surface

Crystal structure, Hirshfeld surface analysis, DFT and mol­ecular docking studies of ethyl 5-amino-2-bromo­isonicotinate

Theoretical and experimental structural studies of the title compound were undertaken using X-ray and DFT methods. The inter­actions present in the crystal were analyzed using Hirshfeld surface and MEP surface analysis. Docking studies with a covid-19 main protease (PDB ID: 6LU7) as the target receptor indicate that the synthesized compound may be a potential candidate for pharmaceutical applications.




surface

Crystal structure, Hirshfeld surface, DFT and mol­ecular docking studies of 2-{4-[(E)-(4-acetylphen­yl)diazen­yl]phen­yl}-1-(5-bromo­thio­phen-2-yl)ethanone; a bromine⋯oxygen type contact

The title compound is a non-liquid crystal mol­ecule. The mol­ecular crystal is consolidated by C—Br⋯O&z-dbnd;C type contacts running continuously along the [001] direction.




surface

Synthesis, crystal structure and Hirshfeld surface analysis of N-(4-meth­oxy­phen­yl)picolinamide

The mol­ecular and crystal structure of N-(4-meth­oxy­phen­yl)picolinamide were studied and Hirshfeld surfaces and fingerprint plots were generated to investigate various inter­molecular inter­actions.




surface

Crystal structure, Hirshfeld surface analysis, DFT and molecular docking studies of ethyl 5-amino-2-bromoisonicotinate

In the title compound, C8H9BrN2O2, the C—O—C—C torsion angle between isonicotine and the ethyl group is 180.0 (2)°. Intramolecular N—H...O and C—H...O interactions consolidate the molecular structure. In the crystal, N—H...N interaction form S(5) zigzag chains along [010]. The most significant contributions to the Hirshfeld surface arise from H...H (33.2%), Br...H/H...Br (20.9%), O...H/H...O (11.2%), C...H/H...C (11.1%) and N...H/H...N (10%) contacts. The topology of the three-dimensional energy frameworks was generated using the B3LYP/6–31 G(d,p) model to calculate the total interaction energy. The net interaction energies for the title compound are Eele = 59.2 kJ mol−1, Epol = 15.5 kJ mol−1, Edis = 140.3 kJ mol−1 and Erep = 107.2 kJ mol−1 with a total interaction energy Etot of 128.8 kJ mol−1. The molecular structure was optimized by density functional theory (DFT) at the B3LYP/6–311+G(d,p) level and the theoretical and experimentally obtained parameters were compared. The frontier molecular orbitals HOMO and LUMO were generated, giving an energy gap ΔE of 4.0931 eV. The MEP was generated to identify active sites in the molecule and molecular docking studies carried out with the title compound (ligand) and the covid-19 main protease PDB ID: 6LU7, revealing a moderate binding affinity of −5.4 kcal mol−1.




surface

Crystal structure and Hirshfeld-surface analysis of an etoxazole metabolite designated R13

The etoxazole metabolite R13, systematic name 4-(4-tert-butyl-2-ethoxyphenyl)-2-(2,6-difluorophenyl)oxazole (C21H21F2NO2), results from the oxidation of etoxazole, a chitin synthesis inhibitor belonging to the oxazoline class, widely used as an insecticide/acaricide since 1998. The structure of R13 features a central oxazole ring with attached 2,6-difluorophenyl and 4-t-butyl-2-ethoxyphenyl moieties. The overall conformation gives dihedral angles between these rings and the oxazole of 24.91 (5)° (with difluorophenyl) and 15.30 (6)° (with t-butyl-ethoxyphenyl), indicating an overall deviation from planarity. Additionally, torsion angles of the ethoxy and t-butyl groups define the orientation of these substituents relative to their benzene ring. In the crystal packing, no significant hydrogen bonds are present, but a Hirshfeld surface analysis highlights weak intermolecular contacts leading to π–π-stacked dimers linked by weak C—H...N contacts. The packing analysis confirms that most intermolecular interactions involve hydrogen atoms.




surface

α-d-2'-De­oxy­adenosine, an irradiation product of canonical DNA and a com­ponent of anomeric nucleic acids: crystal structure, packing and Hirshfeld surface analysis

α-d-2'-De­oxy­ribonucleosides are products of the γ-irradiation of DNA under oxygen-free conditions and are constituents of anomeric DNA. They are not found as natural building blocks of canonical DNA. Reports on their conformational properties are limited. Herein, the single-crystal X-ray structure of α-d-2'-de­oxy­adenosine (α-dA), C10H13N5O3, and its conformational parameters were determined. In the crystalline state, α-dA forms two conformers in the asymmetric unit which are connected by hydro­gen bonds. The sugar moiety of each conformer is arranged in a `clamp'-like fashion with respect to the other conformer, forming hydro­gen bonds to its nucleobase and sugar residue. For both conformers, a syn conformation of the nucleobase with respect to the sugar moiety was found. This is contrary to the anti conformation usually preferred by α-nucleosides. The sugar conformation of both conformers is C2'-endo, and the 5'-hydroxyl groups are in a +sc orientation, probably due to the hydro­gen bonds formed by the conformers. The formation of the supra­molecular assembly of α-dA is controlled by hydro­gen bonding and stacking inter­actions, which was verified by a Hirshfeld and curvedness surface analysis. Chains of hydro­gen-bonded nucleobases extend parallel to the b direction and are linked to equivalent chains by hydro­gen bonds involving the sugar moieties to form a sheet. A com­parison of the solid-state structures of the anomeric 2'-de­oxy­adenosines revealed significant differences of their conformational parameters.




surface

Using cocrystals as a tool to study non-crystallizing mol­ecules: crystal structure, Hirshfeld surface analysis and com­putational study of the 1:1 cocrystal of (E)-N-(3,4-di­fluoro­phen­yl)-1-(pyridin-4-yl)methanimine and acetic

Using a 1:1 cocrystal of (E)-N-(3,4-di­fluoro­phen­yl)-1-(pyridin-4-yl)methanimine with acetic acid, C12H8F2N2·C2H4O2, we investigate the influence of F atoms introduced to the aromatic ring on promoting π–π inter­actions. The cocrystal crystallizes in the triclinic space group P1. Through crystallographic analysis and com­putational studies, we reveal the mol­ecular arrangement within this co­crystal, demonstrating the presence of hydrogen bonding between the acetic acid mol­ecule and the pyridyl group, along with π–π inter­actions between the aromatic rings. Our findings highlight the importance of F atoms in promoting π–π inter­actions without necessitating full halogenation of the aromatic ring.




