries seeking to remove perverse incentives, guaranteeing a safe harbour for market-correcting measures, clarifying existing rules and establishing plurilateral negotiations among subsets of the WTO membership, or sectoral approaches, to address specific challenges.
  • Greenhouse gas emissions resulting from trade need to be addressed. Governments could seek to achieve this through ensuring the carbon neutrality of existing and new trade deals, either by connecting carbon markets among contracting parties or by developing joint initiatives to tax international maritime and air transport emissions.




del

Optimized incorporation of an unnatural fluorescent amino acid affords measurement of conformational dynamics governing high-fidelity DNA replication [DNA and Chromosomes]

DNA polymerase from bacteriophage T7 undergoes large, substrate-induced conformational changes that are thought to account for high replication fidelity, but prior studies were adversely affected by mutations required to construct a Cys-lite variant needed for site-specific fluorescence labeling. Here we have optimized the direct incorporation of a fluorescent un-natural amino acid, (7-hydroxy-4-coumarin-yl)-ethylglycine, using orthogonal amber suppression machinery in Escherichia coli. MS methods verify that the unnatural amino acid is only incorporated at one position with minimal background. We show that the single fluorophore provides a signal to detect nucleotide-induced conformational changes through equilibrium and stopped-flow kinetic measurements of correct nucleotide binding and incorporation. Pre-steady-state chemical quench methods show that the kinetics and fidelity of DNA replication catalyzed by the labeled enzyme are largely unaffected by the unnatural amino acid. These advances enable rigorous analysis to establish the kinetic and mechanistic basis for high-fidelity DNA replication.




del

Public Service, Accountability and Delivery in Malawi

Public Service, Accountability and Delivery in Malawi 17 October 2018 — 12:00PM TO 1:00PM Anonymous (not verified) 11 October 2018 Chatham House, London

On 21 May 2019, Malawi will hold presidential, parliamentary and local ward elections. Public concerns of periodic food shortages and power outages, together with continuing fiscal uncertainty amidst spiralling public debt, bring added significance to this electoral process and beyond as well as significant pressures on the next government. Vice President Saulos Chilima‘s decision to form a new party, the United Transformation Party (UTM), as well as the return of former president Joyce Banda to mainstream politics, mean that with such issues at stake, and political discourse dominated by allegations of corruption, Malawi’s leaders across the spectrum will need clear policy focus to address the country’s significant challenges and meet citizens’ needs.
Vice President Chilima will discuss the formation of the UTM and how to foster intra-party democracy. He will present its approach to poverty reduction, addressing economic instability and challenges ahead of next year’s elections.
THIS EVENT IS NOW FULL AND REGISTRATION HAS CLOSED.




del

Webinar: Finding Solutions to Insecurity in Cabo Delgado

Webinar: Finding Solutions to Insecurity in Cabo Delgado 16 June 2020 — 3:00PM TO 4:30PM Anonymous (not verified) 9 June 2020

Since October 2017, armed attacks in Cabo Delgado, Northern Mozambique have increased in intensity and the spread has widened. Over 1,000 people are thought to have died, and an unknown number of homes and public buildings destroyed. Reports suggest that more than 100,000 people have been internally displaced by these attacks that have been attributed to an armed Islamist sect.
Yet very little is known about who the attackers are, what their strategic objectives are and on whose domestic and international support they rely. Developing multi-faceted solutions to this insecurity will require detailed understanding of the drivers of this extremism, its connection to local informal and illicit economic activity, and the social and structural roots of disenfranchisement and disenchantment.
At this online event, the speakers explore the structural causes, drivers and dynamics of the armed attacks in Cabo Delgado, including the regional and international aspects of the situation.




del

Development and validation of outcome prediction models for aneurysmal subarachnoid haemorrhage: the SAHIT multinational cohort study




del

Artificial pancreases for type 1 diabetes: Better access is “watershed moment”—but delivery is key




del

Why the UK must deliver on Nordic-Baltic security

Why the UK must deliver on Nordic-Baltic security Expert comment NCapeling 16 December 2022

Hard choices are needed but it is crucial the UK provides security and leadership to its European partners given the wider context of the war in Ukraine.

The UK’s role in Nordic-Baltic security has been growing over the past decade. The region is key to core British strategic interest and engagement, and UK threat assessment closely aligns with long-held regional perspectives – the 2021 Integrated Review defines Russia as ‘the most acute threat to our security’.

Since Russia’s invasion of Ukraine, the UK’s strong stance towards Moscow and the concrete steps taken to assist Ukraine and strengthen defence and deterrence on NATO’s eastern flank have been widely appreciated in the Nordic-Baltic region.

