surface

Crystal structures and Hirshfeld surface analysis of a series of 4-O-aryl­perfluoro­pyridines

Five new crystal structures of perfluoro­pyridine substituted in the 4-position with phen­oxy, 4-bromo­phen­oxy, naphthalen-2-yl­oxy, 6-bromo­naphthalen-2-yl­oxy, and 4,4'-biphen­oxy are reported, viz. 2,3,5,6-tetra­fluoro-4-phen­oxy­pyridine, C11H5F4NO (I), 4-(4-bromo­phen­oxy)-2,3,5,6-tetra­fluoro­pyridine, C11H4BrF4NO (II), 2,3,5,6-tetra­fluoro-4-[(naphthalen-2-yl)­oxy]pyridine, C15H7F4NO (III), 4-[(6-bromo­naphthalen-2-yl)­oxy]-2,3,5,6-tetra­fluoropyridine, C15H6BrF4NO (IV), and 2,2'-bis­[(perfluoro­pyridin-4-yl)­oxy]-1,1'-biphenyl, C22H8F8N2O2 (V). The dihedral angles between the aromatic ring systems in I–IV are 78.74 (8), 56.35 (8), 74.30 (7), and 64.34 (19)°, respectively. The complete mol­ecule of V is generated by a crystallographic twofold axis: the dihedral angle between the pyridine ring and adjacent phenyl ring is 80.89 (5)° and the equivalent angle between the biphenyl rings is 27.30 (5)°. In each crystal, the packing is driven by C—H⋯F inter­actions, along with a variety of C—F⋯π, C—H⋯π, C—Br⋯N, C—H⋯N, and C—Br⋯π contacts. Hirshfeld surface analysis was conducted to aid in the visualization of these various influences on the packing.




surface

Crystal structure and Hirshfeld surface analysis of 2-[(2-oxo-2H-chromen-4-yl)­oxy]acetic acid dimethyl sulfoxide monosolvate

The title compound, C11H8O5·(CH3)2SO, is a new coumarin derivative. The asymmetric unit contains two coumarin mol­ecules (A and B) and two di­methyl­sulfoxide solvent mol­ecules (A and B). The dihedral angle between the pyran and benzene rings in the chromene moiety is 3.56 (2)° for mol­ecule A and 1.83 (2)° for mol­ecule B. In mol­ecule A, the dimethyl sulfoxide sulfur atom is disordered over two positions with a refined occupancy ratio of 0.782 (5):0.218 (5). In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains running along the c-axis direction. The chains are linked by C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. In addition, there are also C—H⋯π and π–π inter­actions present within the layers. The inter­molecular contacts in the crystal have been analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots, which indicate that the most important contributions to the packing are from H⋯H (33.9%) and O⋯H/H⋯O (41.2%) contacts.




surface

N,N'-Bis(pyridin-4-ylmeth­yl)oxalamide benzene monosolvate: crystal structure, Hirshfeld surface analysis and computational study

The asymmetric unit of the title 1:1 solvate, C14H14N4O2·C6H6 [systematic name of the oxalamide mol­ecule: N,N'-bis­(pyridin-4-ylmeth­yl)ethanedi­amide], comprises a half mol­ecule of each constituent as each is disposed about a centre of inversion. In the oxalamide mol­ecule, the central C2N2O2 atoms are planar (r.m.s. deviation = 0.0006 Å). An intra­molecular amide-N—H⋯O(amide) hydrogen bond is evident, which gives rise to an S(5) loop. Overall, the mol­ecule adopts an anti­periplanar disposition of the pyridyl rings, and an orthogonal relationship is evident between the central plane and each terminal pyridyl ring [dihedral angle = 86.89 (3)°]. In the crystal, supra­molecular layers parallel to (10overline{2}) are generated owing the formation of amide-N—H⋯N(pyrid­yl) hydrogen bonds. The layers stack encompassing benzene mol­ecules which provide the links between layers via methyl­ene-C—H⋯π(benzene) and benzene-C—H⋯π(pyrid­yl) inter­actions. The specified contacts are indicated in an analysis of the calculated Hirshfeld surfaces. The energy of stabilization provided by the conventional hydrogen bonding (approximately 40 kJ mol−1; electrostatic forces) is just over double that by the C—H⋯π contacts (dispersion forces).




surface

Crystal structure and Hirshfeld surface analysis of (E)-4-{[2,2-di­chloro-1-(4-meth­oxy­phen­yl)ethen­yl]diazen­yl}benzo­nitrile

In the title compound, C16H11Cl2N3O, the 4-meth­oxy-substituted benzene ring makes a dihedral angle of 41.86 (9)° with the benzene ring of the benzo­nitrile group. In the crystal, mol­ecules are linked into layers parallel to (020) by C—H⋯O contacts and face-to-face π–π stacking inter­actions [centroid–centroid distances = 3.9116 (14) and 3.9118 (14) Å] between symmetry-related aromatic rings along the a-axis direction. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from Cl⋯H/H⋯Cl (22.8%), H⋯H (21.4%), N⋯H/H⋯N (16.1%), C⋯H/H⋯C (14.7%) and C⋯C (9.1%) inter­actions.




surface

Bis(mefloquinium) butane­dioate ethanol monosolvate: crystal structure and Hirshfeld surface analysis

The asymmetric unit of the centrosymmetric title salt solvate, 2C17H17F6N2O+· C4H4O42−·CH3CH2OH, (systematic name: 2-{[2,8-bis­(tri­fluoro­meth­yl)quinolin-4-yl](hy­droxy)meth­yl}piperidin-1-ium butane­dioate ethanol monosolvate) comprises two independent cations, with almost superimposable conformations and each approximating the shape of the letter L, a butane­dioate dianion with an all-trans conformation and an ethanol solvent mol­ecule. In the crystal, supra­molecular chains along the a-axis direction are sustained by charge-assisted hy­droxy-O—H⋯O(carboxyl­ate) and ammonium-N—H⋯O(carboxyl­ate) hydrogen bonds. These are connected into a layer via C—F⋯π(pyrid­yl) contacts and π–π stacking inter­actions between quinolinyl-C6 and –NC5 rings of the independent cations of the asymmetric unit [inter-centroid separations = 3.6784 (17) and 3.6866 (17) Å]. Layers stack along the c-axis direction with no directional inter­actions between them. The analysis of the calculated Hirshfeld surface reveals the significance of the fluorine atoms in surface contacts. Thus, by far the greatest contribution to the surface contacts, i.e. 41.2%, are of the type F⋯H/H⋯F and many of these occur in the inter-layer region. However, these contacts occur at separations beyond the sum of the van der Waals radii for these atoms. It is noted that H⋯H contacts contribute 29.8% to the overall surface, with smaller contributions from O⋯H/H⋯O (14.0%) and F⋯F (5.7%) contacts.




surface

Crystal structure, DFT study and Hirshfeld surface analysis of 1-nonyl-2,3-di­hydro-1H-indole-2,3-dione

In the title mol­ecule, C17H23NO2, the di­hydro­indole portion is planar (r.m.s. deviation = 0.0157 Å) and the nonyl substituent is in an `extended' conformation. In the crystal, the nonyl chains inter­calate and the di­hydro­indole­dione units are associated through C—H⋯O hydrogen bonds to form micellar blocks. Based on the Hirshfeld surface analysis, the most important inter­molecular inter­action is the H⋯H inter­action.