surface

A brief review on com­puter simulations of chal­co­py­rite surfaces: structure and reactivity

Chalcopyrite, the world's primary copper ore mineral, is abundant in Latin America. Copper extraction offers significant economic and social benefits due to its strategic importance across various industries. However, the hydro­metallurgical route, considered more environmentally friendly for processing low-grade chal­co­py­rite ores, remains challenging, as does its concentration by froth flotation. This limited understanding stems from the poorly understood structure and reactivity of chal­co­py­rite surfaces. This study reviews recent contributions using density functional theory (DFT) calculations with periodic boundary conditions and slab models to elucidate chal­co­py­rite surface properties. Our analysis reveals that reconstructed surfaces preferentially expose S atoms at the topmost layer. Furthermore, some studies report the formation of di­sulfide groups (S22−) on pristine sulfur-terminated surfaces, accom­panied by the reduction of Fe3+ to Fe2+, likely due to surface oxidation. Additionally, Fe sites are consistently identified as favourable adsorption locations for both oxygen (O2) and water (H2O) mol­ecules. Finally, the potential of com­puter modelling for investigating collector–chal­co­py­rite surface inter­actions in the context of selective froth flotation is discussed, highlighting the need for further research in this area.




surface

Synthesis of organotin(IV) heterocycles containing a xanthenyl group by a Barbier approach via ultrasound activation: synthesis, crystal structure and Hirshfeld surface analysis

A series of organotin heterocycles of general formula [{Me2C(C6H3CH2)2O}SnR2] [R = methyl (Me, 4), n-butyl (n-Bu, 5), benzyl (Bn, 6) and phenyl (Ph, 7)] was easily synthesized by a Barbier-type reaction assisted by the sonochemical activation of metallic magnesium. The 119Sn{1H} NMR data for all four com­pounds confirm the presence of a central Sn atom in a four-coordinated environment in solution. Single-crystal X-ray diffraction studies for 17,17-dimethyl-7,7-di­phenyl-15-oxa-7-stanna­tetra­cyclo­[11.3.1.05,16.09,14]hepta­deca-1,3,5(16),9(14),10,12-hexa­­ene, [Sn(C6H5)2(C17H16O)], 7, at 100 and 295 K con­firmed the formation of a mono­nuclear eight-membered heterocycle, with a conformation depicted as boat–chair, resulting in a weak Sn⋯O inter­action. The Sn and O atoms are surrounded by hydro­phobic C—H bonds. A Hirshfeld surface analysis of 7 showed that the eight-membered heterocycles are linked by weak C—H⋯π, π–π and H⋯H noncovalent inter­actions. The pairwise inter­action energies showed that the cohesion between the heterocycles are mainly due to dispersion forces.




surface

Further evaluation of the shape of atomic Hirshfeld surfaces: M⋯H contacts and homoatomic bonds

It is well known that Hirshfeld surfaces provide an easy and straightforward way of analysing inter­molecular inter­actions in the crystal environment. The use of atomic Hirshfeld surfaces has also demonstrated that such surfaces carry information related to chemical bonds which allow a deeper evaluation of the structures. Here we briefly summarize the approach of atomic Hirshfeld surfaces while further evaluating the kind of information that can be retrieved from them. We show that the analysis of the metal-centre Hirshfeld surfaces from structures refined via Hirshfeld Atom Refinement (HAR) allow accurate evaluation of contacts of type M⋯H, and that such contacts can be related to the overall shape of the surfaces. The com­pounds analysed were tetra­aqua­bis­(3-carb­oxy­propionato)metal(II), [M(C4H3O4)2(H2O)4], for metal(II)/M = manganese/Mn, cobalt/Co, nickel/Ni and zinc/Zn. We also evaluate the sensitivity of the surfaces by an investigation of seemingly flat surfaces through analysis of the curvature functions in the direction of C—C bonds. The obtained values not only demonstrate variations in curvature but also show a correlation with the hybridization of the C atoms involved in the bond.




surface

Surface-mutagenesis strategies to enable structural biology crystallization platforms

A key prerequisite for the successful application of protein crystallography in drug discovery is to establish a robust crystallization system for a new drug-target protein fast enough to deliver crystal structures when the first inhibitors have been identified in the hit-finding campaign or, at the latest, in the subsequent hit-to-lead process. The first crucial step towards generating well folded proteins with a high likelihood of crystallizing is the identification of suitable truncation variants of the target protein. In some cases an optimal length variant alone is not sufficient to support crystallization and additional surface mutations need to be introduced to obtain suitable crystals. In this contribution, four case studies are presented in which rationally designed surface modifications were key to establishing crystallization conditions for the target proteins (the protein kinases Aurora-C, IRAK4 and BUB1, and the KRAS–SOS1 complex). The design process which led to well diffracting crystals is described and the crystal packing is analysed to understand retrospectively how the specific surface mutations promoted successful crystallization. The presented design approaches are routinely used in our team to support the establishment of robust crystallization systems which enable structure-guided inhibitor optimization for hit-to-lead and lead-optimization projects in pharmaceutical research.




surface

Crystal structure and Hirshfeld surface analysis of (2Z)-3-oxo-N-phenyl-2-[(1H-pyrrol-2-yl)methylidene]butanamide monohydrate

In the title compound, C15H14N2O2·H2O, the 1H-pyrrole ring makes a dihedral angle of 59.95 (13)° with the phenyl ring. In the crystal, the mol­ecules are connected by C—H⋯O hydrogen bonds into layers parallel to the (020) plane, while two mol­ecules are connected to the water mol­ecule by two N—H⋯O hydrogen bonds and one mol­ecule by an O—H⋯O hydrogen bond. C—H⋯π and π–π inter­actions further link the mol­ecules into chains extending in the [overline{1}01] direction and stabilize the mol­ecular packing. According to a Hirshfeld surface study, H⋯H (49.4%), C⋯H/H⋯C (23.2%) and O⋯H/H⋯O (20.0%) inter­actions are the most significant contributors to the crystal packing.