The UK is seen as a reliable partner but, for it to continue to deliver in the region, difficult choices must be made with regards to UK defence spending and military capabilities, and London’s more global ambitions.

The UK is a major contributor to NATO’s deterrence posture on the eastern flank, serving as a framework nation for NATO’s Enhanced Forward Presence (EFP) battlegroup in Estonia, and contributing to another battlegroup in Poland.

UK remains crucial to regional security

Coupled with its contribution to NATO’s Baltic Air Policing mission and maritime forces in the area, the UK is a crucial security partner both in the region and in a broader arch across Europe.

The UK offers military capability, strong political will, a long-standing tradition of engagement in the Nordic-Baltic area, and fast decision-making

Over the past decade and a half, the UK has been developing a dense network of bilateral and minilateral relations in the region which are major assets in the current security environment.

It leads the Joint Expeditionary Force (JEF) which is a military cooperation format highly valued for its flexibility in responding to the needs of the participating nations – including non-NATO Sweden and Finland – and is increasingly focused on the North Atlantic, High North and wider Baltic areas. The UK has also seen increased bilateral defence cooperation with Norway, Denmark, Estonia, and other regional allies and partners.

There are reasonable expectations that Germany or France may at some point assume a greater role in this part of Europe, building on France’s participation in the EFP in Estonia, and Germany’s lead of the EFP in Lithuania.

However, while Paris remains more focused on NATO’s southern (and south-eastern) flank and building the European Union’s defence role, Berlin often underperforms as a leading or an organizing power of collaborative efforts across Europe.

Both also have a credibility problem in the Nordic-Baltic region due to their past policies towards Russia that occasionally reappear when discussing military support to Ukraine or how to treat Russia in the post-war European security order.

By contrast, the UK offers military capability, strong political will, a long-standing tradition of engagement in the Nordic-Baltic area, and fast decision-making.

The latter is exemplified by the bilateral security guarantees provided to Sweden and Finland during their accession to NATO, and the surge of assets sent to the region in the wake of Russia’s full-scale invasion of Ukraine such as an additional battlegroup and Chinook helicopters to Estonia, as well as forward-deployed elements of the Standing Joint Force Headquarters to Latvia and Lithuania as part of the JEF.

Such pragmatic and resolute engagement help substantiate the UK’s post-Brexit claim that although it left the EU, it did not leave Europe. London also understands and facilitates the pivotal role that the US plays in European security – a shared perspective with the Nordic-Baltic partners.

Only the US – which has just recently decided to step up its military presence in the Baltics – has a greater appeal than the UK as a major ally. But Washington’s truly global responsibilities make it more difficult for it to play a regional leadership role.

With the context of the war in Ukraine, the centre of gravity of European security is moving east. The Nordic-Baltic region is likely to feature more prominently in the upcoming refresh of the UK’s Integrated Review, as the war in Ukraine and NATO’s new forward defence approach will focus UK attention and military capabilities on Europe for the foreseeable future.

But the UK still has limited resources and, despite the worsening security environment, there is currently no commitment by the Rishi Sunak government to increase defence spending beyond two per cent of GDP, as set out in the recently-published Autumn Statement.

This difficult fiscal reality contrasts UK ambition to also increase its footprint and engagement in the Indo-Pacific, a region highlighted by Rishi Sunak in his first foreign policy speech. London is already confronted with increasing expectations from its Nordic and Baltic partners, which are rattled by Russia’s aggression and seek more engagement and commitments from larger and more resourceful allies, and are insisting on prompt implementation of NATO’s new defence and deterrence plans.

This all comes on top of the resources that further assistance to Ukraine will require in the coming months and years. Balancing competing priorities and demands from partners is routine for a major power with global ambition but, in the current context, if the UK government fails to prioritize and increase resources, over-extension is in sight for its armed forces.

The war in Ukraine confirms that, beyond the rhetoric around the ‘Indo-Pacific tilt’, the Euro-Atlantic is – and will remain – the priority theatre of engagement for the UK. To keep delivering in the Nordic-Baltic region and remain a reliable partner, UK ambitions should be set clearly, and expectations managed with regional partners.

A good example is the recent UK-Estonia joint statement and defence roadmap, which is an attempt to reconcile London’s vision of modern deterrence with Tallinn’s preference for ‘more boots on the ground’.

