is Molecular, Structural, and Functional Characterization of Alzheimer's Disease: Evidence for a Relationship between Default Activity, Amyloid, and Memory By www.jneurosci.org Published On :: 2005-08-24 Randy L. BucknerAug 24, 2005; 25:7709-7717Neurobiology of Disease Full Article
is Decoding and Reconstructing Color from Responses in Human Visual Cortex By www.jneurosci.org Published On :: 2009-11-04 Gijs Joost BrouwerNov 4, 2009; 29:13992-14003BehavioralSystemsCognitive Full Article
is Genomic Analysis of Reactive Astrogliosis By www.jneurosci.org Published On :: 2012-05-02 Jennifer L. ZamanianMay 2, 2012; 32:6391-6410Neurobiology of Disease Full Article
is On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex By www.jneurosci.org Published On :: 1982-11-01 AP GeorgopoulosNov 1, 1982; 2:1527-1537Articles Full Article
is Age-Related Changes in 1/f Neural Electrophysiological Noise By www.jneurosci.org Published On :: 2015-09-23 Bradley VoytekSep 23, 2015; 35:13257-13265BehavioralSystemsCognitive Full Article
is A Recurrent Network Mechanism of Time Integration in Perceptual Decisions By www.jneurosci.org Published On :: 2006-01-25 Kong-Fatt WongJan 25, 2006; 26:1314-1328BehavioralSystemsCognitive Full Article
is Intraneuronal beta-Amyloid Aggregates, Neurodegeneration, and Neuron Loss in Transgenic Mice with Five Familial Alzheimer's Disease Mutations: Potential Factors in Amyloid Plaque Formation By www.jneurosci.org Published On :: 2006-10-04 Holly OakleyOct 4, 2006; 26:10129-10140Neurobiology of Disease Full Article
is Cells and Molecules Underpinning Cannabis-Related Variations in Cortical Thickness during Adolescence By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 During adolescence, cannabis experimentation is common, and its association with interindividual variations in brain maturation well studied. Cellular and molecular underpinnings of these system-level relationships are, however, unclear. We thus conducted a three-step study. First, we exposed adolescent male mice to -9-tetrahydrocannabinol (THC) or a synthetic cannabinoid WIN 55,212-2 (WIN) and assessed differentially expressed genes (DEGs), spine numbers, and dendritic complexity in their frontal cortex. Second, in human (male) adolescents, we examined group differences in cortical thickness in 34 brain regions, using magnetic resonance imaging, between those who experimented with cannabis before age 16 (n = 140) and those who did not (n = 327). Finally, we correlated spatially these group differences with gene expression of human homologs of mouse-identified DEGs. The spatial expression of 13 THC-related human homologs of DEGs correlated with cannabis-related variations in cortical thickness, and virtual histology revealed coexpression patterns of these 13 genes with cell-specific markers of astrocytes, microglia, and a type of pyramidal cells enriched in dendrite-regulating genes. Similarly, the spatial expression of 18 WIN-related human homologs of DEGs correlated with group differences in cortical thickness and showed coexpression patterns with the same three cell types. Gene ontology analysis indicated that 37 THC-related human homologs are enriched in neuron projection development, while 33 WIN-related homologs are enriched in processes associated with learning and memory. In mice, we observed spine loss and lower dendritic complexity in pyramidal cells of THC-exposed animals (vs controls). Experimentation with cannabis during adolescence may influence cortical thickness by impacting glutamatergic synapses and dendritic arborization. Full Article
is Role of the STING->IRF3 Pathway in Ambient GABA Homeostasis and Cognitive Function By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 Targeting altered expression and/or activity of GABA (-aminobutyric acid) transporters (GATs) provide therapeutic benefit for age-related impairments, including cognitive dysfunction. However, the mechanisms underlying the transcriptional regulation of GATs are unknown. In the present study, we demonstrated that the stimulator of interferon genes (STING) upregulates GAT1 and GAT3 expression in the brain, which resulted in cognitive dysfunction. Genetic and pharmacological intervention of STING suppressed the expression of both GAT1 and GAT3, increased the ambient GABA concentration, and therefore, enhanced tonic GABAA inhibition of principal hippocampal neurons, resulting in spatial learning and working memory deficits in mice in a type I interferon-independent manner. Stimulation of the STING->GAT pathway efficiently restored cognitive dysfunction in STING-deficient mice models. Our study uncovered for the first time that the STING signaling pathway regulates GAT expression in a cell autonomous manner and therefore could be a novel target for GABAergic cognitive deficits. Full Article