surface

Synthesis, structure and Hirshfeld surface analysis of 1,3-bis­[(1-octyl-1H-1,2,3-triazol-4-yl)meth­yl]-1H-benzo[d]imidazol-2(3H)-one

The title mol­ecule, C29H44N8O, adopts a conformation resembling a two-bladed fan with the octyl chains largely in fully extended conformations. In the crystal, C—H⋯O hydrogen bonds form chains of mol­ecules extending along the b-axis direction, which are linked by weak C—H⋯N hydrogen bonds and C—H⋯π inter­actions to generate a three-dimensional network. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (68.3%), H⋯N/N⋯H (15.7%) and H⋯C/C⋯H (10.4%) inter­actions.




surface

Crystal structure, Hirshfeld surface analysis, inter­molecular inter­action energies, energy frameworks and DFT calculations of 4-amino-1-(prop-2-yn-1-yl)pyrimidin-2(1H)-one

In the title mol­ecule, C7H7N3O, the pyrimidine ring is essentially planar, with the propynyl group rotated out of this plane by 15.31 (4)°. In the crystal, a tri-periodic network is formed by N—H⋯O, N—H⋯N and C—H⋯O hydrogen-bonding and slipped π–π stacking inter­actions, leading to narrow channels extending parallel to the c axis. Hirshfeld surface analysis of the crystal structure reveals that the most important contributions for the crystal packing are from H⋯H (36.2%), H⋯C/C⋯H (20.9%), H⋯O/O⋯H (17.8%) and H⋯N/N⋯H (12.2%) inter­actions, showing that hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the electrostatic energy contributions. The mol­ecular structure optimized by density functional theory (DFT) calculations at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined structure in the solid state. The HOMO–LUMO behaviour was also elucidated to determine the energy gap.




surface

Synthesis, crystal structure and Hirshfeld surface analysis of the tetra­kis complex NaNdPyr4(i-PrOH)2·i-PrOH with a carbacyl­amido­phosphate of the amide type

The tetra­kis complex of neodymium(III), tetra­kis­{μ-N-[bis­(pyrrolidin-1-yl)phos­phor­yl]acet­am­id­ato}bis(pro­pan-2-ol)neodymiumsodium pro­pan-2-ol monosol­vate, [NaNd(C10H16Cl3N3O2)4(C3H8O)2]·C3H8O or NaNdPyr4(i-PrOH)2·i-PrOH, with the amide type CAPh ligand bis(N,N-tetra­methylene)(tri­chloro­acetyl)phos­phoric acid tri­amide (HPyr), has been synthesized, crystallized and characterized by X-ray diffraction. The complex does not have the tetra­kis­(CAPh)lanthanide anion, which is typical for ester-type CAPh-based coordin­ation compounds. Instead, the NdO8 polyhedron is formed by one oxygen atom of a 2-propanol mol­ecule and seven oxygen atoms of CAPh ligands in the title compound. Three CAPh ligands are coordinated in a bidentate chelating manner to the NdIII ion and simultaneously binding the sodium cation by μ2-bridging PO and CO groups while the fourth CAPh ligand is coordinated to the sodium cation in a bidentate chelating manner and, due to the μ2-bridging function of the PO group, also binds the neodymium ion.




surface

Synthesis, crystal structure and Hirshfeld surface analysis of a cadmium complex of naphthalene-1,5-di­sulfonate and o-phenyl­enedi­amine

A novel o-phenyl­enedi­amine (opda)-based cadmium complex, bis­(benzene-1,2-di­amine-κ2N,N')bis­(benzene-1,2-di­amine-κN)cadmium(II) naphthalene-1,5-di­sulfonate, [Cd(C6H8N2)4](C10H6O6S2), was synthesized. The complex salt crystallizes in the monoclinic space group C2/c. The Cd atom occupies a special position and coordinates six nitro­gen atoms from four o-phenyl­enedi­amine mol­ecules, two as chelating ligands and two as monodentate ligands. The amino H atoms of opda inter­act with two O atoms of the naphthalene-1,5-di­sulfonate anions. The anions act as bridges between [Cd(opda)4]2+ cations, forming a two-dimensional network in the [010] and [001] directions. The Hirshfeld surface analysis shows that the primary factors contributing to the supramolecular inter­actions are short contacts, particularly van der Waals forces of the type H⋯H, O⋯H and C⋯H.




surface

New copper carboxyl­ate pyrene dimers: synthesis, crystal structure, Hirshfeld surface analysis and electrochemical characterization

Two new copper dimers, namely, bis­(dimethyl sulfoxide)­tetra­kis­(μ-pyrene-1-carboxyl­ato)dicopper(Cu—Cu), [Cu2(C17H9O2)4(C2H6OS)2] or [Cu2(pyr-COO−)4(DMSO)2] (1), and bis­(di­methyl­formamide)­tetra­kis­(μ-pyrene-1-carboxyl­ato)dicopper(Cu—Cu), [Cu2(C17H9O2)4(C3H7NO)2] or [Cu2(pyr-COO−)4(DMF)2] (2) (pyr = pyrene), were synthesized from the reaction of pyrene-1-carb­oxy­lic acid, copper(II) nitrate and tri­ethyl­amine from solvents DMSO and DMF, respectively. While 1 crystallized in the space group Poverline{1}, the crystal structure of 2 is in space group P21/n. The Cu atoms have octa­hedral geometries, with four oxygen atoms from carboxyl­ate pyrene ligands occupying the equatorial positions, a solvent mol­ecule coordinating at one of the axial positions, and a Cu⋯Cu contact in the opposite position. The packing in the crystal structures exhibits π–π stacking inter­actions and short contacts through the solvent mol­ecules. The Hirshfeld surfaces and two-dimensional fingerprint plots were generated for both compounds to better understand the inter­molecular inter­actions and the contribution of heteroatoms from the solvent ligands to the crystal packing. In addition, a Cu2+/Cu1+ quasi-reversible redox process was identified for compound 2 using cyclic voltammetry that accounts for a diffusion-controlled electron-donation process to the Cu dimer.




surface

Crystal structure and Hirshfeld surface analysis of a new benzimidazole compound, 3-{1-[(2-hy­droxyphen­yl)meth­yl]-1H-1,3-benzo­diazol-2-yl}phenol