surface

Syntheses, crystal structures and Hirshfeld surface analyses of (3aR,4S,7R,7aS)-2-(perfluoro­pyridin-4-yl)-3a,4,7,7a-tetra­hydro-4,7-methano­iso­indole-1,3-dione and (3aR,4S,7R,7aS)-2-[(perfluoro­pyridin-4-yl)­oxy]-3a,4,7,7a-

The syntheses and crystal structures of the title compounds, C14H8F4N2O2 and C14H8F4N2O3, are reported. In each crystal, the packing is driven by C—H⋯F inter­tactions, along with a variety of C—H⋯O, C—O⋯π, and C—F⋯π contacts. Hirshfeld surface analysis was conducted to aid in the visualization of these various influences on the packing: they showed that the largest contributions to the surface contacts arise from H⋯F/F⋯H inter­actions, followed by H⋯H and O⋯H/H⋯O.




surface

Crystal structure, Hirshfeld surface analysis and corrosion inhibition study of 3,6-bis­(pyridin-2-yl)-4-{[(3aS,5S,5aR,8aR,8bS)-2,2,7,7-tetra­methyl­tetra­hydro-5H-bis­[1,3]dioxolo[4,5-b:4',5'-d]pyran-5-yl)meth­oxy]meth­

In the title compound, C27H30N4O6·H2O, the two dioxolo rings are in envelope conformations, while the pyran ring is in a twisted-boat conformation. The pyradizine ring is oriented at dihedral angles of 9.23 (6) and 12.98 (9)° with respect to the pyridine rings, while the dihedral angle between the two pyridine rings is 13.45 (10)°. In the crystal, O—Hwater⋯Opyran, O—Hwater⋯Ometh­oxy­meth­yl and O—Hwater⋯Npyridazine hydrogen bonds link the mol­ecules into chains along [010]. In addition, weak C—Hdioxolo⋯Odioxolo hydrogen bonds and a weak C—Hmeth­oxy­meth­yl⋯π inter­action complete the three-dimensional structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (55.7%), H⋯C/C⋯H (14.6%), H⋯O/O⋯H (14.5%) and H⋯N/N⋯H (9.6%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Electrochemical measurements are also reported.




surface

Crystal structure and Hirshfeld surface analysis of (E)-3-[(4-chloro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide

The title salt, C16H15ClN3S+·Br−, is isotypic with (E)-3-[(4-fluoro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide [Khalilov et al. (2019). Acta Cryst. E75, 662–666]. In the cation of the title salt, the atoms of the phenyl ring attached to the central thia­zolidine ring and the atom joining the thia­zolidine ring to the benzene ring are disordered over two sets of sites with occupancies of 0.570 (3) and 0.430 (3). The major and minor components of the disordered thia­zolidine ring adopt slightly distorted envelope conformations, with the C atom bearing the phenyl ring as the flap atom. In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br contacts into chains parallel to the a axis. Furthermore, not existing in the earlier report of (E)-3-[(4-fluoro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide, C—H⋯π inter­actions and π–π stacking inter­actions [centroid-to-centroid distance = 3.897 (2) Å] between the major components of the disordered phenyl ring contribute to the stabilization of the mol­ecular packing. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions for the crystal packing are from H⋯H (30.5%), Br⋯H/H⋯Br (21.2%), C⋯H/H⋯C (19.2%), Cl⋯H/H⋯Cl (13.0%) and S⋯H/H⋯S (5.0%) inter­actions.




surface

Crystal structures and Hirshfeld surface analyses of the two isotypic compounds (E)-1-(4-bromo­phen­yl)-2-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]diazene and (E)-1-(4-chloro­phen­yl)-2-[2,2-di­chloro-1-(4-ni

In the two isotypic title compounds, C14H8BrCl2N3O2, (I), and C14H8Cl3N3O2, (II), the substitution of one of the phenyl rings is different [Br for (I) and Cl for (II)]. Aromatic rings form dihedral angles of 60.9 (2) and 64.1 (2)°, respectively. Mol­ecules are linked through weak X⋯Cl contacts [X = Br for (I) and Cl for (II)], C—H⋯Cl and C—Cl⋯π inter­actions into sheets parallel to the ab plane. Additional van der Waals inter­actions consolidate the three-dimensional packing. Hirshfeld surface analysis of the crystal structures indicates that the most important contributions for the crystal packing for (I) are from C⋯H/H⋯C (16.1%), O⋯H/H⋯O (13.1%), Cl⋯H/H⋯Cl (12.7%), H⋯H (11.4%), Br⋯H/H⋯Br (8.9%), N⋯H/H⋯N (6.9%) and Cl⋯C/C⋯Cl (6.6%) inter­actions, and for (II), from Cl⋯H / H⋯Cl (21.9%), C⋯H/H⋯C (15.3%), O⋯H/H⋯O (13.4%), H⋯H (11.5%), Cl⋯C/C⋯Cl (8.3%), N⋯H/H⋯N (7.0%) and Cl⋯Cl (5.9%) inter­actions. The crystal of (I) studied was refined as an inversion twin, the ratio of components being 0.9917 (12):0.0083 (12).




surface

Crystal structure and Hirshfeld surface analysis of 2,5-di­bromo­terephthalic acid ethyl­ene glycol monosolvate

The title compound, C8H4Br2O4·C2H6O2, crystallizes with one-half of a 2,5-di­bromo­terephthalic acid (H2Br2tp) mol­ecule and one-half of an ethyl­ene glycol (EG) mol­ecule in the the asymmetric unit. The whole mol­ecules are generated by application of inversion symmetry. The H2Br2tp mol­ecule is not planar, with the di­bromo­benzene ring system inclined by a dihedral angle of 18.62 (3)° to the carb­oxy­lic group. In the crystal, the H2Br2tp and EG mol­ecules are linked into sheets propagating parallel to (overline{1}01) through O—H⋯O hydrogen bonds, thereby forming R44 (12) and R44 (28) graph-set motifs. Br⋯O and weak π–π stacking inter­actions are also observed. Hirshfeld surface analysis was used to confirm the existence of these inter­actions.




surface

2-Methyl-4-(4-nitro­phen­yl)but-3-yn-2-ol: crystal structure, Hirshfeld surface analysis and computational chemistry study

The di-substituted acetyl­ene residue in the title compound, C11H11NO3, is capped at either end by di-methyl­hydroxy and 4-nitro­benzene groups; the nitro substituent is close to co-planar with the ring to which it is attached [dihedral angle = 9.4 (3)°]. The most prominent feature of the mol­ecular packing is the formation, via hy­droxy-O—H⋯O(hy­droxy) hydrogen bonds, of hexa­meric clusters about a site of symmetry overline{3}. The aggregates are sustained by 12-membered {⋯OH}6 synthons and have the shape of a flattened chair. The clusters are connected into a three-dimensional architecture by benzene-C—H⋯O(nitro) inter­actions, involving both nitro-O atoms. The aforementioned inter­actions are readily identified in the calculated Hirshfeld surface. Computational chemistry indicates there is a significant energy, primarily electrostatic in nature, associated with the hy­droxy-O—H⋯O(hy­droxy) hydrogen bonds. Dispersion forces are more important in the other identified but, weaker inter­molecular contacts.




surface

Crystal structure and Hirshfeld surface analysis of a new di­thio­glycoluril: 1,4-bis­(4-meth­oxy­phen­yl)-3a-methyl­tetra­hydro­imidazo[4,5-d]imidazole-2,5(1H,3H)-di­thione

