for

Coding for Optimized Writing Rate in DNA Storage. (arXiv:2005.03248v1 [cs.IT])

A method for encoding information in DNA sequences is described. The method is based on the precision-resolution framework, and is aimed to work in conjunction with a recently suggested terminator-free template independent DNA synthesis method. The suggested method optimizes the amount of information bits per synthesis time unit, namely, the writing rate. Additionally, the encoding scheme studied here takes into account the existence of multiple copies of the DNA sequence, which are independently distorted. Finally, quantizers for various run-length distributions are designed.




for

DFSeer: A Visual Analytics Approach to Facilitate Model Selection for Demand Forecasting. (arXiv:2005.03244v1 [cs.HC])

Selecting an appropriate model to forecast product demand is critical to the manufacturing industry. However, due to the data complexity, market uncertainty and users' demanding requirements for the model, it is challenging for demand analysts to select a proper model. Although existing model selection methods can reduce the manual burden to some extent, they often fail to present model performance details on individual products and reveal the potential risk of the selected model. This paper presents DFSeer, an interactive visualization system to conduct reliable model selection for demand forecasting based on the products with similar historical demand. It supports model comparison and selection with different levels of details. Besides, it shows the difference in model performance on similar products to reveal the risk of model selection and increase users' confidence in choosing a forecasting model. Two case studies and interviews with domain experts demonstrate the effectiveness and usability of DFSeer.




for

Mortar-based entropy-stable discontinuous Galerkin methods on non-conforming quadrilateral and hexahedral meshes. (arXiv:2005.03237v1 [math.NA])

High-order entropy-stable discontinuous Galerkin (DG) methods for nonlinear conservation laws reproduce a discrete entropy inequality by combining entropy conservative finite volume fluxes with summation-by-parts (SBP) discretization matrices. In the DG context, on tensor product (quadrilateral and hexahedral) elements, SBP matrices are typically constructed by collocating at Lobatto quadrature points. Recent work has extended the construction of entropy-stable DG schemes to collocation at more accurate Gauss quadrature points.

In this work, we extend entropy-stable Gauss collocation schemes to non-conforming meshes. Entropy-stable DG schemes require computing entropy conservative numerical fluxes between volume and surface quadrature nodes. On conforming tensor product meshes where volume and surface nodes are aligned, flux evaluations are required only between "lines" of nodes. However, on non-conforming meshes, volume and surface nodes are no longer aligned, resulting in a larger number of flux evaluations. We reduce this expense by introducing an entropy-stable mortar-based treatment of non-conforming interfaces via a face-local correction term, and provide necessary conditions for high-order accuracy. Numerical experiments in both two and three dimensions confirm the stability and accuracy of this approach.




for

Safe Reinforcement Learning through Meta-learned Instincts. (arXiv:2005.03233v1 [cs.LG])

An important goal in reinforcement learning is to create agents that can quickly adapt to new goals while avoiding situations that might cause damage to themselves or their environments. One way agents learn is through exploration mechanisms, which are needed to discover new policies. However, in deep reinforcement learning, exploration is normally done by injecting noise in the action space. While performing well in many domains, this setup has the inherent risk that the noisy actions performed by the agent lead to unsafe states in the environment. Here we introduce a novel approach called Meta-Learned Instinctual Networks (MLIN) that allows agents to safely learn during their lifetime while avoiding potentially hazardous states. At the core of the approach is a plastic network trained through reinforcement learning and an evolved "instinctual" network, which does not change during the agent's lifetime but can modulate the noisy output of the plastic network. We test our idea on a simple 2D navigation task with no-go zones, in which the agent has to learn to approach new targets during deployment. MLIN outperforms standard meta-trained networks and allows agents to learn to navigate to new targets without colliding with any of the no-go zones. These results suggest that meta-learning augmented with an instinctual network is a promising new approach for safe AI, which may enable progress in this area on a variety of different domains.




for

Multi-Target Deep Learning for Algal Detection and Classification. (arXiv:2005.03232v1 [cs.CV])

Water quality has a direct impact on industry, agriculture, and public health. Algae species are common indicators of water quality. It is because algal communities are sensitive to changes in their habitats, giving valuable knowledge on variations in water quality. However, water quality analysis requires professional inspection of algal detection and classification under microscopes, which is very time-consuming and tedious. In this paper, we propose a novel multi-target deep learning framework for algal detection and classification. Extensive experiments were carried out on a large-scale colored microscopic algal dataset. Experimental results demonstrate that the proposed method leads to the promising performance on algal detection, class identification and genus identification.




for

Deeply Supervised Active Learning for Finger Bones Segmentation. (arXiv:2005.03225v1 [cs.CV])

Segmentation is a prerequisite yet challenging task for medical image analysis. In this paper, we introduce a novel deeply supervised active learning approach for finger bones segmentation. The proposed architecture is fine-tuned in an iterative and incremental learning manner. In each step, the deep supervision mechanism guides the learning process of hidden layers and selects samples to be labeled. Extensive experiments demonstrated that our method achieves competitive segmentation results using less labeled samples as compared with full annotation.