The title compound, C20H16N2O2, is composed of two monosubstituted benzene rings and one benzimidazole unit. The benzimidazole moiety subtends dihedral angles of 46.16 (7) and 77.45 (8)° with the benzene rings, which themselves form a dihedral angle of 54.34 (9)°. The crystal structure features O—H⋯N and O—H⋯O hydrogen-bonding inter­actions, which together lead to the formation of two-dimensional hydrogen-bonded layers parallel to the (101) plane. In addition, π–π inter­actions also contribute to the crystal cohesion. Hirshfeld surface analysis indicates that the most significant contacts in the crystal packing are: H⋯H (47.5%), O⋯H/H⋯O (12.4%), N⋯H/H⋯N (6.1%), C⋯H/H⋯C (27.6%) and C⋯C (4.6%).




surface

Crystal structure and Hirshfeld-surface analysis of di­aqua­bis­(5-methyl-1H-1,2,4-triazole-3-carboxyl­ato)copper(II)

The title compound, [Cu(HL)2(H2O)2] or [Cu(C4H4N3O2)2(H2O)2], is a mononuclear octa­hedral CuII complex based on 5-methyl-1H-1,2,4-triazole-3-carb­oxy­lic acid (H2L). [Cu(HL)2(H2O)2] was synthesized by reaction of H2L with copper(II) nitrate hexa­hydrate (2:1 stoichiometric ratio) in water under ambient conditions to produce clear light-blue crystals. The central Cu atom exhibits an N2O4 coordination environment in an elongated octa­hedral geometry provided by two bidentate HL− anions in the equatorial plane and two water mol­ecules in the axial positions. Hirshfeld surface analysis revealed that the most important contributions to the surface contacts are from H⋯O/O⋯H (33.1%), H⋯H (29.5%) and H⋯N/N⋯H (19.3%) inter­actions.




surface

Crystal structure and Hirshfeld surface analysis of dimethyl 4-hy­droxy-5,4'-dimethyl-2'-(toluene-4-sulfonyl­amino)­biphenyl-2,3-di­carboxyl­ate

In the title compound, C25H25NO7S, the mol­ecular conformation is stabilized by intra­molecular O—H⋯O and N—H⋯O hydrogen bonds, which form S(6) and S(8) ring motifs, respectively. The mol­ecules are bent at the S atom with a C—SO2—NH—C torsion angle of −70.86 (11)°. In the crystal, mol­ecules are linked by C—H⋯O and N—H⋯O hydrogen bonds, forming mol­ecular layers parallel to the (100) plane. C—H⋯π inter­actions are observed between these layers.




surface

Crystal structure and Hirshfeld surface analysis of 3-benzyl-2-[bis(1H-pyrrol-2-yl)methyl]thiophene

In the title compound, C20H18N2S, the asymmetric unit comprises two similar mol­ecules (A and B). In mol­ecule A, the central thio­phene ring makes dihedral angles of 89.96 (12) and 57.39 (13)° with the 1H-pyrrole rings, which are bent at 83.22 (14)° relative to each other, and makes an angle of 85.98 (11)° with the phenyl ring. In mol­ecule B, the corresponding dihedral angles are 89.49 (13), 54.64 (12)°, 83.62 (14)° and 85.67 (11)°, respectively. In the crystal, mol­ecular pairs are bonded to each other by N—H⋯N inter­actions. N—H⋯π and C—H⋯π inter­actions further connect the mol­ecules, forming a three-dimensional network. A Hirshfeld surface analysis indicates that H⋯H (57.1% for mol­ecule A; 57.3% for mol­ecule B), C⋯H/H⋯C (30.7% for mol­ecules A and B) and S⋯H/H⋯S (6.2% for mol­ecule A; 6.4% for mol­ecule B) inter­actions are the most important contributors to the crystal packing.




surface

Crystal structure and Hirshfeld surface analysis of dieth­yl (3aS,3a1R,4S,5S,6R,6aS,7R,9aS)-3a1,5,6,6a-tetra­hydro-1H,3H,4H,7H-3a,6:7,9a-di­epoxy­benzo[de]isochromene-4,5-di­carboxyl­ate

In the title compound, C18H22O7, two hexane rings and an oxane ring are fused together. The two hexane rings tend toward a distorted boat conformation, while the tetra­hydro­furan and di­hydro­furan rings adopt envelope conformations. The oxane ring is puckered. The crystal structure features C—H⋯O hydrogen bonds, which link the mol­ecules into a three-dimensional network. According to a Hirshfeld surface study, H⋯H (60.3%) and O⋯H/H⋯O (35.3%) inter­actions are the most significant contributors to the crystal packing.




surface

Crystal structure and Hirshfeld surface analysis of 2-picolyllithium·3thf

In the title compound, (2-methyl­idene-1,2-di­hydro­pyridinium-κN)tris­(tetra­hydro­furan-κO)lithium, [Li(C6H6N)(C4H8O)3], the lithium ion adopts a distorted LiNO3 tetra­hedral coordination geometry and the 2-picolyl anion adopts its enamido form with the lithium ion lying close to the plane of the pyridine ring. A methyl­ene group of one of the thf ligands is disordered over two orientations. In the crystal, a weak C—H⋯O inter­action generates inversion dimers. A Hirshfeld surface analysis shows that H⋯H contacts dominate the packing (86%) followed by O⋯H/H⋯O and C⋯H/H⋯C contacts, which contribute 3% and 10.4%, respectively.




surface

Synthesis, structure and Hirshfeld surface analysis of 2-oxo-2H-chromen-6-yl 4-tert-butyl­benzoate: work carried out as part of the AFRAMED project

In the title compound, C20H18O4, the dihedral angle between the 2H-chromen-2-one ring system and the phenyl ring is 89.12 (5)°. In the crystal, the mol­ecules are connected through C—H⋯O hydrogen bonds to generate [010] double chains that are reinforced by weak aromatic π–π stacking inter­actions. The unit-cell packing can be described as a tilted herringbone motif. The H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and C⋯C contacts contribute 46.7, 24.2, 16.7 and 7.6%, respectively, to its Hirshfeld surface.




surface

Crystal structure and Hirshfeld surface analysis of (E)-2-[2-(2-amino-1-cyano-2-oxo­ethyl­idene)hydrazin-1-yl]benzoic acid N,N-di­methylformamide monosolvate