In the title di­thio­glycoluril derivative, C19H20N4O3S2, there is a difference in the torsion angles between the thio­imidazole moiety and the meth­oxy­phenyl groups on either side of the mol­ecule [C—N—Car—Car = 116.9 (2) and −86.1 (3)°, respectively]. The N—C—N bond angle on one side of the di­thio­glycoluril moiety is slightly smaller compared to that on the opposite side, [110.9 (2)° cf. 112.0 (2)°], probably as a result of the steric effect of the methyl group. In the crystal, N—H⋯S hydrogen bonds link adjacent mol­ecules to form chains propagating along the c-axis direction. The chains are linked by C—H⋯S hydrogen bonds, forming layers parallel to the bc plane. The layers are then linked by C—H⋯π inter­actions, leading to the formation of a three-dimensional supra­molecular network. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to investigate the mol­ecular inter­actions in the crystal.




surface

Crystal structure and Hirshfeld surface analysis of bis­(benzoato-κ2O,O')[bis­(pyridin-2-yl-κN)amine]nickel(II)

A new mononuclear NiII complex with bis­(pyridin-2-yl)amine (dpyam) and benzoate (benz), [Ni(C7H5O2)2(C10H9N3)], crystallizes in the monoclinic space group P21/c. The NiII ion adopts a cis-distorted octa­hedral geometry with an [NiN2O4] chromophore. In the crystal, the complex mol­ecules are linked together into a one-dimensional chain by symmetry-related π–π stacking inter­actions [centroid-to-centroid distance = 3.7257 (17) Å], along with N—H⋯O and C—H⋯O hydrogen bonds. The crystal packing is further stabilized by C—H⋯π inter­actions, which were investigated by Hirshfeld surface analysis.




surface

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 4-[(prop-2-en-1-yl­oxy)meth­yl]-3,6-bis­(pyridin-2-yl)pyridazine

The title compound, C18H16N4O, consists of a 3,6-bis­(pyridin-2-yl)pyridazine moiety linked to a 4-[(prop-2-en-1-yl­oxy)meth­yl] group. The pyridine-2-yl rings are oriented at a dihedral angle of 17.34 (4)° and are rotated slightly out of the plane of the pyridazine ring. In the crystal, C—HPyrd⋯NPyrdz (Pyrd = pyridine and Pyrdz = pyridazine) hydrogen bonds and C—HPrp­oxy⋯π (Prp­oxy = prop-2-en-1-yl­oxy) inter­actions link the mol­ecules, forming deeply corrugated layers approximately parallel to the bc plane and stacked along the a-axis direction. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (48.5%), H⋯C/C⋯H (26.0%) and H⋯N/N⋯H (17.1%) contacts, hydrogen bonding and van der Waals inter­actions being the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HPyrd⋯NPyrdz hydrogen-bond energy is 64.3 kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




surface

Crystal structure and Hirshfeld surface analysis of lapachol acetate 80 years after its first synthesis

Lapachol acetate [systematic name: 3-(3-methyl­but-2-en­yl)-1,4-dioxonaph­thalen-2-yl acetate], C17H16O4, was prepared using a modified high-yield procedure and its crystal structure is reported for the first time 80 years after its first synthesis. The full spectroscopic characterization of the mol­ecule is reported. The mol­ecular conformation shows little difference with other lapachol derivatives and lapachol itself. The packing is directed by inter­molecular π–π and C—H⋯O inter­actions, as described by Hirshfeld surface analysis. The former inter­actions make the largest contributions to the total packing energy in a ratio of 2:1 with respect to the latter.




surface

Crystal structure, Hirshfeld surface analysis and computational studies of 5-[(prop-2-en-1-yl)sulfan­yl]-1-[2-(tri­fluoro­meth­yl)phen­yl]-1H-tetra­zole

The title compound, C11H9F3N4S, was synthesized from 2-(tri­fluoro­meth­yl)aniline by a multi-step reaction. It crystallizes in the non-centrosymmetric space group Pna21, with one mol­ecule in the asymmetric unit, and is constructed from a pair of aromatic rings [2-(tri­fluoro­meth­yl)phenyl and tetra­zole], which are twisted by 76.8 (1)° relative to each other because of significant steric hindrance of the tri­fluoro­methyl group at the ortho position of the benzene ring. In the crystal, very weak C—H⋯N and C—H⋯F hydrogen bonds and aromatic π–π stacking inter­actions link the mol­ecules into a three-dimensional network. To further analyse the inter­molecular inter­actions, a Hirshfeld surface analysis, as well as inter­action energy calculations, were performed.




surface

Crystal structure and Hirshfeld surface analysis of 4-(4-methyl­benz­yl)-6-phenyl­pyridazin-3(2H)-one

In this paper, we describe the synthesis of a new di­hydro-2H-pyridazin-3-one derivative. The mol­ecule, C18H16N2O, is not planar; the benzene and pyridazine rings are twisted with respect to each other, making a dihedral angle of 11.47 (2)°, and the toluene ring is nearly perpendicular to the pyridazine ring, with a dihedral angle of 89.624 (1)°. The mol­ecular conformation is stabilized by weak intra­molecular C—H⋯N contacts. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into inversion dimers with an R22(8) ring motif. The inter­molecular inter­actions were investigated using Hirshfeld surface analysis and two-dimensional (2D) fingerprint plots, revealing that the most important contributions for the crystal packing are from H⋯H (56.6%), H⋯C/C⋯H (22.6%), O⋯H/H⋯O (10.0%) and N⋯C/C⋯N (3.5%) inter­actions.




surface

Crystal structure, Hirshfeld surface analysis and DFT studies of 5-bromo-1-{2-[2-(2-chloro­eth­oxy)eth­oxy]eth­yl}indoline-2,3-dione

The title compound, C14H15BrClNO4, consists of a 5-bromo­indoline-2,3-dione unit linked to a 1-{2-[2-(2-chloro­eth­oxy)eth­oxy]eth­yl} moiety. In the crystal, a series of C—H⋯O hydrogen bonds link the molecules to form a supramolecular three-dimensional structure, enclosing R22(8), R22(12), R22(18) and R22(22) ring motifs. π–π contacts between the five-membered dione rings may further stabilize the structure, with a centroid–centroid distance of 3.899 (2) Å. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (28.1%), H⋯O/O⋯H (23.5%), H⋯Br/Br⋯H (13.8%), H⋯Cl/Cl⋯H (13.0%) and H⋯C/C⋯H (10.2%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/6-311G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO—LUMO behaviour was elucidated to determine the energy gap. The chloro­eth­oxy­ethoxyethyl side chain atoms are disordered over two sets of sites with an occupancy ratio of 0.665 (8):0.335 (6).




surface

The crystal structures and Hirshfeld surface analyses of four 3,5-diacetyl-2-methyl-2,3-di­hydro-1,3,4-thia­diazol-2-yl derivatives