is Recent Visual Experience Reshapes V4 Neuronal Activity and Improves Perceptual Performance By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 Recent visual experience heavily influences our visual perception, but how neuronal activity is reshaped to alter and improve perceptual discrimination remains unknown. We recorded from populations of neurons in visual cortical area V4 while two male rhesus macaque monkeys performed a natural image change detection task under different experience conditions. We found that maximizing the recent experience with a particular image led to an improvement in the ability to detect a change in that image. This improvement was associated with decreased neural responses to the image, consistent with neuronal changes previously seen in studies of adaptation and expectation. We found that the magnitude of behavioral improvement was correlated with the magnitude of response suppression. Furthermore, this suppression of activity led to an increase in signal separation, providing evidence that a reduction in activity can improve stimulus encoding. Within populations of neurons, greater recent experience was associated with decreased trial-to-trial shared variability, indicating that a reduction in variability is a key means by which experience influences perception. Taken together, the results of our study contribute to an understanding of how recent visual experience can shape our perception and behavior through modulating activity patterns in the mid-level visual cortex. Full Article
is A Virtual In Vivo Dissection and Analysis of Socioaffective Symptoms Related to Cerebellum-Midbrain Reward Circuitry in Humans By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 Emerging research in nonhuman animals implicates cerebellar projections to the ventral tegmental area (VTA) in appetitive behaviors, but these circuits have not been characterized in humans. Here, we mapped cerebello-VTA white matter connectivity in a cohort of men and women using probabilistic tractography on diffusion imaging data from the Human Connectome Project. We uncovered the topographical organization of these connections by separately tracking from parcels of cerebellar lobule VI, crus I/II, vermis, paravermis, and cerebrocerebellum. Results revealed that connections between the cerebellum and VTA predominantly originate in the right cerebellar hemisphere, interposed nucleus, and paravermal cortex and terminate mostly ipsilaterally. Paravermal crus I sends the most connections to the VTA compared with other lobules. We discovered a mediolateral gradient of connectivity, such that the medial cerebellum has the highest connectivity with the VTA. Individual differences in microstructure were associated with measures of negative affect and social functioning. By splitting the tracts into quarters, we found that the socioaffective effects were driven by the third quarter of the tract, corresponding to the point at which the fibers leave the deep nuclei. Taken together, we produced detailed maps of cerebello-VTA structural connectivity for the first time in humans and established their relevance for trait differences in socioaffective regulation. Full Article
is This Week in The Journal By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 Full Article
is Pupil-Linked Arousal Modulates Precision of Stimulus Representation in Cortex By www.jneurosci.org Published On :: 2024-10-16T09:30:18-07:00 Neural responses are naturally variable from one moment to the next, even when the stimulus is held constant. What factors might underlie this variability in neural population activity? We hypothesized that spontaneous fluctuations in cortical stimulus representations are created by changes in arousal state. We tested the hypothesis using a combination of fMRI, probabilistic decoding methods, and pupillometry. Human participants (20 female, 12 male) were presented with gratings of random orientation. Shortly after viewing the grating, participants reported its orientation and gave their level of confidence in this judgment. Using a probabilistic fMRI decoding technique, we quantified the precision of the stimulus representation in the visual cortex on a trial-by-trial basis. Pupil size was recorded and analyzed to index the observer's arousal state. We found that the precision of the cortical stimulus representation, reported confidence, and variability in the behavioral orientation judgments varied from trial to trial. Interestingly, these trial-by-trial changes in cortical and behavioral precision and confidence were linked to pupil size and its temporal rate of change. Specifically, when the cortical stimulus representation was more precise, the pupil dilated more strongly prior to stimulus onset and remained larger during stimulus presentation. Similarly, stronger pupil dilation during stimulus presentation was associated with higher levels of subjective confidence, a secondary measure of sensory precision, as well as improved behavioral performance. Taken together, our findings support the hypothesis that spontaneous fluctuations in arousal state modulate the fidelity of the stimulus representation in the human visual cortex, with clear consequences for behavior. Full Article