In the title compound, C10H8N4O3·C3H7NO, the asymmetric unit contains two crystallographically independent mol­ecules A and B, each of which has one DMF solvate mol­ecule. Mol­ecules A and B both feature intra­molecular N—H⋯O hydrogen bonds, forming S(6) ring motifs and consolidating the mol­ecular configuration. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds connect mol­ecules A and B, forming R22(8) ring motifs. Weak C—H⋯O inter­actions link the mol­ecules, forming layers parallel to the (overline{2}12) plane. The DMF solvent mol­ecules are also connected to the main mol­ecules (A and B) by N—H⋯O hydrogen bonds. π–π stacking inter­actions [centroid-to-centroid distance = 3.8702 (17) Å] between the layers also increase the stability of the mol­ecular structure in the third dimension. According to the Hirshfeld surface study, O⋯H/H⋯O inter­actions are the most significant contributors to the crystal packing (27.5% for mol­ecule A and 25.1% for mol­ecule B).




surface

Crystal structure, Hirshfeld surface analysis and energy frameworks of 1-[(E)-2-(2-fluoro­phen­yl)diazan-1-yl­idene]naphthalen-2(1H)-one

The title compound, C16H11N2OF, is a member of the azo dye family. The dihedral angle subtended by the benzene ring and the naphthalene ring system measures 18.75 (7)°, indicating that the compound is not perfectly planar. An intra­molecular N—H⋯O hydrogen bond occurs between the imino and carbonyl groups. In the crystal, the mol­ecules are linked into inversion dimers by C—H⋯O inter­actions. Aromatic π–π stacking between the naphthalene ring systems lead to the formation of chains along [001]. A Hirshfeld surface analysis was undertaken to investigate and qu­antify the inter­molecular inter­actions. In addition, energy frameworks were used to examine the cooperative effect of these inter­molecular inter­actions across the crystal, showing dispersion energy to be the most influential factor in the crystal organization of the compound.




surface

Crystal structure and Hirshfeld surface analysis of (2E)-1-phenyl-3-(1H-pyrrol-2-yl)propen-1-one

The title com­pound, C13H11NO, adopts an E configuration about the C=C double bond. The pyrrole ring is inclined to the phenyl ring at an angle of 44.94 (8)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming ribbons parallel to (020) in zigzag C(7) chains along the a axis. These ribbons are connected via C—H⋯π inter­actions, forming a three-dimensional network. No significant π–π inter­actions are observed.




surface

Synthesis, crystal structure and Hirshfeld surface analysis of sodium bis­(malonato)borate monohydrate

In the title salt, poly[aqua­[μ4-bis­(malonato)borato]sodium], {[Na(C6H4BO8)]·H2O}n or Na+·[B(C3H2O4)2]−·H2O, the sodium cation exhibits fivefold coordination by four carbonyl O atoms of the bis­(malonato)borate anions and a water O atom. The tetra­hedral B atom at the centre of the anion leads to the formation of a polymeric three-dimensional framework, which is consolidated by C—H⋯O and O—H⋯O hydrogen bonds. A Hirshfeld surface analysis indicates that the most significant contacts in the crystal packing are H⋯O/O⋯H (49.7%), Na⋯O/O⋯Na (16.1%), O⋯O (12.6%), H⋯H (10.7%) and C⋯O/O⋯C (7.3%).




surface

(E)-N,N-Diethyl-4-{[(4-meth­oxy­phen­yl)imino]­meth­yl}aniline: crystal structure, Hirshfeld surface analysis and energy framework

In the title benzyl­ideneaniline Schiff base, C18H22N2O, the aromatic rings are inclined to each other by 46.01 (6)°, while the Car—N= C—Car torsion angle is 176.9 (1)°. In the crystal, the only identifiable directional inter­action is a weak C—H⋯π hydrogen bond, which generates inversion dimers that stack along the a-axis direction.




surface

Crystal structures and Hirshfeld surface analyses of methyl 4-{2,2-di­chloro-1-[(E)-phenyl­diazen­yl]eth­enyl}benzoate, methyl 4-{2,2-di­chloro-1-[(E)-(4-methyl­phen­yl)diazen­yl]ethen­yl}benzoate and methyl 4-

The crystal structures and Hirshfeld surface analyses of three similar azo compounds are reported. Methyl 4-{2,2-di­chloro-1-[(E)-phenyl­diazen­yl]ethen­yl}benzoate, C16H12Cl2N2O2, (I), and methyl 4-{2,2-di­chloro-1-[(E)-(4-methyl­phen­yl)diazen­yl]ethen­yl}benzoate, C17H14Cl2N2O2, (II), crystallize in the space group P21/c with Z = 4, and methyl 4-{2,2-di­chloro-1-[(E)-(3,4-di­methyl­phen­yl)diazen­yl]ethen­yl}benzoate, C18H16Cl2N2O2, (III), in the space group Poverline{1} with Z = 2. In the crystal of (I), mol­ecules are linked by C—H⋯N hydrogen bonds, forming chains with C(6) motifs parallel to the b axis. Short inter­molecular Cl⋯O contacts of 2.8421 (16) Å and weak van der Waals inter­actions between these chains stabilize the crystal structure. In (II), mol­ecules are linked by C—H⋯O hydrogen bonds and C—Cl⋯π inter­actions, forming layers parallel to (010). Weak van der Waals inter­actions between these layers consolidate the mol­ecular packing. In (III), mol­ecules are linked by C—H⋯π and C—Cl⋯π inter­actions forming chains parallel to [011]. Furthermore, these chains are connected by C—Cl⋯π inter­actions parallel to the a axis, forming (0overline{1}1) layers. The stability of the mol­ecular packing is ensured by van der Waals forces between these layers.




surface

Crystal structure, Hirshfeld surface analysis, crystal voids, inter­action energy calculations and energy frameworks and DFT calculations of ethyl 2-cyano-3-(3-hy­droxy-5-methyl-1H-pyrazol-4-yl)-3-phen­yl­propano­ate