for

End-to-End Domain Adaptive Attention Network for Cross-Domain Person Re-Identification. (arXiv:2005.03222v1 [cs.CV])

Person re-identification (re-ID) remains challenging in a real-world scenario, as it requires a trained network to generalise to totally unseen target data in the presence of variations across domains. Recently, generative adversarial models have been widely adopted to enhance the diversity of training data. These approaches, however, often fail to generalise to other domains, as existing generative person re-identification models have a disconnect between the generative component and the discriminative feature learning stage. To address the on-going challenges regarding model generalisation, we propose an end-to-end domain adaptive attention network to jointly translate images between domains and learn discriminative re-id features in a single framework. To address the domain gap challenge, we introduce an attention module for image translation from source to target domains without affecting the identity of a person. More specifically, attention is directed to the background instead of the entire image of the person, ensuring identifying characteristics of the subject are preserved. The proposed joint learning network results in a significant performance improvement over state-of-the-art methods on several benchmark datasets.




for

Conley's fundamental theorem for a class of hybrid systems. (arXiv:2005.03217v1 [math.DS])

We establish versions of Conley's (i) fundamental theorem and (ii) decomposition theorem for a broad class of hybrid dynamical systems. The hybrid version of (i) asserts that a globally-defined "hybrid complete Lyapunov function" exists for every hybrid system in this class. Motivated by mechanics and control settings where physical or engineered events cause abrupt changes in a system's governing dynamics, our results apply to a large class of Lagrangian hybrid systems (with impacts) studied extensively in the robotics literature. Viewed formally, these results generalize those of Conley and Franks for continuous-time and discrete-time dynamical systems, respectively, on metric spaces. However, we furnish specific examples illustrating how our statement of sufficient conditions represents merely an early step in the longer project of establishing what formal assumptions can and cannot endow hybrid systems models with the topologically well characterized partitions of limit behavior that make Conley's theory so valuable in those classical settings.




for

Hierarchical Attention Network for Action Segmentation. (arXiv:2005.03209v1 [cs.CV])

The temporal segmentation of events is an essential task and a precursor for the automatic recognition of human actions in the video. Several attempts have been made to capture frame-level salient aspects through attention but they lack the capacity to effectively map the temporal relationships in between the frames as they only capture a limited span of temporal dependencies. To this end we propose a complete end-to-end supervised learning approach that can better learn relationships between actions over time, thus improving the overall segmentation performance. The proposed hierarchical recurrent attention framework analyses the input video at multiple temporal scales, to form embeddings at frame level and segment level, and perform fine-grained action segmentation. This generates a simple, lightweight, yet extremely effective architecture for segmenting continuous video streams and has multiple application domains. We evaluate our system on multiple challenging public benchmark datasets, including MERL Shopping, 50 salads, and Georgia Tech Egocentric datasets, and achieves state-of-the-art performance. The evaluated datasets encompass numerous video capture settings which are inclusive of static overhead camera views and dynamic, ego-centric head-mounted camera views, demonstrating the direct applicability of the proposed framework in a variety of settings.




for

Distributed Stabilization by Probability Control for Deterministic-Stochastic Large Scale Systems : Dissipativity Approach. (arXiv:2005.03193v1 [eess.SY])

By using dissipativity approach, we establish the stability condition for the feedback connection of a deterministic dynamical system $Sigma$ and a stochastic memoryless map $Psi$. After that, we extend the result to the class of large scale systems in which: $Sigma$ consists of many sub-systems; and $Psi$ consists of many "stochastic actuators" and "probability controllers" that control the actuator's output events. We will demonstrate the proposed approach by showing the design procedures to globally stabilize the manufacturing systems while locally balance the stock levels in any production process.




for

ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context. (arXiv:2005.03191v1 [eess.AS])

Convolutional neural networks (CNN) have shown promising results for end-to-end speech recognition, albeit still behind other state-of-the-art methods in performance. In this paper, we study how to bridge this gap and go beyond with a novel CNN-RNN-transducer architecture, which we call ContextNet. ContextNet features a fully convolutional encoder that incorporates global context information into convolution layers by adding squeeze-and-excitation modules. In addition, we propose a simple scaling method that scales the widths of ContextNet that achieves good trade-off between computation and accuracy. We demonstrate that on the widely used LibriSpeech benchmark, ContextNet achieves a word error rate (WER) of 2.1\%/4.6\% without external language model (LM), 1.9\%/4.1\% with LM and 2.9\%/7.0\% with only 10M parameters on the clean/noisy LibriSpeech test sets. This compares to the previous best published system of 2.0\%/4.6\% with LM and 3.9\%/11.3\% with 20M parameters. The superiority of the proposed ContextNet model is also verified on a much larger internal dataset.




for

An Optimal Control Theory for the Traveling Salesman Problem and Its Variants. (arXiv:2005.03186v1 [math.OC])