is TRIM46 Is Required for Microtubule Fasciculation In Vivo But Not Axon Specification or Axon Initial Segment Formation By www.jneurosci.org Published On :: 2024-10-16T09:30:18-07:00 Vertebrate nervous systems use the axon initial segment (AIS) to initiate action potentials and maintain neuronal polarity. The microtubule-associated protein tripartite motif containing 46 (TRIM46) was reported to regulate axon specification, AIS assembly, and neuronal polarity through the bundling, or fasciculation, of microtubules in the proximal axon. However, these claims are based on TRIM46 knockdown in cultured neurons. To investigate TRIM46 function in vivo, we examined male and female TRIM46 knock-out mice. Contrary to previous reports, we find that TRIM46 is dispensable for axon specification and AIS formation. TRIM46 knock-out mice are viable, have normal behavior, and have normal brain structure. Thus, TRIM46 is not required for AIS formation, axon specification, or nervous system function. However, we confirm that TRIM46 is required for microtubule fasciculation. We also show TRIM46 enrichment in the first ~100 μm of axon occurs independently of ankyrinG (AnkG) in vivo, although AnkG is required to restrict TRIM46 only to the AIS. Our results highlight the need for further investigation of the mechanisms by which the AIS and microtubules interact to shape neuronal structure and function. Full Article
is Hand-Jaw Coordination as Mice Handle Food Is Organized around Intrinsic Structure-Function Relationships By www.jneurosci.org Published On :: 2024-10-16T09:30:18-07:00 Rodent jaws evolved structurally to support dual functionality, for either biting or chewing food. Rodent hands also function dually during food handling, for actively manipulating or statically holding food. How are these oral and manual functions coordinated? We combined electrophysiological recording of muscle activity and kilohertz kinematic tracking to analyze masseter and hand actions as mice of both sexes handled food. Masseter activity was organized into two modes synchronized to hand movement modes. In holding/chewing mode, mastication occurred as rhythmic (~5 Hz) masseter activity while the hands held food below the mouth. In oromanual/ingestion mode, bites occurred as lower-amplitude aperiodic masseter events that were precisely timed to follow regrips (by ~200 ms). Thus, jaw and hand movements are flexibly coordinated during food handling: uncoupled in holding/chewing mode and tightly coordinated in oromanual/ingestion mode as regrip–bite sequences. Key features of this coordination were captured in a simple model of hierarchically orchestrated mode-switching and intramode action sequencing. We serendipitously detected an additional masseter-related action, tooth sharpening, identified as bouts of higher-frequency (~13 Hz) rhythmic masseter activity, which was accompanied by eye displacement, including rhythmic proptosis, attributable to masseter contractions. Collectively, the findings demonstrate how a natural, complex, and goal-oriented activity is organized as an assemblage of distinct modes and complex actions, adapted for the divisions of function arising from anatomical structure. These results reveal intricate, high-speed coordination of disparate effectors and show how natural forms of dexterity can serve as a model for understanding the behavioral neurobiology of multi-body-part coordination. Full Article
is Electrocortical Responses in Anticipation of Avoidable and Inevitable Threats: A Multisite Study By www.jneurosci.org Published On :: 2024-10-16T09:30:18-07:00 When faced with danger, human beings respond with a repertoire of defensive behaviors, including freezing and active avoidance. Previous research has revealed a pattern of physiological responses, characterized by heart rate bradycardia, reduced visual exploration, and heightened sympathetic arousal in reaction to avoidable threats, suggesting a state of attentive immobility in humans. However, the electrocortical underpinnings of these behaviors remain largely unexplored. To investigate the visuocortical components of attentive immobility, we recorded parieto-occipital alpha activity, along with eye movements and autonomic responses, while participants awaited either an avoidable, inevitable, or no threat. To test the robustness and generalizability of our findings, we collected data from a total of 101 participants (76 females, 25 males) at two laboratories. Across sites, we observed an enhanced suppression of parieto-occipital alpha activity during avoidable threats, in contrast to inevitable or no threat trials, particularly toward the end of the trial that prompted avoidance responses. This response pattern coincided with heart rate bradycardia, centralization of gaze, and increased sympathetic arousal. Furthermore, our findings expand on previous research by revealing that the amount of alpha suppression, along with centralization of gaze, and heart rate changes predict the speed of motor responses. Collectively, these findings indicate that when individuals encounter avoidable threats, they enter a state of attentive immobility, which enhances perceptual processing and facilitates action preparation. This state appears to reflect freezing-like behavior in humans. Full Article