The title compounds, 4-(5-acetamido-3-acetyl-2-methyl-2,3-di­hydro-1,3,4-thia­diazol-2-yl)phenyl benzoate, C20H19N3O4S (I), 4-(5-acetamido-3-acetyl-2-methyl-2,3-di­hydro-1,3,4-thia­diazol-2-yl)phenyl isobutyrate 0.25-hydrate, C17H21N3O4S·0.25H2O (II), 4-(5-acetamido-3-acetyl-2-methyl-2,3-di­hydro-1,3,4-thia­diazol-2-yl)phenyl propionate, C16H19N3O4S (III) and 4-(5-acetamido-3-acetyl-2-methyl-2,3-di­hydro-1,3,4-thia­diazol-2-yl)phenyl cinnamate chloro­form hemisolvate, C22H21N3O4S·0.5CHCl3 (IV), all crystallize with two independent mol­ecules (A and B) in the asymmetric unit in the triclinic Poverline{1} space group. Compound II crystallizes as a quaterhydrate, while compound IV crystallizes as a chloro­form hemisolvate. In compounds I, II, III (mol­ecules A and B) and IV (mol­ecule A) the five-membered thia­diazole ring adopts an envelope conformation, with the tetra­substituted C atom as the flap. In mol­ecule B of IV this ring is flat (r.m.s. deviation 0.044 Å). The central benzene ring is in general almost normal to the mean plane of the thia­diazole ring in each mol­ecule, with dihedral angles ranging from 75.8 (1) to 85.5 (2)°. In the crystals of all four compounds, the A and B mol­ecules are linked via strong N—H⋯O hydrogen bonds and generate centrosymmetric four-membered R44(28) ring motifs. There are C—H⋯O hydrogen bonds present in the crystals of all four compounds, and in I and II there are also C—H⋯π inter­actions present. The inter­molecular contacts in the crystals of all four compounds were analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots.




surface

The structure and Hirshfeld surface analysis of the salt 3-methacryl­amido-N,N,N-tri­methyl­propan-1-aminium 2-acryl­amido-2-methyl­propane-1-sulfonate

The title salt, C10H21N2O+·C7H12NO4S−, comprises a 3-methacryl­amido-N,N,N-tri­methyl­propan-1-aminium cation and a 2-acryl­amido-2-methyl­propane-1-sulfonate anion. The salt crystallizes with two unique cation–anion pairs in the asymmetric unit of the ortho­rhom­bic unit cell. The crystal studied was an inversion twin with a 0.52 (4):0.48 (4) domain ratio. In the crystal, the cations and anions stack along the b-axis direction and are linked by an extensive series of N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network. Hirshfeld surface analysis was carried out on both the asymmetric unit and the two individual salts. The contribution of inter­atomic contacts to the surfaces of the individual cations and anions are also compared.




surface

Crystal structures and Hirshfeld surface analyses of (E)-N'-benzyl­idene-2-oxo-2H-chromene-3-carbo­hydrazide and the disordered hemi-DMSO solvate of (E)-2-oxo-N'-(3,4,5-trimeth­oxybenzyl­idene)-2H-chromene-3-carbohydrazide: lattice ene

The crystal structures of the disordered hemi-DMSO solvate of (E)-2-oxo-N'-(3,4,5-tri­meth­oxy­benzyl­idene)-2H-chromene-3-carbohydrazide, C20H18N2O6·0.5C2H6OS, and (E)-N'-benzyl­idene-2-oxo-2H-chromene-3-carbohydrazide, C17H12N2O3 (4: R = C6H5), are discussed. The non-hydrogen atoms in compound [4: R = (3,4,5-MeO)3C6H2)] exhibit a distinct curvature, while those in compound, (4: R = C6H5), are essential coplanar. In (4: R = C6H5), C—H⋯O and π–π intra­molecular inter­actions combine to form a three-dimensional array. A three-dimensional array is also found for the hemi-DMSO solvate of [4: R = (3,4,5-MeO)3C6H2], in which the mol­ecules of coumarin are linked by C—H⋯O and C—H⋯π inter­actions, and form tubes into which the DMSO mol­ecules are cocooned. Hirshfeld surface analyses of both compounds are reported, as are the lattice energy and inter­molecular inter­action energy calculations of compound (4: R = C6H5).




surface

Crystal structure and Hirshfeld surface analysis of 2-hy­droxy-7-meth­oxy-1,8-bis­(2,4,6-tri­chloro­benzo­yl)naphthalene

In the title compound, C25H12Cl6O4, the two carbonyl groups are oriented in a same direction with respect to the naphthalene ring system and are situated roughly parallel to each other, while the two 2,4,6-tri­chloro­benzene rings are orientated in opposite directions with respect to the naphthalene ring system: the carbonyl C—(C=O)—C planes subtend dihedral angles of 45.54 (15) and 30.02 (15)° to the naphthalene ring system are. The dihedral angles formed by the carbonyl groups and the benzene rings show larger differences, the C=O vectors being inclined to the benzene rings by 46.39 (16) and 79.78 (16)°. An intra­molecular O—H⋯O=C hydrogen bond forms an S(6) ring motif. In the crystal, no effective inter­molecular hydrogen bonds are found; instead, O⋯Cl and C⋯Cl close contacts are observed along the 21 helical-axis direction. The Hirshfeld surface analysis reveals several weak interactions, the major contributor being Cl⋯H/H⋯Cl contacts.




surface

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 2-chloro­ethyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-di­hydro­quinoline-4-carboxyl­ate

The title compound, C15H12ClNO3, consists of a 1,2-di­hydro­quinoline-4-carb­oxyl­ate unit with 2-chloro­ethyl and propynyl substituents, where the quinoline moiety is almost planar and the propynyl substituent is nearly perpendicular to its mean plane. In the crystal, the mol­ecules form zigzag stacks along the a-axis direction through slightly offset π-stacking inter­actions between inversion-related quinoline moieties which are tied together by inter­molecular C—HPrpn­yl⋯OCarbx and C—HChlethy⋯OCarbx (Prpnyl = propynyl, Carbx = carboxyl­ate and Chlethy = chloro­eth­yl) hydrogen bonds. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (29.9%), H⋯O/O⋯H (21.4%), H⋯C/C⋯ H (19.4%), H⋯Cl/Cl⋯H (16.3%) and C⋯C (8.6%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HPrpn­yl⋯OCarbx and C—HChlethy⋯OCarbx hydrogen bond energies are 67.1 and 61.7 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




surface

2-{(1E)-[(E)-2-(2,6-Di­chloro­benzyl­idene)hydrazin-1-yl­idene]meth­yl}phenol: crystal structure, Hirshfeld surface analysis and computational study

The title Schiff base compound, C14H10Cl2N2O, features an E configuration about each of the C=N imine bonds. Overall, the mol­ecule is approximately planar with the dihedral angle between the central C2N2 residue (r.m.s. deviation = 0.0371 Å) and the peripheral hy­droxy­benzene and chloro­benzene rings being 4.9 (3) and 7.5 (3)°, respectively. Nevertheless, a small twist is evident about the central N—N bond [the C—N—N—C torsion angle = −172.7 (2)°]. An intra­molecular hy­droxy-O—H⋯N(imine) hydrogen bond closes an S(6) loop. In the crystal, π–π stacking inter­actions between hy­droxy- and chloro­benzene rings [inter-centroid separation = 3.6939 (13) Å] lead to a helical supra­molecular chain propagating along the b-axis direction; the chains pack without directional inter­actions between them. The calculated Hirshfeld surfaces point to the importance of H⋯H and Cl⋯H/H⋯Cl contacts to the overall surface, each contributing approximately 29% of all contacts. However, of these only Cl⋯H contacts occur at separations less than the sum of the van der Waals radii. The aforementioned π–π stacking inter­actions contribute 12.0% to the overall surface contacts. The calculation of the inter­action energies in the crystal indicates significant contributions from the dispersion term.




surface

Crystal structure and mol­ecular Hirshfeld surface analysis of acenaphthene derivatives obeying the chlorine–methyl exchange rule