We show that the traveling salesman problem (TSP) and its many variants may be modeled as functional optimization problems over a graph. In this formulation, all vertices and arcs of the graph are functionals; i.e., a mapping from a space of measurable functions to the field of real numbers. Many variants of the TSP, such as those with neighborhoods, with forbidden neighborhoods, with time-windows and with profits, can all be framed under this construct. In sharp contrast to their discrete-optimization counterparts, the modeling constructs presented in this paper represent a fundamentally new domain of analysis and computation for TSPs and their variants. Beyond its apparent mathematical unification of a class of problems in graph theory, the main advantage of the new approach is that it facilitates the modeling of certain application-specific problems in their home space of measurable functions. Consequently, certain elements of economic system theory such as dynamical models and continuous-time cost/profit functionals can be directly incorporated in the new optimization problem formulation. Furthermore, subtour elimination constraints, prevalent in discrete optimization formulations, are naturally enforced through continuity requirements. The price for the new modeling framework is nonsmooth functionals. Although a number of theoretical issues remain open in the proposed mathematical framework, we demonstrate the computational viability of the new modeling constructs over a sample set of problems to illustrate the rapid production of end-to-end TSP solutions to extensively-constrained practical problems.




for

A Proposal for Intelligent Agents with Episodic Memory. (arXiv:2005.03182v1 [cs.AI])

In the future we can expect that artificial intelligent agents, once deployed, will be required to learn continually from their experience during their operational lifetime. Such agents will also need to communicate with humans and other agents regarding the content of their experience, in the context of passing along their learnings, for the purpose of explaining their actions in specific circumstances or simply to relate more naturally to humans concerning experiences the agent acquires that are not necessarily related to their assigned tasks. We argue that to support these goals, an agent would benefit from an episodic memory; that is, a memory that encodes the agent's experience in such a way that the agent can relive the experience, communicate about it and use its past experience, inclusive of the agents own past actions, to learn more effective models and policies. In this short paper, we propose one potential approach to provide an AI agent with such capabilities. We draw upon the ever-growing body of work examining the function and operation of the Medial Temporal Lobe (MTL) in mammals to guide us in adding an episodic memory capability to an AI agent composed of artificial neural networks (ANNs). Based on that, we highlight important aspects to be considered in the memory organization and we propose an architecture combining ANNs and standard Computer Science techniques for supporting storage and retrieval of episodic memories. Despite being initial work, we hope this short paper can spark discussions around the creation of intelligent agents with memory or, at least, provide a different point of view on the subject.




for

Evolutionary Multi Objective Optimization Algorithm for Community Detection in Complex Social Networks. (arXiv:2005.03181v1 [cs.NE])

Most optimization-based community detection approaches formulate the problem in a single or bi-objective framework. In this paper, we propose two variants of a three-objective formulation using a customized non-dominated sorting genetic algorithm III (NSGA-III) to find community structures in a network. In the first variant, named NSGA-III-KRM, we considered Kernel k means, Ratio cut, and Modularity, as the three objectives, whereas the second variant, named NSGA-III-CCM, considers Community score, Community fitness and Modularity, as three objective functions. Experiments are conducted on four benchmark network datasets. Comparison with state-of-the-art approaches along with decomposition-based multi-objective evolutionary algorithm variants (MOEA/D-KRM and MOEA/D-CCM) indicates that the proposed variants yield comparable or better results. This is particularly significant because the addition of the third objective does not worsen the results of the other two objectives. We also propose a simple method to rank the Pareto solutions so obtained by proposing a new measure, namely the ratio of the hyper-volume and inverted generational distance (IGD). The higher the ratio, the better is the Pareto set. This strategy is particularly useful in the absence of empirical attainment function in the multi-objective framework, where the number of objectives is more than two.




for

On Optimal Control of Discounted Cost Infinite-Horizon Markov Decision Processes Under Local State Information Structures. (arXiv:2005.03169v1 [eess.SY])

This paper investigates a class of optimal control problems associated with Markov processes with local state information. The decision-maker has only local access to a subset of a state vector information as often encountered in decentralized control problems in multi-agent systems. Under this information structure, part of the state vector cannot be observed. We leverage ab initio principles and find a new form of Bellman equations to characterize the optimal policies of the control problem under local information structures. The dynamic programming solutions feature a mixture of dynamics associated unobservable state components and the local state-feedback policy based on the observable local information. We further characterize the optimal local-state feedback policy using linear programming methods. To reduce the computational complexity of the optimal policy, we propose an approximate algorithm based on virtual beliefs to find a sub-optimal policy. We show the performance bounds on the sub-optimal solution and corroborate the results with numerical case studies.




for

Decentralized Adaptive Control for Collaborative Manipulation of Rigid Bodies. (arXiv:2005.03153v1 [cs.RO])