The title compound, C16H17N3O3, is racemic as it crystallizes in a centrosymmetric space group (Poverline{1}), although the trans disposition of substituents about the central C—C bond is established. The five- and six-membered rings are oriented at a dihedral angle of 75.88 (8)°. In the crystal, N—H⋯N hydrogen bonds form chains of mol­ecules extending along the c-axis direction that are connected by inversion-related pairs of O—H⋯N into ribbons. The ribbons are linked by C—H⋯π(ring) inter­actions, forming layers parallel to the ab plane. A Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (45.9%), H⋯N/N⋯H (23.3%), H⋯C/C⋯H (16.2%) and H⋯O/O⋯H (12.3%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. The volume of the crystal voids and the percentage of free space were calculated to be 100.94 Å3 and 13.20%, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the electrostatic energy contributions in the title compound. Moreover, the DFT-optimized structure at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




surface

Crystal structure, Hirshfeld surface analysis, crystal voids, inter­action energy calculations and energy frameworks, and DFT calculations of 1-(4-methyl­benz­yl)in­do­line-2,3-dione

The in­do­line portion of the title mol­ecule, C16H13NO2, is planar. In the crystal, a layer structure is generated by C—H⋯O hydrogen bonds and C—H⋯π(ring), π-stacking and C=O⋯π(ring) inter­actions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (43.0%), H⋯C/C⋯H (25.0%) and H⋯O/O⋯H (22.8%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. The volume of the crystal voids and the percentage of free space were calculated to be 120.52 Å3 and 9.64%, respectively, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by the dispersion energy contributions in the title compound. Moreover, the DFT-optimized structure at the B3LYP/6-311G(d,p) level is compared with the experimentally determined mol­ecular structure in the solid state.




surface

Synthesis, crystal structure and Hirshfeld surface analysis of 2-({5-[(naphthalen-1-yl)meth­yl]-4-phenyl-4H-1,2,4-triazol-3-yl}sulfan­yl)-1-(4-nitro­phen­yl)ethanone

The title compound, C27H20N4O3S, crystallizes in the monoclinic system, space group P21/n, with Z = 4. The global shape of the mol­ecule is determined by the orientation of the substituents on the central 4H-1,2,4-triazole ring. The nitro­phenyl ring, phenyl ring, and naphthalene ring system are oriented at dihedral angles of 82.95 (17), 77.14 (18) and 89.46 (15)°, respectively, with respect to the triazole ring. The crystal packing features chain formation in the b-axis direction by S⋯O inter­actions. A Hirshfeld surface analysis indicates that the highest contributions to surface contacts arise from contacts in which H atoms are involved.




surface

Crystal structure and Hirshfeld surface analysis of 4-(2-chloro­eth­yl)-5-methyl-1,2-di­hydro­pyrazol-3-one

In the crystal of the title compound, C6H9ClN2O, mol­ecular pairs form dimers with an R22(8) motif through N—H⋯O hydrogen bonds. These dimers are connect into ribbons parallel to the (100) plane with R44(10) motifs by N—H⋯O hydrogen bonds along the c-axis direction. In addition, π–π [centroid-to-centroid distance = 3.4635 (9) Å] and C—Cl⋯π inter­actions between the ribbons form layers parallel to the (100) plane. The three-dimensional consolidation of the crystal structure is also ensured by Cl⋯H and Cl⋯Cl inter­actions between these layers. According to a Hirshfeld surface study, H⋯H (43.3%), Cl⋯H/H⋯Cl (22.1%) and O⋯H/H⋯O (18.7%) inter­actions are the most significant contributors to the crystal packing.




surface

Crystal structure, Hirshfeld surface analysis and DFT study of N-(2-nitro­phen­yl)male­imide

The title compound [systematic name: 1-(2-nitro­phen­yl)pyrrole-2,5-dione], C10H6N2O4, crystallizes in the monoclinic system (space group P21/n) with two mol­ecules in the asymmetric unit, which are linked by C—H⋯O hydrogen bonds. Hirshfeld surface analysis showed that the most significant contributions to the crystal packing are from H⋯O/O⋯H, H⋯C/C⋯H and H⋯H inter­actions, which contribute 54.7%, 15.2% and 15.6%, respectively. A DFT study was conducted using three different levels of theory [(B3LYP/6–311+G(d,p), wB97XD/Def2TZVPP and LC-wpbe/6–311(2 d,2p)] in order to determine the stability, structural and electronic properties of the title mol­ecule with a view to its potential applications and photochemical and copolymer properties.




surface

[4-(2-Aminoethyl)morpholine-κ2N,N']di­bromidocadmium(II): synthesis, crystal structure and Hirshfeld surface analysis

The title compound, [CdBr2(C6H14N2O)], was synthesized upon complexation of 4-(2-aminoethyl)morpholine and cadmium(II) bromide tetra­hydrate at 303 K. It crystallizes as a centrosymmetric dimer, with one cadmium atom, two bromine atoms and one N,N'-bidentate 4-(2-aminoethyl)morpholine ligand in the asymmetric unit. The metal atom is six-coordinated and has a distorted octa­hedral geometry. In the crystal, O⋯Cd inter­actions link the dimers into a polymeric double chain and inter­molecular C—H⋯O hydrogen bonds form R22(6) ring motifs. Further C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network. As the N—H⋯Br hydrogen bonds are shorter than the C—H⋯Br inter­actions, they have a larger effect on the packing. A Hirshfeld surface analysis reveals that the largest contributions to the packing are from H⋯H (46.1%) and Br⋯H/H⋯Br (38.9%) inter­actions with smaller contributions from the O⋯H/H⋯O (4.7%), Br⋯Cd/Cd⋯Br (4.4%), O⋯Cd/Cd⋯O (3.5%), Br⋯Br (1.1%), Cd⋯H/H⋯Cd (0.9%), Br⋯O/O⋯Br (0.3%) and O⋯N/N⋯O (0.1%) contacts.




surface

Crystal structure and Hirshfeld surface analysis of (Z)-N-{chloro­[(4-ferrocenylphen­yl)imino]­meth­yl}-4-ferrocenylaniline N,N-di­methyl­formamide monosolvate

The title mol­ecule, [Fe2(C5H5)2(C23H17ClN2)]·C3H7NO, is twisted end to end and the central N/C/N unit is disordered. In the crystal, several C—H⋯π(ring) inter­actions lead to the formation of layers, which are connected by further C—H⋯π(ring) inter­actions. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (60.2%) and H⋯C/C⋯H (27.0%) inter­actions. Hydrogen bonding, C—H⋯π(ring) inter­actions and van der Waals inter­actions dominate the crystal packing.