Instances of crystal structures that remain isomorphous in spite of some minor changes in their respective mol­ecules, such as change in a substituent atom/group, can provide insights into the factors that govern crystal packing. In this context, an accurate description of the crystal structures of an isomorphous pair that differ from each other only by a chlorine–methyl substituent, viz. 5''-(2-chloro­benzyl­idene)-4'-(2-chloro­phen­yl)-1'-methyl­dispiro­[acenaphthene-1,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione, C34H28Cl2N2O2, (I), and its analogue 1'-methyl-5''-(2-methyl­benzyl­idene)-4'-(2-methyl­phen­yl)di­spiro­[acenaphthene-1,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione, C36H34N2O2, (II), is presented. While there are two C—H⋯O weak inter­molecular inter­actions present in both (I) and (II), the change of substituent from chlorine to methyl has given rise to an additional weak C—H⋯O inter­molecular inter­action that is relatively stronger than the other two. However, the presence of the stronger C—H⋯O inter­action in (II) has not disrupted the validity of the chloro-methyl exchange rule. Details of the crystal structures and Hirshfeld analyses of the two compounds are presented.




surface

Crystal structure and Hirshfeld surface analysis of 5-(3,5-di-tert-butyl-4-hy­droxy­phen­yl)-3-phenyl-4,5-di­hydro-1H-pyrazole-1-carboxamide

In the title compound, C24H31N3O2, the mean plane of the central pyrazole ring [r.m.s. deviation = 0.095 Å] makes dihedral angles of 11.93 (9) and 84.53 (8)°, respectively, with the phenyl and benzene rings. There is a short intra­molecular N—H⋯N contact, which generates an S(5) ring motif. In the crystal, pairs of N—H⋯O hydrogen bonds link inversion-related mol­ecules into dimers, generating an R22(8) ring motif. The Hirshfeld surface analysis indicates that the most significant contribution involves H⋯H contacts of 68.6%




surface

(N,N-Diiso­propyl­dithio­carbamato)tri­phenyl­tin(IV): crystal structure, Hirshfeld surface analysis and computational study

The crystal and mol­ecular structures of the title triorganotin di­thio­carbamate, [Sn(C6H5)3(C7H14NS2)], are described. The mol­ecular geometry about the metal atom is highly distorted being based on a C3S tetra­hedron as the di­thio­carbamate ligand is asymmetrically chelating to the tin centre. The close approach of the second thione-S atom [Sn⋯S = 2.9264 (4) Å] is largely responsible for the distortion. The mol­ecular packing is almost devoid of directional inter­actions with only weak phenyl-C—H⋯C(phen­yl) inter­actions, leading to centrosymmetric dimeric aggregates, being noted. An analysis of the calculated Hirshfeld surface points to the significance of H⋯H contacts, which contribute 66.6% of all contacts to the surface, with C⋯H/H⋯C [26.8%] and S⋯H/H⋯H [6.6%] contacts making up the balance.




surface

3,3-Bis(2-hy­droxy­eth­yl)-1-(4-methyl­benzoyl)thio­urea: crystal structure, Hirshfeld surface analysis and computational study

In the title tri-substituted thio­urea derivative, C13H18N2O3S, the thione-S and carbonyl-O atoms lie, to a first approximation, to the same side of the mol­ecule [the S—C—N—C torsion angle is −49.3 (2)°]. The CN2S plane is almost planar (r.m.s. deviation = 0.018 Å) with the hy­droxy­ethyl groups lying to either side of this plane. One hy­droxy­ethyl group is orientated towards the thio­amide functionality enabling the formation of an intra­molecular N—H⋯O hydrogen bond leading to an S(7) loop. The dihedral angle [72.12 (9)°] between the planes through the CN2S atoms and the 4-tolyl ring indicates the mol­ecule is twisted. The experimental mol­ecular structure is close to the gas-phase, geometry-optimized structure calculated by DFT methods. In the mol­ecular packing, hydroxyl-O—H⋯O(hydrox­yl) and hydroxyl-O—H⋯S(thione) hydrogen bonds lead to the formation of a supra­molecular layer in the ab plane; no directional inter­actions are found between layers. The influence of the specified supra­molecular inter­actions is apparent in the calculated Hirshfeld surfaces and these are shown to be attractive in non-covalent inter­action plots; the inter­action energies point to the important stabilization provided by directional O—H⋯O hydrogen bonds.




surface

Crystal structure and Hirshfeld surface analysis of bis­[hydrazinium(1+)] hexa­fluorido­silicate: (N2H5)2SiF6

In the title inorganic mol­ecular salt, (N2H5)2SiF6, the silicon atom at the centre of the slightly distorted SiF6 octa­hedron [range of Si—F distances = 1.6777 (4)–1.7101 (4) Å] lies on a crystallographic inversion centre. In the crystal, the ions are connected by N—H⋯N and N—H⋯F hydrogen bonds; the former link the cations into [010] chains and the latter (some of which are bifurcated or trifurcated) link the ions into a three-dimensional network. The two-dimensional fingerprint plots show that F⋯H/H⋯F inter­actions dominate the Hirshfeld surface (75.5%) followed by H⋯H (13.6%) and N⋯H/H⋯N (8.4%) whereas F⋯F (1.9%) and F⋯N/N⋯F (0.6%) have negligible percentages. The title compound is isostructural with its germanium-containing analogue.




surface

Crystal structure and Hirshfeld surface analysis of 2,2''',6,6'''-tetra­meth­oxy-3,2':5',3'':6'',3'''-quaterpyridine

In the title compound, C24H22N4O4, the four pyridine rings are tilted slightly with respect to each other. The dihedral angles between the inner and outer pyridine rings are 12.51 (8) and 9.67 (9)°, while that between inner pyridine rings is 20.10 (7)°. Within the mol­ecule, intra­molecular C—H⋯O and C—H⋯N contacts are observed. In the crystal, adjacent mol­ecules are linked by π–π stacking inter­actions between pyridine rings and weak C—H⋯π inter­actions between a methyl H atom and the centroid of a pyridine ring, forming a two-dimensional layer structure extending parallel to the ac plane. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (52.9%) and H⋯C/C⋯H (17.3%) contacts.




surface

Crystal structure and Hirshfeld surface analysis of N-(tert-but­yl)-2-(phenyl­ethyn­yl)imidazo[1,2-a]pyridin-3-amine

The bicyclic imidazo[1,2-a]pyridine core of the title compound, C19H19N3, is relatively planar with an r.m.s. deviation of 0.040 Å. The phenyl ring is inclined to the mean plane of the imidazo[1,2-a]pyridine unit by 18.2 (1)°. In the crystal, mol­ecules are linked by N—H⋯H hydrogen bonds, forming chains along the c-axis direction. The chains are linked by C—H⋯π inter­actions, forming slabs parallel to the ac plane. The Hirshfeld surface analysis and fingerprint plots reveal that the crystal structure is dominated by H⋯H (54%) and C⋯H/H⋯C (35.6%) contacts. The crystal studied was refined as an inversion twin




surface

Crystal structure and Hirshfeld surface analysis of 3-(cyclo­propyl­meth­oxy)-4-(di­fluoro­meth­oxy)-N-(pyridin-2-ylmeth­yl)benzamide