In this work, we consider a group of robots working together to manipulate a rigid object to track a desired trajectory in $SE(3)$. The robots have no explicit communication network among them, and they do no know the mass or friction properties of the object, or where they are attached to the object. However, we assume they share data from a common IMU placed arbitrarily on the object. To solve this problem, we propose a decentralized adaptive control scheme wherein each agent maintains and adapts its own estimate of the object parameters in order to track a reference trajectory. We present an analysis of the controller's behavior, and show that all closed-loop signals remain bounded, and that the system trajectory will almost always (except for initial conditions on a set of measure zero) converge to the desired trajectory. We study the proposed controller's performance using numerical simulations of a manipulation task in 3D, and with hardware experiments which demonstrate our algorithm on a planar manipulation task. These studies, taken together, demonstrate the effectiveness of the proposed controller even in the presence of numerous unmodelled effects, such as discretization errors and complex frictional interactions.




for

An augmented Lagrangian preconditioner for implicitly-constituted non-Newtonian incompressible flow. (arXiv:2005.03150v1 [math.NA])

We propose an augmented Lagrangian preconditioner for a three-field stress-velocity-pressure discretization of stationary non-Newtonian incompressible flow with an implicit constitutive relation of power-law type. The discretization employed makes use of the divergence-free Scott-Vogelius pair for the velocity and pressure. The preconditioner builds on the work [P. E. Farrell, L. Mitchell, and F. Wechsung, SIAM J. Sci. Comput., 41 (2019), pp. A3073-A3096], where a Reynolds-robust preconditioner for the three-dimensional Newtonian system was introduced. The preconditioner employs a specialized multigrid method for the stress-velocity block that involves a divergence-capturing space decomposition and a custom prolongation operator. The solver exhibits excellent robustness with respect to the parameters arising in the constitutive relation, allowing for the simulation of a wide range of materials.




for

Optimally Convergent Mixed Finite Element Methods for the Stochastic Stokes Equations. (arXiv:2005.03148v1 [math.NA])

We propose some new mixed finite element methods for the time dependent stochastic Stokes equations with multiplicative noise, which use the Helmholtz decomposition of the driving multiplicative noise. It is known [16] that the pressure solution has a low regularity, which manifests in sub-optimal convergence rates for well-known inf-sup stable mixed finite element methods in numerical simulations, see [10]. We show that eliminating this gradient part from the noise in the numerical scheme leads to optimally convergent mixed finite element methods, and that this conceptual idea may be used to retool numerical methods that are well-known in the deterministic setting, including pressure stabilization methods, so that their optimal convergence properties can still be maintained in the stochastic setting. Computational experiments are also provided to validate the theoretical results and to illustrate the conceptional usefulness of the proposed numerical approach.




for

A Separation Theorem for Joint Sensor and Actuator Scheduling with Guaranteed Performance Bounds. (arXiv:2005.03143v1 [eess.SY])

We study the problem of jointly designing a sparse sensor and actuator schedule for linear dynamical systems while guaranteeing a control/estimation performance that approximates the fully sensed/actuated setting. We further prove a separation principle, showing that the problem can be decomposed into finding sensor and actuator schedules separately. However, it is shown that this problem cannot be efficiently solved or approximated in polynomial, or even quasi-polynomial time for time-invariant sensor/actuator schedules; instead, we develop deterministic polynomial-time algorithms for a time-varying sensor/actuator schedule with guaranteed approximation bounds. Our main result is to provide a polynomial-time joint actuator and sensor schedule that on average selects only a constant number of sensors and actuators at each time step, irrespective of the dimension of the system. The key idea is to sparsify the controllability and observability Gramians while providing approximation guarantees for Hankel singular values. This idea is inspired by recent results in theoretical computer science literature on sparsification.




for

Evaluation, Tuning and Interpretation of Neural Networks for Meteorological Applications. (arXiv:2005.03126v1 [physics.ao-ph])

Neural networks have opened up many new opportunities to utilize remotely sensed images in meteorology. Common applications include image classification, e.g., to determine whether an image contains a tropical cyclone, and image translation, e.g., to emulate radar imagery for satellites that only have passive channels. However, there are yet many open questions regarding the use of neural networks in meteorology, such as best practices for evaluation, tuning and interpretation. This article highlights several strategies and practical considerations for neural network development that have not yet received much attention in the meteorological community, such as the concept of effective receptive fields, underutilized meteorological performance measures, and methods for NN interpretation, such as synthetic experiments and layer-wise relevance propagation. We also consider the process of neural network interpretation as a whole, recognizing it as an iterative scientist-driven discovery process, and breaking it down into individual steps that researchers can take. Finally, while most work on neural network interpretation in meteorology has so far focused on networks for image classification tasks, we expand the focus to also include networks for image translation.




for

Deep Learning for Image-based Automatic Dial Meter Reading: Dataset and Baselines. (arXiv:2005.03106v1 [cs.CV])