surface

Syntheses, characterizations, crystal structures and Hirshfeld surface analyses of methyl 4-[4-(di­fluorometh­oxy)phen­yl]-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate, isopropyl 4-[4-(di­fluoro&

The crystal structures and Hirshfeld surface analyses of three similar compounds are reported. Methyl 4-[4-(di­fluoro­meth­oxy)phen­yl]-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate, (C21H23F2NO4), (I), crystallizes in the monoclinic space group C2/c with Z = 8, while isopropyl 4-[4-(di­fluoro­meth­oxy)phen­yl]-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carb­oxyl­ate, (C23H27F2NO4), (II) and tert-butyl 4-[4-(di­fluoro­meth­oxy)phen­yl]-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate, (C24H29F2NO4), (III) crystallize in the ortho­rhom­bic space group Pbca with Z = 8. In the crystal structure of (I), mol­ecules are linked by N—H⋯O and C—H⋯O inter­actions, forming a tri-periodic network, while mol­ecules of (II) and (III) are linked by N—H⋯O, C—H⋯F and C—H⋯π inter­actions, forming layers parallel to (002). The cohesion of the mol­ecular packing is ensured by van der Waals forces between these layers. In (I), the atoms of the 4-di­fluoro­meth­oxy­phenyl group are disordered over two sets of sites in a 0.647 (3): 0.353 (3) ratio. In (III), the atoms of the dimethyl group attached to the cyclo­hexane ring, and the two carbon atoms of the cyclo­hexane ring are disordered over two sets of sites in a 0.646 (3):0.354 (3) ratio.




surface

Crystal structure and Hirshfeld surface analysis of 3-phenyl-1-{3-[(3-phenyl­quinoxalin-2-yl)­oxy]prop­yl}-1,2-di­hydro­quinoxalin-2-one

In the title compound, C31H24N4O2, the quinoxaline units are distinctly non-planar and twisted end-to-end. In the crystal, C—H⋯O and C—H⋯N hydrogen bonds link the mol­ecules into chains extending along the a-axis direction. The chains are linked through π-stacking inter­actions between inversion-related quinoxaline moieties.




surface

Synthesis, crystal structure and Hirshfeld surface analysis of N-(6-acetyl-1-nitro­naphthalen-2-yl)acetamide

The title compound, C14H12N2O4, was obtained from 2-acetyl-6-amino­naphthalene through two-step reactions of acetyl­ation and nitration. The mol­ecule comprises the naphthalene ring system consisting of functional systems bearing a acetyl group (C-2), a nitro group (C-5), and an acetyl­amino group (C-6). In the crystal, the mol­ecules are assembled into two-dimensional sheet-like structures by inter­molecular N—H⋯O and C—H⋯O hydrogen-bonding inter­actions. Hirshfeld surface analysis illustrates that the most important contributions to the crystal packing are from O⋯H/H⋯O (43.7%), H⋯H (31.0%), and C⋯H/H⋯C (8.5%) contacts.




surface

Crystal structure and Hirshfeld surface analysis of 4-oxo-3-phenyl-2-sulfanyl­idene-5-(thio­phen-2-yl)-3,4,7,8,9,10-hexa­hydro-2H-pyrido[1,6-a:2,3-d']di­pyrimidine-6-carbo­nitrile

In the title compound, C21H15N5OS2, mol­ecular pairs are linked by N—H⋯N hydrogen bonds along the c-axis direction and C—H⋯S and C—H⋯O hydrogen bonds along the b-axis direction, with R22(12) and R22(16) motifs, respectively, thus forming layers parallel to the (10overline{4}) plane. In addition, C=S⋯π and C≡N⋯π inter­actions between the layers ensure crystal cohesion. The Hirshfeld surface analysis indicates that the major contributions to the crystal packing are H⋯H (43.0%), C⋯H/H⋯C (16.9%), N⋯H/H⋯N (11.3%) and S⋯H/H⋯S (10.9%) inter­actions.




surface

Crystal structure and Hirshfeld surface analysis of 8-benzyl-1-[(4-methyl­phen­yl)sulfon­yl]-2,7,8,9-tetra­hydro-1H-3,6:10,13-diep­oxy-1,8-benzodi­aza­cyclo­penta­decine ethanol hemisolvate

The asymmetric unit of the title compound, 2C31H28N2O4S·C2H6O, contains a parent mol­ecule and a half mol­ecule of ethanol solvent. The main compound stabilizes its mol­ecular conformation by forming a ring with an R12(7) motif with the ethanol solvent mol­ecule. In the crystal, mol­ecules are connected by C—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π inter­actions also strengthen the mol­ecular packing.




surface

Crystal structure and Hirshfeld surface analysis of 4,4'-di­meth­oxy­biphenyl-3,3',5,5'-tetra­carb­oxy­lic acid dihydrate

In the crystal of the title compound, C18H14O10·2H2O, the arene rings of the biphenyl moiety are tilted at an angle of 24.3 (1)°, while the planes passing through the carboxyl groups are rotated at angles of 8.6 (1) and 7.7 (1)° out of the plane of the benzene ring to which they are attached. The crystal structure is essentially stabilized by O—H⋯O bonds. Here, the carboxyl groups of neighbouring host mol­ecules are connected by cyclic R22(8) synthons, leading to the formation of a three-dimensional network. The water mol­ecules in turn form helical supra­molecular strands running in the direction of the crystallographic c-axis (chain-like water clusters). The second H atom of each water mol­ecule provides a link to a meth­oxy O atom of the host mol­ecule. A Hirshfeld surface analysis was performed to qu­antify the contributions of the different inter­molecular inter­actions, indicating that the most important contributions to the crystal packing are from H⋯O/O⋯H (37.0%), H⋯H (26.3%), H⋯C/C⋯H (18.5%) and C⋯O/O⋯C (9.5%) inter­actions.




surface

Crystal structure, Hirshfeld surface analysis, calculations of crystal voids, inter­action energy and energy frameworks as well as density functional theory (DFT) calculations of 3-[2-(morpholin-4-yl)eth­yl]-5,5-di­phenyl­imidazolidine