The title compound, C18H18F2N2O3, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. They differ essentially in the orientation of the pyridine ring with respect to the benzene ring; these two rings are inclined to each other by 53.3 (2)° in mol­ecule A and by 72.9 (2)° in mol­ecule B. The 3-(cyclo­propyl­meth­oxy) side chain has an extended conformation in both mol­ecules. The two mol­ecules are linked by a pair of C—H⋯O hydrogen bonds and two C—H⋯π inter­actions, forming an A–B unit. In the crystal, this unit is linked by N—H⋯O hydrogen bonds, forming a zigzag –A–B–A–B– chain along [001]. The chains are linked by C—H⋯N and C—H⋯F hydrogen bonds to form layers parallel to the ac plane. Finally, the layers are linked by a third C—H⋯π inter­action, forming a three-dimensional structure. The major contributions to the Hirshfeld surface are those due to H⋯H contacts (39.7%), followed by F⋯H/H⋯F contacts (19.2%).




surface

The crystal structures and Hirshfeld surface analysis of 6-(naphthalen-1-yl)-6a-nitro-6,6a,6b,7,9,11a-hexa­hydro­spiro­[chromeno[3',4':3,4]pyrrolo­[1,2-c]thia­zole-11,11'-indeno­[1,2-b]quinoxaline] and 6'-(naphthalen-1-yl)-6a

The title compounds, 6-(naphthalen-1-yl)-6a-nitro-6,6a,6 b,7,9,11a-hexa­hydro­spiro­[chromeno[3',4':3,4]pyrrolo­[1,2-c]thia­zole-11,11'-indeno­[1,2-b]quinoxaline], C37H26N4O3S, (I), and 6'-(naphthalen-1-yl)-6a'-nitro-6',6a',6b',7',8',9',10',12a'-octa­hydro-2H-spiro­[ace­naphthyl­ene-1,12'-chromeno[3,4-a]indolizin]-2-one, C36H28N2O4, (II), are new spiro derivatives, in which both the pyrrolidine rings adopt twisted conformations. In (I), the five-membered thia­zole ring adopts an envelope conformation, while the eight-membered pyrrolidine-thia­zole ring adopts a boat conformation. An intra­molecular C—H⋯N hydrogen bond occurs, involving a C atom of the pyran ring and an N atom of the pyrazine ring. In (II), the six-membered piperidine ring adopts a chair conformation. An intra­molecular C—H⋯O hydrogen bond occurs, involving a C atom of the pyrrolidine ring and the keto O atom. For both compounds, the crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds. In (I), the C—H⋯O hydrogen bonds link adjacent mol­ecules, forming R22(16) loops propagating along the b-axis direction, while in (II) they form zigzag chains along the b-axis direction. In both compounds, C—H⋯π inter­actions help to consolidate the structure, but no significant π–π inter­actions with centroid–centroid distances of less than 4 Å are observed.




surface

Crystal structure and Hirshfeld surface analysis of 2-[(1,3-benzoxazol-2-yl)sulfan­yl]-N-(2-meth­oxy­phen­yl)acetamide

In the title compound, C16H14N2O3S, the 1,3-benzoxazole ring system is essentially planar (r.m.s deviation = 0.004 Å) and makes a dihedral angle of 66.16 (17)° with the benzene ring of the meth­oxy­phenyl group. Two intra­molecular N—H⋯O and N—H⋯N hydrogen bonds occur, forming S(5) and S(7) ring motifs, respectively. In the crystal, pairs of C—H⋯O hydrogen bonds link the mol­ecules into inversion dimers with R22(14) ring motifs, stacked along the b-axis direction. The inversion dimers are linked by C—H⋯π and π–π-stacking inter­actions [centroid-to-centroid distances = 3.631 (2) and 3.631 (2) Å], forming a three-dimensional network. Two-dimensional fingerprint plots associated with the Hirshfeld surface show that the largest contributions to the crystal packing come from H⋯H (39.3%), C⋯H/H⋯C (18.0%), O⋯H/H⋯O (15.6) and S⋯H/H⋯S (10.2%) inter­actions.




surface

Crystal structure and Hirshfeld surface analysis of 2-amino­pyridinium hydrogen phthalate

Amino­pyridine and phthalic acid are well known synthons for supra­molecular architectures for the synthesis of new materials for optical applications. The 2-amino­pyridinium hydrogen phthalate title salt, C5H7N2+·C8H5O4−, crystallizes in the non-centrosymmetric space group P21. The nitro­gen atom of the –NH2 group in the cation deviates from the fitted pyridine plane by 0.035 (7) Å. The plane of the pyridinium ring and phenyl ring of the anion are oriented at an angle of 80.5 (3)° to each other in the asymmetric unit. The anion features a strong intra­molecular O—H⋯O hydrogen bond, forming a self-associated S(7) ring motif. The crystal packing is dominated by inter­molecular N—H⋯O hydrogen bonds leading to the formation of 21 helices, with a C(11) chain motif. They propagate along the b axis and enclose R22(8) ring motifs. The helices are linked by C—H⋯O hydrogen bonds, forming layers parallel to the ab plane. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to investigate and qu­antify the inter­molecular inter­actions in the crystal.




surface

Crystal structure and Hirshfeld surface analysis of 3-amino-5-phenyl­thia­zolidin-2-iminium bromide

In the cation of the title salt, C9H12N3S+·Br−, the thia­zolidine ring adopts an envelope conformation with the C atom adjacent to the phenyl ring as the flap. In the crystal, N—H⋯Br hydrogen bonds link the components into a three-dimensional network. Weak π–π stacking inter­actions between the phenyl rings of adjacent cations also contribute to the mol­ecular packing. A Hirshfeld surface analysis was conducted to qu­antify the contributions of the different inter­molecular inter­actions and contacts.




surface

Crystal structure, Hirshfeld surface analysis and physicochemical characterization of bis­[4-(di­methyl­amino)­pyridinium] di-μ-chlorido-bis[di­chlorido­mercurate(II)]

The title mol­ecular salt, (C7H11N2)2[Hg2Cl6], crystallizes with two 4-(di­methyl­amino)­pyridinium cations (A and B) and two half hexa­chlorido­dimercurate(II) anions in the asymmetric unit. The organic cations exhibit essentially the same features with an almost planar pyridyl ring (r.m.s. deviations of 0.0028 and 0.0109 Å), which forms an inclined dihedral angle with the dimethyamino group [3.06 (1) and 1.61 (1)°, respectively]. The di­methyl­amino groups in the two cations are planar, and the C—N bond lengths are shorter than that in 4-(di­methyl­amino)­pyridine. In the crystal, mixed cation–anion layers lying parallel to the (010) plane are formed through N—H⋯Cl hydrogen bonds and adjacent layers are linked by C—H⋯Cl hydrogen bonds, forming a three-dimensional network. The analyses of the calculated Hirshfeld surfaces confirm the relevance of the above inter­molecular inter­actions, but also serve to further differentiate the weaker inter­molecular inter­actions formed by the organic cations and inorganic anions, such as π–π and Cl⋯Cl inter­actions. The powder XRD data confirms the phase purity of the crystalline sample. Furthermore, the vibrational absorption bands were identified by IR spectroscopy and the optical properties were studied by using optical UV–visible absorption spectroscopy.




surface

Crystal structure, DFT calculation, Hirshfeld surface analysis and energy framework study of 6-bromo-2-(4-bromo­phen­yl)imidazo[1,2-a]pyridine