Smart meters enable remote and automatic electricity, water and gas consumption reading and are being widely deployed in developed countries. Nonetheless, there is still a huge number of non-smart meters in operation. Image-based Automatic Meter Reading (AMR) focuses on dealing with this type of meter readings. We estimate that the Energy Company of Paran'a (Copel), in Brazil, performs more than 850,000 readings of dial meters per month. Those meters are the focus of this work. Our main contributions are: (i) a public real-world dial meter dataset (shared upon request) called UFPR-ADMR; (ii) a deep learning-based recognition baseline on the proposed dataset; and (iii) a detailed error analysis of the main issues present in AMR for dial meters. To the best of our knowledge, this is the first work to introduce deep learning approaches to multi-dial meter reading, and perform experiments on unconstrained images. We achieved a 100.0% F1-score on the dial detection stage with both Faster R-CNN and YOLO, while the recognition rates reached 93.6% for dials and 75.25% for meters using Faster R-CNN (ResNext-101).




for

Scale-Equalizing Pyramid Convolution for Object Detection. (arXiv:2005.03101v1 [cs.CV])

Feature pyramid has been an efficient method to extract features at different scales. Development over this method mainly focuses on aggregating contextual information at different levels while seldom touching the inter-level correlation in the feature pyramid. Early computer vision methods extracted scale-invariant features by locating the feature extrema in both spatial and scale dimension. Inspired by this, a convolution across the pyramid level is proposed in this study, which is termed pyramid convolution and is a modified 3-D convolution. Stacked pyramid convolutions directly extract 3-D (scale and spatial) features and outperforms other meticulously designed feature fusion modules. Based on the viewpoint of 3-D convolution, an integrated batch normalization that collects statistics from the whole feature pyramid is naturally inserted after the pyramid convolution. Furthermore, we also show that the naive pyramid convolution, together with the design of RetinaNet head, actually best applies for extracting features from a Gaussian pyramid, whose properties can hardly be satisfied by a feature pyramid. In order to alleviate this discrepancy, we build a scale-equalizing pyramid convolution (SEPC) that aligns the shared pyramid convolution kernel only at high-level feature maps. Being computationally efficient and compatible with the head design of most single-stage object detectors, the SEPC module brings significant performance improvement ($>4$AP increase on MS-COCO2017 dataset) in state-of-the-art one-stage object detectors, and a light version of SEPC also has $sim3.5$AP gain with only around 7% inference time increase. The pyramid convolution also functions well as a stand-alone module in two-stage object detectors and is able to improve the performance by $sim2$AP. The source code can be found at https://github.com/jshilong/SEPC.




for

Near-optimal Detector for SWIPT-enabled Differential DF Relay Networks with SER Analysis. (arXiv:2005.03096v1 [cs.IT])

In this paper, we analyze the symbol error rate (SER) performance of the simultaneous wireless information and power transfer (SWIPT) enabled three-node differential decode-and-forward (DDF) relay networks, which adopt the power splitting (PS) protocol at the relay. The use of non-coherent differential modulation eliminates the need for sending training symbols to estimate the instantaneous channel state informations (CSIs) at all network nodes, and therefore improves the power efficiency, as compared with the coherent modulation. However, performance analysis results are not yet available for the state-of-the-art detectors such as the approximate maximum-likelihood detector. Existing works rely on Monte-Carlo simulation to show that there exists an optimal PS ratio that minimizes the overall SER. In this work, we propose a near-optimal detector with linear complexity with respect to the modulation size. We derive an accurate approximate SER expression, based on which the optimal PS ratio can be accurately estimated without requiring any Monte-Carlo simulation.




for

AIOps for a Cloud Object Storage Service. (arXiv:2005.03094v1 [cs.DC])

With the growing reliance on the ubiquitous availability of IT systems and services, these systems become more global, scaled, and complex to operate. To maintain business viability, IT service providers must put in place reliable and cost efficient operations support. Artificial Intelligence for IT Operations (AIOps) is a promising technology for alleviating operational complexity of IT systems and services. AIOps platforms utilize big data, machine learning and other advanced analytics technologies to enhance IT operations with proactive actionable dynamic insight.

In this paper we share our experience applying the AIOps approach to a production cloud object storage service to get actionable insights into system's behavior and health. We describe a real-life production cloud scale service and its operational data, present the AIOps platform we have created, and show how it has helped us resolving operational pain points.




for

Robust Trajectory and Transmit Power Optimization for Secure UAV-Enabled Cognitive Radio Networks. (arXiv:2005.03091v1 [cs.IT])

Cognitive radio is a promising technology to improve spectral efficiency. However, the secure performance of a secondary network achieved by using physical layer security techniques is limited by its transmit power and channel fading. In order to tackle this issue, a cognitive unmanned aerial vehicle (UAV) communication network is studied by exploiting the high flexibility of a UAV and the possibility of establishing line-of-sight links. The average secrecy rate of the secondary network is maximized by robustly optimizing the UAV's trajectory and transmit power. Our problem formulation takes into account two practical inaccurate location estimation cases, namely, the worst case and the outage-constrained case. In order to solve those challenging non-convex problems, an iterative algorithm based on $mathcal{S}$-Procedure is proposed for the worst case while an iterative algorithm based on Bernstein-type inequalities is proposed for the outage-constrained case. The proposed algorithms can obtain effective suboptimal solutions of the corresponding problems. Our simulation results demonstrate that the algorithm under the outage-constrained case can achieve a higher average secrecy rate with a low computational complexity compared to that of the algorithm under the worst case. Moreover, the proposed schemes can improve the secure communication performance significantly compared to other benchmark schemes.