The UK gains many benefits from deepening and widening its engagement in the Nordic-Baltic region, and not only by showcasing its regional leadership at a time of dire need or having more weight in Europe and across the Atlantic

The joint statement also clarifies initial misunderstandings regarding the upcoming withdrawal of the second UK battlegroup deployed to Estonia in the wake of Russia’s invasion of Ukraine – support Tallinn expected to continue ‘as long as necessary’ but London saw as temporary. It offsets the poor political ‘optics’ of the withdrawal while providing solid ground for deepening the common agenda in the near future.

By the 2023 NATO summit in Vilnius, progress on implementing the roadmap will be a crucial measure of success for the bilateral relationship, and for the UK’s broader regional role. It should serve as an opportunity for the UK to reflect on its force development priorities and balance, with Baltic partners arguing in favour of the UK rebuilding some mass in its armed forces and providing more resources to the land component.

Much to gain for the UK

The UK gains many benefits from deepening and widening its engagement in the Nordic-Baltic region, and not only by showcasing its regional leadership at a time of dire need or having more weight in Europe and across the Atlantic in strategic debates about future security architecture.




del

Molecular Imaging of p53 in Mouse Models of Cancer Using a Radiolabeled Antibody TAT Conjugate with SPECT

Mutations of p53 protein occur in over half of all cancers, with profound effects on tumor biology. We present the first—to our knowledge—method for noninvasive visualization of p53 in tumor tissue in vivo, using SPECT, in 3 different models of cancer. Methods: Anti-p53 monoclonal antibodies were conjugated to the cell-penetrating transactivator of transcription (TAT) peptide and a metal ion chelator and then radiolabeled with 111In to allow SPECT imaging. 111In-anti-p53-TAT conjugates were retained longer in cells overexpressing p53-specific than non–p53-specific 111In-mIgG (mouse IgG from murine plasma)-TAT controls, but not in null p53 cells. Results: In vivo SPECT imaging showed enhanced uptake of 111In-anti-p53-TAT, versus 111In-mIgG-TAT, in high-expression p53R175H and medium-expression wild-type p53 but not in null p53 tumor xenografts. The results were confirmed in mice bearing genetically engineered KPC mouse–derived pancreatic ductal adenocarcinoma tumors. Imaging with 111In-anti-p53-TAT was possible in KPC mice bearing spontaneous p53R172H pancreatic ductal adenocarcinoma tumors. Conclusion: We demonstrate the feasibility of noninvasive in vivo molecular imaging of p53 in tumor tissue using a radiolabeled TAT-modified monoclonal antibody.




del

Amazon starts air drone deliveries near Phoenix

Amazon Prime Air drone deliveries are underway and delivering small packages within an hour in the West Valley of the Phoenix metro area.




del

CMG Targets Faster Simulation Solutions with NVIDIA for Enhanced Reservoir Modeling

CALGARY, Alberta, Nov. 5, 2024 — Computer Modelling Group Ltd. (CMG) has announced it is collaborating with NVIDIA to further develop and optimize CMG subsurface simulation solutions for increased speed, […]

The post CMG Targets Faster Simulation Solutions with NVIDIA for Enhanced Reservoir Modeling appeared first on HPCwire.




del

IBM and NASA Launch Open-Source AI Model for Advanced Climate and Weather Research

IBM and NASA have developed a new AI foundation model for a wide range of climate and weather applications, with contributions from the Department of Energy’s Oak Ridge National Laboratory. […]

The post IBM and NASA Launch Open-Source AI Model for Advanced Climate and Weather Research appeared first on HPCwire.




del

Archetype AI’s Newton Model Masters Physics From Raw Data

Physicists have developed a deep understanding of the fundamental laws of nature through careful observations, experiments, and precise measurements. However, what if artificial intelligence (AI) could uncover governing laws of […]

The post Archetype AI’s Newton Model Masters Physics From Raw Data appeared first on HPCwire.





del

BSC Develops AI Model to Predict Stroke Risk Using Mobile Devices

Nov. 8, 2024 — Barcelona Supercomputing Center‘s Innostroke project aims to transform the prevention and monitoring of stroke, one of the leading causes of death and disability worldwide, through artificial […]

The post BSC Develops AI Model to Predict Stroke Risk Using Mobile Devices appeared first on HPCwire.




del

Quantum Algorithms Institute Drives Predictive Model Accuracy with Quantum Collaboration

SURREY, British Columbia, Nov. 12, 2024 — Today, the Quantum Algorithms Institute (QAI) announced a partnership with Canadian companies, AbaQus and InvestDEFY Technologies, to solve common challenges in training machine learning […]

The post Quantum Algorithms Institute Drives Predictive Model Accuracy with Quantum Collaboration appeared first on HPCwire.




del

3 Personality Traits Associated With Infidelity

Up to 50% of people admit cheating on their partner.