The title imidazo[1,2-a] pyridine derivative, C13H8Br2N2, was synthesized via a single-step reaction method. The title mol­ecule is planar, showing a dihedral angle of 0.62 (17)° between the phenyl and the imidazo[1,2-a] pyridine rings. An intra­molecular C—H⋯N hydrogen bond with an S(5) ring motif is present. In the crystal, a short H⋯H contact links adjacent mol­ecules into inversion-related dimers. The dimers are linked in turn by weak C—H⋯π and slipped π–π stacking inter­actions, forming layers parallel to (110). The layers are connected into a three-dimensional network by short Br⋯H contacts. Two-dimensional fingerprint plots and three-dimensional Hirshfeld surface analysis of the inter­molecular contacts reveal that the most important contributions for the crystal packing are from H⋯Br/Br⋯H (26.1%), H⋯H (21.7%), H⋯C/C⋯H (21.3%) and C⋯C (6.5%) inter­actions. Energy framework calculations suggest that the contacts formed between mol­ecules are largely dispersive in nature. Analysis of HOMO–LUMO energies from a DFT calculation reveals the pure π character of the aromatic rings with the highest electron density on the phenyl ring, and σ character of the electron density on the Br atoms. The HOMO–LUMO gap was found to be 4.343 eV.




surface

Synthesis, crystal structure and Hirshfeld surface analysis of 4-[3-(4-hy­droxy­phen­yl)-4,5-di­hydro-1H-pyrazol-5-yl]-2-meth­oxy­phenol monohydrate

In the title pyrazoline derivative, C16H16N2O3·H2O, the pyrazoline ring has an envelope conformation with the substituted sp2 C atom on the flap. The pyrazoline ring makes angles of 86.73 (12) and 13.44 (12)° with the tris­ubstituted and disubstituted benzene rings, respectively. In the crystal structure, the mol­ecules are connected into chains running in the b-axis direction by O—H⋯N hydrogen bonding. Parallel chains inter­act through N—H⋯O hydrogen bonds and π–π stacking of the tris­ubstituted phenyl rings. The major contribution to the surface contacts are H⋯H contacts (44.3%) as concluded from a Hirshfeld surface analysis.




surface

Crystal structure, DFT and Hirshfeld surface analysis of 2-amino-4-(2-chloro­phen­yl)-7-hy­droxy-4H-benzo[1,2-b]pyran-3-carbo­nitrile

The benzo­pyran ring of the title com­pound, C16H11ClN2O2, is planar [maximum deviation = 0.079 (2) Å] and is almost perpendicular to the chloro­phenyl ring [dihedral angle = 86.85 (6)°]. In the crystal, N—H⋯O, O—H⋯N, C—H⋯O and C—H⋯Cl hydrogen bonds form inter- and intra­molecular inter­actions. The DFT/B3LYP/6-311G(d,p) method was used to determine the HOMO–LUMO energy levels. The mol­ecular electrostatic potential surfaces were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyse the inter­molecular inter­actions in the mol­ecule.




surface

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of (2Z)-4-benzyl-2-(2,4-di­chloro­benzyl­idene)-2H-1,4-benzo­thia­zin-3(4H)-one

The title compound, C22H15Cl2NOS, contains 1,4-benzo­thia­zine and 2,4-di­­chloro­benzyl­idene units, where the di­hydro­thia­zine ring adopts a screw-boat conformation. In the crystal, inter­molecular C—HBnz⋯OThz (Bnz = benzene and Thz = thia­zine) hydrogen bonds form corrugated chains extending along the b-axis direction which are connected into layers parallel to the bc plane by inter­molecular C—HMethy⋯SThz (Methy = methyl­ene) hydrogen bonds, en­closing R44(22) ring motifs. Offset π-stacking inter­actions between 2,4-di­­chloro­phenyl rings [centroid–centroid = 3.7701 (8) Å] and π-inter­actions which are associated by C—HBnz⋯π(ring) and C—HDchlphy⋯π(ring) (Dchlphy = 2,4-di­chloro­phen­yl) inter­actions may be effective in the stabilization of the crystal structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (29.1%), H⋯C/C⋯H (27.5%), H⋯Cl/Cl⋯H (20.6%) and O⋯H/H⋯O (7.0%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HBnz⋯OThz and C—HMethy⋯SThz hydrogen-bond energies are 55.0 and 27.1 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/6-311G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




surface

Crystal structures and Hirshfeld surface analyses of 4-benzyl-6-phenyl-4,5-di­hydro­pyridazin-3(2H)-one and methyl 2-[5-(2,6-di­chloro­benz­yl)-6-oxo-3-phenyl-1,4,5,6-tetra­hydropyridazin-1-yl]acetate

The asymmetric units of the title compounds both contain one nonplanar mol­ecule. In 4-benzyl-6-phenyl-4,5-di­hydro­pyridazin-3(2H)-one, C17H14N2O, (I), the phenyl and pyridazine rings are twisted with respect to each other, making a dihedral angle of 46.69 (9)°; the phenyl ring of the benzyl group is nearly perpendicular to the plane of the pyridazine ring, the dihedral angle being 78.31 (10)°. In methyl 2-[5-(2,6-di­chloro­benz­yl)-6-oxo-3-phenyl-1,4,5,6-tetra­hydropyridazin-1-yl]acetate, C20H16Cl2N2O3, (II), the phenyl and pyridazine rings are twisted with respect to each other, making a dihedral angle of 21.76 (18)°, whereas the phenyl ring of the di­chloro­benzyl group is inclined to the pyridazine ring by 79.61 (19)°. In the crystal structure of (I), pairs of N—H⋯O hydrogen bonds link the mol­ecules into inversion dimers with an R22(8) ring motif. In the crystal structure of (II), C—H⋯O hydrogen bonds generate dimers with R12(7), R22(16) and R22(18) ring motifs. The Hirshfeld surface analyses of compound (I) suggests that the most significant contributions to the crystal packing are by H⋯H (48.2%), C⋯H/H⋯C (29.9%) and O⋯H/H⋯O (8.9%) contacts. For compound (II), H⋯H (34.4%), C⋯H/H⋯C (21.3%) and O⋯H/H⋯O (16.5%) inter­actions are the most important contributions.




surface

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of methyl 4-[3,6-bis­(pyridin-2-yl)pyridazin-4-yl]benzoate

The title com­pound, C22H16N4O2, contains two pyridine rings and one meth­oxy­carbonyl­phenyl group attached to a pyridazine ring which deviates very slightly from planarity. In the crystal, ribbons consisting of inversion-related chains of mol­ecules extending along the a-axis direction are formed by C—HMthy⋯OCarbx (Mthy = methyl and Carbx = carboxyl­ate) hydrogen bonds. The ribbons are connected into layers parallel to the bc plane by C—HBnz⋯π(ring) (Bnz = benzene) inter­actions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (39.7%), H⋯C/C⋯H (27.5%), H⋯N/N⋯H (15.5%) and O⋯H/H⋯O (11.1%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, C—HMthy⋯OCarbx hydrogen-bond energies are 62.0 and 34.3 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/6-311G(d,p) level are com­pared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




surface

Bis[2-(4,5-diphenyl-1H-imidazol-2-yl)-4-nitrophenolato]copper(II) dihydrate: crystal structure and Hirshfeld surface analysis