for

A Multifactorial Optimization Paradigm for Linkage Tree Genetic Algorithm. (arXiv:2005.03090v1 [cs.NE])

Linkage Tree Genetic Algorithm (LTGA) is an effective Evolutionary Algorithm (EA) to solve complex problems using the linkage information between problem variables. LTGA performs well in various kinds of single-task optimization and yields promising results in comparison with the canonical genetic algorithm. However, LTGA is an unsuitable method for dealing with multi-task optimization problems. On the other hand, Multifactorial Optimization (MFO) can simultaneously solve independent optimization problems, which are encoded in a unified representation to take advantage of the process of knowledge transfer. In this paper, we introduce Multifactorial Linkage Tree Genetic Algorithm (MF-LTGA) by combining the main features of both LTGA and MFO. MF-LTGA is able to tackle multiple optimization tasks at the same time, each task learns the dependency between problem variables from the shared representation. This knowledge serves to determine the high-quality partial solutions for supporting other tasks in exploring the search space. Moreover, MF-LTGA speeds up convergence because of knowledge transfer of relevant problems. We demonstrate the effectiveness of the proposed algorithm on two benchmark problems: Clustered Shortest-Path Tree Problem and Deceptive Trap Function. In comparison to LTGA and existing methods, MF-LTGA outperforms in quality of the solution or in computation time.




for

AVAC: A Machine Learning based Adaptive RRAM Variability-Aware Controller for Edge Devices. (arXiv:2005.03077v1 [eess.SY])

Recently, the Edge Computing paradigm has gained significant popularity both in industry and academia. Researchers now increasingly target to improve performance and reduce energy consumption of such devices. Some recent efforts focus on using emerging RRAM technologies for improving energy efficiency, thanks to their no leakage property and high integration density. As the complexity and dynamism of applications supported by such devices escalate, it has become difficult to maintain ideal performance by static RRAM controllers. Machine Learning provides a promising solution for this, and hence, this work focuses on extending such controllers to allow dynamic parameter updates. In this work we propose an Adaptive RRAM Variability-Aware Controller, AVAC, which periodically updates Wait Buffer and batch sizes using on-the-fly learning models and gradient ascent. AVAC allows Edge devices to adapt to different applications and their stages, to improve computation performance and reduce energy consumption. Simulations demonstrate that the proposed model can provide up to 29% increase in performance and 19% decrease in energy, compared to static controllers, using traces of real-life healthcare applications on a Raspberry-Pi based Edge deployment.




for

Guided Policy Search Model-based Reinforcement Learning for Urban Autonomous Driving. (arXiv:2005.03076v1 [cs.RO])

In this paper, we continue our prior work on using imitation learning (IL) and model free reinforcement learning (RL) to learn driving policies for autonomous driving in urban scenarios, by introducing a model based RL method to drive the autonomous vehicle in the Carla urban driving simulator. Although IL and model free RL methods have been proved to be capable of solving lots of challenging tasks, including playing video games, robots, and, in our prior work, urban driving, the low sample efficiency of such methods greatly limits their applications on actual autonomous driving. In this work, we developed a model based RL algorithm of guided policy search (GPS) for urban driving tasks. The algorithm iteratively learns a parameterized dynamic model to approximate the complex and interactive driving task, and optimizes the driving policy under the nonlinear approximate dynamic model. As a model based RL approach, when applied in urban autonomous driving, the GPS has the advantages of higher sample efficiency, better interpretability, and greater stability. We provide extensive experiments validating the effectiveness of the proposed method to learn robust driving policy for urban driving in Carla. We also compare the proposed method with other policy search and model free RL baselines, showing 100x better sample efficiency of the GPS based RL method, and also that the GPS based method can learn policies for harder tasks that the baseline methods can hardly learn.




for

Categorical Vector Space Semantics for Lambek Calculus with a Relevant Modality. (arXiv:2005.03074v1 [cs.CL])

We develop a categorical compositional distributional semantics for Lambek Calculus with a Relevant Modality !L*, which has a limited edition of the contraction and permutation rules. The categorical part of the semantics is a monoidal biclosed category with a coalgebra modality, very similar to the structure of a Differential Category. We instantiate this category to finite dimensional vector spaces and linear maps via "quantisation" functors and work with three concrete interpretations of the coalgebra modality. We apply the model to construct categorical and concrete semantic interpretations for the motivating example of !L*: the derivation of a phrase with a parasitic gap. The effectiveness of the concrete interpretations are evaluated via a disambiguation task, on an extension of a sentence disambiguation dataset to parasitic gap phrase one, using BERT, Word2Vec, and FastText vectors and Relational tensors.




for

Two-Grid Deflated Krylov Methods for Linear Equations. (arXiv:2005.03070v1 [math.NA])