In the title mol­ecule, C21H23N3O3, the imidazolidine ring slightly deviates from planarity and the morpholine ring exhibits the chair conformation. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds form helical chains of mol­ecules extending parallel to the c axis that are connected by C—H⋯π(ring) inter­actions. A Hirshfeld surface analysis reveals that the most important contributions for the crystal packing are from H⋯H (55.2%), H⋯C/C⋯H (22.6%) and H⋯O/O⋯H (20.5%) inter­actions. The volume of the crystal voids and the percentage of free space were calculated to be 236.78 Å3 and 12.71%, respectively. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the nearly equal electrostatic and dispersion energy contributions. The DFT-optimized mol­ecular structure at the B3LYP/6-311 G(d,p) level is compared with the experimentally determined mol­ecular structure in the solid state. Moreover, the HOMO–LUMO behaviour was elucidated to determine the energy gap.




surface

Crystal structure and Hirshfeld surface analysis of 6-imino-8-(4-methyl­phen­yl)-1,3,4,6-tetra­hydro-2H-pyrido[1,2-a]pyrimidine-7,9-dicarbo­nitrile

In the ten-membered 1,3,4,6-tetra­hydro-2H-pyrido[1,2-a]pyrimidine ring system of the title compound, C17H15N5, the 1,2-di­hydro­pyridine ring is essentially planar (r.m.s. deviation = 0.001 Å), while the 1,3-diazinane ring has a distorted twist-boat conformation. In the crystal, mol­ecules are linked by N—H⋯N and C—H⋯N hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π inter­actions form layers parallel to the (100) plane. Thus, crystal-structure cohesion is ensured. According to a Hirshfeld surface study, H⋯H (40.4%), N⋯H/H⋯N (28.6%) and C⋯H/H⋯C (24.1%) inter­actions are the most important contributors to the crystal packing.




surface

Synthesis, crystal structure and Hirshfeld surface analysis of 2-phenyl-3-(prop-2-yn-1-yl­oxy)quin­oxaline

In the title compound, C17H12N2O, the quinoxaline moiety shows deviations of 0.0288 (7) to −0.0370 (7) Å from the mean plane (r.m.s. deviation of fitted atoms = 0.0223 Å). In the crystal, corrugated layers two mol­ecules thick are formed by C—H⋯N hydrogen bonds and π-stacking inter­actions.




surface

Crystal structure and Hirshfeld surface analysis of ethyl 2-(7-chloro-3-methyl-2-oxo-1,2-di­hydro­quinoxalin-1-yl)acetate

The quinoxaline moiety in the title mol­ecule, C13H13ClN2O3, is almost planar (r.m.s. deviation of the fitted atoms = 0.033 Å). In the crystal, C—H⋯O hydrogen bonds plus slipped π-stacking and C—H⋯π(ring) inter­actions generate chains of mol­ecules extending along the b-axis direction. The chains are connected by additional C—H⋯O hydrogen bonds. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (37.6%), H⋯O/O⋯H (22.7%) and H⋯Cl/Cl⋯H (13.1%) inter­actions.




surface

Synthesis, crystal structure and Hirshfeld surface analysis of bromido­tetra­kis­[5-(prop-2-en-1-yl­sulf­an­yl)-1,3,4-thia­diazol-2-amine-κN3]copper(II) bromide

A novel cationic complex, bromido­tetra­kis­[5-(prop-2-en-1-ylsulfan­yl)-1,3,4-thia­diazol-2-amine-κN3]copper(II) bromide, [CuBr](C5H7N3S2)4Br, was synthesized. The complex crystallizes with fourfold mol­ecular symmetry in the tetra­gonal space group P4/n. The CuII atom exhibits a square-pyramidal coord­ination geometry. The Cu atom is located centrally within the complex, being coordinated by four nitro­gen atoms from four AAT mol­ecules, while a bromine anion is located at the apex of the pyramid. The amino H atoms of AAT inter­act with bromine from the inner and outer spheres, forming a two-dimensional network in the [100] and [010] directions. Hirshfeld surface analysis reveals that 33.7% of the inter­mol­ecular inter­actions are from H⋯H contacts, 21.2% are from S⋯H/H⋯S contacts, 13.4% are from S⋯S contacts and 11.0% are from C⋯H/H⋯C, while other contributions are from Br⋯H/H⋯Br and N⋯H/H⋯N contacts.




surface

Crystal structure and Hirshfeld surface analysis of dimethyl 4'-bromo-3-oxo-5-(thio­phen-2-yl)-3,4,5,6-tetra­hydro-[1,1'-biphen­yl]-2,4-di­carboxyl­ate

In the title compound, C20H17BrO5S, mol­ecules are connected by inter­molecular C—H⋯S hydrogen bonds with R22(10) ring motifs, forming ribbons along the b-axis direction. C—H⋯π inter­actions consolidate the ribbon structure while van der Waals forces between the ribbons ensure the cohesion of the crystal structure. According to a Hirshfeld surface analysis, H⋯H (40.5%), O⋯H/H⋯O (27.0%), C⋯H/H⋯C (13.9%) and Br⋯H/H⋯Br (11.7%) inter­actions are the most significant contributors to the crystal packing. The thio­phene ring and its adjacent di­carboxyl­ate group and the three adjacent carbon atoms of the central hexene ring to which they are attached were refined as disordered over two sets of sites having occupancies of 0.8378 (15) and 0.1622 (15). The thio­phene group is disordered by a rotation of 180° around one bond.




surface

Crystal structure and Hirshfeld surface analysis of 5-hy­droxy­penta­nehydrazide

Carb­oxy­hydrazides are widely used in medicinal chemistry because of their medicinal properties and many drugs have been developed containing this functional group. A suitable inter­mediate to obtain potential hydrazide drug candidates is the title compound 5-hy­droxy­penta­nehydrazide, C5H12N2O2 (1). The aliphatic compound can react both via the hydroxyl and hydrazide moieties forming derivatives, which can inhibit Mycobacterium tuberculosis catalase-peroxidase (KatG) and consequently causes death of the pathogen. In this work, the hydrazide was obtained via a reaction of a lactone with hydrazine hydrate. The colourless prismatic single crystals belong to the ortho­rhom­bic space group Pca21. Regarding supra­molecular inter­actions, the compound shows classic medium to strong inter­molecular hydrogen bonds involving the hydroxyl and hydrazide groups. Besides, the three-dimensional packing also shows weak H⋯H and C⋯H contacts, as investigated by Hirshfeld surface analysis (HS) and fingerprint plots (FP).