The crystal and mol­ecular structures of the title CuII complex, isolated as a dihydrate, [Cu(C21H14N3O3)2]·2H2O, reveals a highly distorted coordination geometry inter­mediate between square-planar and tetra­hedral defined by an N2O2 donor set derived from two mono-anionic bidentate ligands. Furthermore, each six-membered chelate ring adopts an envelope conformation with the Cu atom being the flap. In the crystal, imidazolyl-amine-N—H⋯O(water), water-O—H⋯O(coordinated, nitro and water), phenyl-C—H⋯O(nitro) and π(imidazol­yl)–π(nitro­benzene) [inter-centroid distances = 3.7452 (14) and 3.6647 (13) Å] contacts link the components into a supra­molecular layer lying parallel to (101). The connections between layers forming a three-dimensional architecture are of the types nitro­benzene-C—H⋯O(nitro) and phenyl-C—H⋯π(phen­yl). The distorted coordination geometry for the CuII atom is highlighted in an analysis of the Hirshfeld surface calculated for the metal centre alone. The significance of the inter­molecular contacts is also revealed in a study of the calculated Hirshfeld surfaces; the dominant contacts in the crystal are H⋯H (41.0%), O⋯H/H⋯O (27.1%) and C⋯H/H⋯C (19.6%).




surface

Crystal structure, Hirshfeld surface analysis and PIXEL calculations of a 1:1 epimeric mixture of 3-[(4-nitro­benzyl­idene)amino]-2(R,S)-(4-nitro­phenyl)-5(S)-(propan-2-yl)imidazolidin-4-one

A 1:1 epimeric mixture of 3-[(4-nitro­benzyl­idene)amino]-2(R,S)-(4-nitro­phen­yl)-5(S)-(propan-2-yl)imidazolidin-4-one, C19H19N5O5, was isolated from a reaction mixture of 2(S)-amino-3-methyl-1-oxo­butane­hydrazine and 4-nitro­benz­alde­hyde in ethanol. The product was derived from an initial reaction of 2(S)-amino-3-methyl-1-oxo­butane­hydrazine at its hydrazine group to provide a 4-nitro­benzyl­idene derivative, followed by a cyclization reaction with another mol­ecule of 4-nitro­benzaldehyde to form the chiral five-membered imidazolidin-4-one ring. The formation of the five-membered imidazolidin-4-one ring occurred with retention of the configuration at the 5-position, but with racemization at the 2-position. In the crystal, N—H⋯O(nitro) hydrogen bonds, weak C—H⋯O(carbon­yl) and C—H⋯O(nitro) hydrogen bonds, as well as C—H⋯π, N—H⋯π and π–π inter­actions, are present. These combine to generate a three-dimensional array. Hirshfeld surface analysis and PIXEL calculations are also reported.




surface

Crystal structure and Hirshfeld surface analysis of 2-(4-nitro­phen­yl)-2-oxoethyl benzoate

The title com­pound, C15H11NO5, is relatively planar, with the planes of the two aromatic rings being inclined to each other by 3.09 (5)°. In the crystal, mol­ecules are linked by a pair of C—H⋯O hydrogen bonds, forming inversion dimers, which enclose an R22(16) ring motif. The dimers are linked by a further pair of C—H⋯O hydrogen-bonds forming ribbons enclosing R44(26) ring motifs. The ribbons are linked by offset π–π inter­actions [centroid–centroid distances = 3.6754 (6)–3.7519 (6) Å] to form layers parallel to the ac plane. Through Hirshfeld surface analyses, the dnorm surfaces, electrostatic potential and two-dimensional fingerprint (FP) plots were examined to verify the contributions of the different inter­molecular contacts within the supra­molecular structure. The shape-index surface shows that two sides of the mol­ecule are involved with the same contacts in neighbouring mol­ecules, and the curvedness plot shows flat surface patches that are characteristic of planar stacking.




surface

Crystal structure and Hirshfeld surface analysis of (2E,2'E)-1,1'-[seleno­bis­(4,1-phenyl­ene)]bis­[3-(4-chloro­phen­yl)prop-2-en-1-one]

In the title com­pound, C30H20Cl2O2Se, the C—Se—C angle is 99.0 (2)°, with the dihedral angle between the planes of the attached benzene rings being 79.1 (3)°. The average endocyclic angles (Se—C—C) facing the Se atom are 122.1 (5) and 122.2 (5)°. The Se atom is essentially coplanar with the attached benzene rings, deviating by 0.075 (1) and 0.091 (1) Å. In the two phenyl­ene(4-chloro­phen­yl)prop-2-en-1-one units, the benzene rings are inclined to each other by 44.6 (3) and 7.8 (3)°. In the crystal, the mol­ecules stack up the a axis, forming layers parallel to the ac plane. There are no significant classical inter­molecular inter­actions present. Hirshfeld surface analysis, two-dimensional fingerprint plots and the mol­ecular electrostatic potential surface were used to analyse the crystal packing. The Hirshfeld surface analysis suggests that the most significant contributions to the crystal packing are by C⋯H/H⋯C contacts (17.7%).




surface

Crystal structure and Hirshfeld surface analysis of (E)-6-(4-hy­droxy-3-meth­oxy­styr­yl)-4,5-di­hydro­pyridazin-3(2H)-one

In the title com­pound, C13H14N2O3, the dihydropyridazine ring (r.m.s. deviation = 0.166 Å) has a screw-boat conformation. The dihedral angle between its mean plane and the benzene ring is 0.77 (12)°. In the crystal, inter­molecular O—H⋯O hydrogen bonds generate C(5) chains and N—H⋯O hydrogen bonds produce R22(8) motifs. These types of inter­actions lead to the formation of layers parallel to (12overline{1}). The three-dimensional network is achieved by C—H⋯O inter­actions, including R24(8) motifs. Inter­molecular inter­actions were additionally investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots. The most significant contributions to the crystal packing are by H⋯H (43.3%), H⋯C/C⋯H (19.3%), H⋯O/H⋯O (22.6%), C⋯N/N⋯C (3.0%) and H⋯N/N⋯H (5.8%) contacts. C—H⋯π inter­actions and aromatic π–π stacking inter­actions are not observed.




surface

Crystal structure, Hirshfeld surface analysis and DFT studies of ethyl 2-{4-[(2-eth­oxy-2-oxoeth­yl)(phen­yl)carbamo­yl]-2-oxo-1,2-di­hydro­quinolin-1-yl}acetate

The title com­pound, C24H24N2O6, consists of ethyl 2-(1,2,3,4-tetra­hydro-2-oxo­quinolin-1-yl)acetate and 4-[(2-eth­oxy-2-oxoeth­yl)(phen­yl)carbomoyl] units, where the oxo­quinoline unit is almost planar and the acetate substituent is nearly perpendicular to its mean plane. In the crystal, C—HOxqn⋯OEthx and C—HPh­yl⋯OCarbx (Oxqn = oxoquinolin, Ethx = eth­oxy, Phyl = phenyl and Carbx = carboxyl­ate) weak hydrogen bonds link the mol­ecules into a three-dimensional network sturucture. A π–π inter­action between the constituent rings of the oxo­quinoline unit, with a centroid–centroid distance of 3.675 (1) Å may further stabilize the structure. Both terminal ethyl groups are disordered over two sets of sites. The ratios of the refined occupanies are 0.821 (8):0.179 (8) and 0.651 (18):0.349 (18). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (53.9%), H⋯O/O⋯H (28.5%) and H⋯C/C⋯H (11.8%) inter­actions. Weak inter­molecular hydrogen-bond inter­actions and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Density functional theory (DFT) geometric optimized structures at the B3LYP/6-311G(d,p) level are com­pared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO mol­ecular orbital behaviour was elucidated to determine the energy gap.