An approach is given for solving large linear systems that combines Krylov methods with use of two different grid levels. Eigenvectors are computed on the coarse grid and used to deflate eigenvalues on the fine grid. GMRES-type methods are first used on both the coarse and fine grids. Then another approach is given that has a restarted BiCGStab (or IDR) method on the fine grid. While BiCGStab is generally considered to be a non-restarted method, it works well in this context with deflating and restarting. Tests show this new approach can be very efficient for difficult linear equations problems.




for

Learning, transferring, and recommending performance knowledge with Monte Carlo tree search and neural networks. (arXiv:2005.03063v1 [cs.LG])

Making changes to a program to optimize its performance is an unscalable task that relies entirely upon human intuition and experience. In addition, companies operating at large scale are at a stage where no single individual understands the code controlling its systems, and for this reason, making changes to improve performance can become intractably difficult. In this paper, a learning system is introduced that provides AI assistance for finding recommended changes to a program. Specifically, it is shown how the evaluative feedback, delayed-reward performance programming domain can be effectively formulated via the Monte Carlo tree search (MCTS) framework. It is then shown that established methods from computational games for using learning to expedite tree-search computation can be adapted to speed up computing recommended program alterations. Estimates of expected utility from MCTS trees built for previous problems are used to learn a sampling policy that remains effective across new problems, thus demonstrating transferability of optimization knowledge. This formulation is applied to the Apache Spark distributed computing environment, and a preliminary result is observed that the time required to build a search tree for finding recommendations is reduced by up to a factor of 10x.




for

Computing-in-Memory for Performance and Energy Efficient Homomorphic Encryption. (arXiv:2005.03002v1 [cs.CR])

Homomorphic encryption (HE) allows direct computations on encrypted data. Despite numerous research efforts, the practicality of HE schemes remains to be demonstrated. In this regard, the enormous size of ciphertexts involved in HE computations degrades computational efficiency. Near-memory Processing (NMP) and Computing-in-memory (CiM) - paradigms where computation is done within the memory boundaries - represent architectural solutions for reducing latency and energy associated with data transfers in data-intensive applications such as HE. This paper introduces CiM-HE, a Computing-in-memory (CiM) architecture that can support operations for the B/FV scheme, a somewhat homomorphic encryption scheme for general computation. CiM-HE hardware consists of customized peripherals such as sense amplifiers, adders, bit-shifters, and sequencing circuits. The peripherals are based on CMOS technology, and could support computations with memory cells of different technologies. Circuit-level simulations are used to evaluate our CiM-HE framework assuming a 6T-SRAM memory. We compare our CiM-HE implementation against (i) two optimized CPU HE implementations, and (ii) an FPGA-based HE accelerator implementation. When compared to a CPU solution, CiM-HE obtains speedups between 4.6x and 9.1x, and energy savings between 266.4x and 532.8x for homomorphic multiplications (the most expensive HE operation). Also, a set of four end-to-end tasks, i.e., mean, variance, linear regression, and inference are up to 1.1x, 7.7x, 7.1x, and 7.5x faster (and 301.1x, 404.6x, 532.3x, and 532.8x more energy efficient). Compared to CPU-based HE in a previous work, CiM-HE obtain 14.3x speed-up and >2600x energy savings. Finally, our design offers 2.2x speed-up with 88.1x energy savings compared to a state-of-the-art FPGA-based accelerator.




for

How Does the IMPACT Baseline Test for Athletes Really Work?

Retired Soccer Star Briana Scurry describes how the computerized baseline test works and how it is used for athletes who have sustained a concussion.




for

5 Best Practices for Breadcrumb Navigation 

Breadcrumbs are a subtle element of a website that helps improve usability and navigation. They’re a utility that often receives little acknowledgment; however, breadcrumbs can have a large impact and provide a plethora of benefits, such as lowering bounce rate, increasing conversions, and improving user satisfaction.   Imagine you’re in a regular grocery store, except […]

The post 5 Best Practices for Breadcrumb Navigation  appeared first on WebFX Blog.




for

What is a Favicon? [+4 Tips for Creating an Impactful Favicon]

When you bookmark pages on the web, it’s challenging to remember the name of the page. As you dive back into your bookmarks to find it, you see a small icon next to the page. You recognize the icon and realize it’s the website you viewed prior. This icon, known as a favicon, is small, […]

The post What is a Favicon? [+4 Tips for Creating an Impactful Favicon] appeared first on WebFX Blog.




for

Pay Attention to These Web Design Trends for 2020 [7+ Trends]

If you’re not already thinking about 2020 web design, the time is now. Already, web design trends for 2020 have started to emerge, and if you want to stay on-trend and engage site visitors, it’s crucial to pay attention. But what is the future of web design in 2020? Will everything change? Well — not […]

The post Pay Attention to These Web Design Trends for 2020 [7+ Trends] appeared first on WebFX Blog.





for

Is My WordPress Site Secure? 13 Tips for Locking Down Your WordPress Site

WordPress powers 35% of all websites, which makes WordPress sites a go-to target for hackers. If you’re like most WordPress site owners, you’re probably asking the same question: Is my WordPress site secure? While you can’t guarantee site security, you can take several steps to improve and maximize your WordPress security. Keep reading to learn […]

The post Is My WordPress Site Secure? 13 Tips for Locking Down Your WordPress Site appeared first on WebFX Blog.




for

Is My WordPress Site ADA Compliant? 3+ Plugins for Finding Out!

Did you know that breaking the Americans with Disabilities Act (ADA) can result in a six-figure fine? For every violation, companies can receive a $150,000 fine — and if you have a WordPress site, you could be liable. While WordPress aims to ensure website accessibility, it cannot guarantee it since every site owner customizes the […]

The post Is My WordPress Site ADA Compliant? 3+ Plugins for Finding Out! appeared first on WebFX Blog.




for

What Is Website Hosting and Why Does It Matter for Your Website?

Subscribe to our YouTube channel for the latest in digital marketing! we know you’ll love this additional resource! (how to host a website)   Transcript: What is website hosting?  This is to make a point, I promise.  When you go to a party, there’s always a host. The host is usually the one who sets […]

The post What Is Website Hosting and Why Does It Matter for Your Website? appeared first on WebFX Blog.




for

6 Best CMS Software for Website Development & SMBs

Are you looking for a content management system (CMS) that will help you create the digital content you need? With so many options on the market, it’s challenging to know which one is the best CMS software for your business. On this page, we’ll take a look at the six best CMS’s for website development […]

The post 6 Best CMS Software for Website Development & SMBs appeared first on WebFX Blog.




for

5 Simple Tips for How to Update Content on Your Website

Subscribe to our YouTube channel for the latest in digital marketing! Transcript: Your website isn’t set in stone, so you shouldn’t treat it like it is.  Technology and the internet change quickly, and often. You should update your website regularly to keep up with the times. Having an up-to-date and optimized site creates a great […]

The post 5 Simple Tips for How to Update Content on Your Website appeared first on WebFX Blog.




for

Going Beyond Sales: 7 Types of Website Conversions to Optimize for on Your Website

If you’re looking to grow your business online, it’s time to start setting up different types of website conversions to help your company succeed. Whether you’re looking to earn more email subscribers or sell more products, you can set conversion goals that grow your business. On this page, we’ll discuss what a conversion goal is, […]

The post Going Beyond Sales: 7 Types of Website Conversions to Optimize for on Your Website appeared first on WebFX Blog.




for

10 Modern Web Design Trends for 2020

Web design is responsible for nearly 95% of a visitor’s first impression of your business. That’s why it’s more important than ever to incorporate modern web design into your marketing strategy. But what modern web design trends are on the horizon for 2020 — and how can you use them to freshen up your site? […]

The post 10 Modern Web Design Trends for 2020 appeared first on WebFX Blog.




for

Website Statistics for 2020: 10 Critical Stats to Know for Web Design

Are you looking to start 2020 with a fresh web design for your business? If so, you must know what you need to do in 2020 to have a website that drives success for your business. With website statistics for 2020, you can see what to do and what to avoid, which will help you […]

The post Website Statistics for 2020: 10 Critical Stats to Know for Web Design appeared first on WebFX Blog.




for

Need a Website? 6 Reasons to Have a Website for Your Business

Did you know that over 70% of people will research a company on the web before deciding to buy or visit, yet 46% of small businesses in the U.S. don’t have a website? If you don’t have a site, people can’t research your company and determine if you’re a good fit for their needs. If […]

The post Need a Website? 6 Reasons to Have a Website for Your Business appeared first on WebFX Blog.




for

How Fast Should My Website Be? [+7 Tips for Speeding Up Your Site]

Did you know that for every second faster your website loads, you increase conversions by 7%? A fast loading website leads to longer dwell sessions, improved engagement, and increased conversions. When people can access information fast, they’re more likely to stay on your page. So now you’re probably wondering, “How fast should my website be?” […]

The post How Fast Should My Website Be? [+7 Tips for Speeding Up Your Site] appeared first on WebFX Blog.




for

Printed Solar Cells Hold Promise for Unlit Rural Areas

By Sci Dev Net Advances in printed solar cell technology promise clean renewable energy, opening possibilities for 1.3 billion people still without electric power in developing countries. The technology, which only requires the use of existing industrial-size printers, can produce … Continue reading





for

I Built a VS Code Extension: Ngrok for VS Code

Over the Easter weekend, a four day weekend characterized by lockdowns all over the world, I decided to use the extra time I had at home to start a new project and learn a new skill. By the end of the weekend, I was proud to release my first VSCode extension: ngrok for VSCode.

What’s That Now?

ngrok is a command-line tool built by Alan Shreve that you can use to expose your localhost server with a publicly available URL. It’s great for sharing access to an application running on your own machine, testing web applications on mobile devices, or testing webhook integrations. For example, I’m a big fan of using ngrok to test my webhooks when I am working with Twilio applications.