is Neuronal and Behavioral Responses to Naturalistic Texture Images in Macaque Monkeys By www.jneurosci.org Published On :: 2024-10-16T09:30:18-07:00 The visual world is richly adorned with texture, which can serve to delineate important elements of natural scenes. In anesthetized macaque monkeys, selectivity for the statistical features of natural texture is weak in V1, but substantial in V2, suggesting that neuronal activity in V2 might directly support texture perception. To test this, we investigated the relation between single cell activity in macaque V1 and V2 and simultaneously measured behavioral judgments of texture. We generated stimuli along a continuum between naturalistic texture and phase-randomized noise and trained two macaque monkeys to judge whether a sample texture more closely resembled one or the other extreme. Analysis of responses revealed that individual V1 and V2 neurons carried much less information about texture naturalness than behavioral reports. However, the sensitivity of V2 neurons, especially those preferring naturalistic textures, was significantly closer to that of behavior compared with V1. The firing of both V1 and V2 neurons predicted perceptual choices in response to repeated presentations of the same ambiguous stimulus in one monkey, despite low individual neural sensitivity. However, neither population predicted choice in the second monkey. We conclude that neural responses supporting texture perception likely continue to develop downstream of V2. Further, combined with neural data recorded while the same two monkeys performed an orientation discrimination task, our results demonstrate that choice-correlated neural activity in early sensory cortex is unstable across observers and tasks, untethered from neuronal sensitivity, and therefore unlikely to directly reflect the formation of perceptual decisions. Full Article
is Multiple Intrinsic Timescales Govern Distinct Brain States in Human Sleep By www.jneurosci.org Published On :: 2024-10-16T09:30:18-07:00 Human sleep exhibits multiple, recurrent temporal regularities, ranging from circadian rhythms to sleep stage cycles and neuronal oscillations during nonrapid eye movement sleep. Moreover, recent evidence revealed a functional role of aperiodic activity, which reliably discriminates different sleep stages. Aperiodic activity is commonly defined as the spectral slope of the 1/frequency (1/f) decay function of the electrophysiological power spectrum. However, several lines of inquiry now indicate that the aperiodic component of the power spectrum might be better characterized by a superposition of several decay processes with associated timescales. Here, we determined multiple timescales, which jointly shape aperiodic activity using human intracranial electroencephalography. Across three independent studies (47 participants, 23 female), our results reveal that aperiodic activity reliably dissociated sleep stage-dependent dynamics in a regionally specific manner. A principled approach to parametrize aperiodic activity delineated several, spatially and state-specific timescales. Lastly, we employed pharmacological modulation by means of propofol anesthesia to disentangle state-invariant timescales that may reflect physical properties of the underlying neural population from state-specific timescales that likely constitute functional interactions. Collectively, these results establish the presence of multiple intrinsic timescales that define the electrophysiological power spectrum during distinct brain states. Full Article
is Beyond Glycolysis: Aldolase A Is a Novel Effector in Reelin-Mediated Dendritic Development By www.jneurosci.org Published On :: 2024-10-16T09:30:18-07:00 Reelin, a secreted glycoprotein, plays a crucial role in guiding neocortical neuronal migration, dendritic outgrowth and arborization, and synaptic plasticity in the adult brain. Reelin primarily operates through the canonical lipoprotein receptors apolipoprotein E receptor 2 (Apoer2) and very low-density lipoprotein receptor (Vldlr). Reelin also engages with noncanonical receptors and unidentified coreceptors; however, the effects of which are less understood. Using high-throughput tandem mass tag (TMT) liquid chromatography tandem mass spectrometry (LC-MS/MS)-based proteomics and gene set enrichment analysis (GSEA), we identified both shared and unique intracellular pathways activated by Reelin through its canonical and noncanonical signaling in primary murine neurons of either sex during dendritic growth and arborization. We observed pathway cross talk related to regulation of cytoskeleton, neuron projection development, protein transport, and actin filament-based process. We also found enriched gene sets exclusively by the noncanonical Reelin pathway including protein translation, mRNA metabolic process, and ribonucleoprotein complex biogenesis suggesting Reelin fine-tunes neuronal structure through distinct signaling pathways. A key discovery is the identification of aldolase A, a glycolytic enzyme and actin-binding protein, as a novel effector of Reelin signaling. Reelin induced de novo translation and mobilization of aldolase A from the actin cytoskeleton. We demonstrated that aldolase A is necessary for Reelin-mediated dendrite growth and arborization in primary murine neurons and mouse brain cortical neurons. Interestingly, the function of aldolase A in dendrite development is independent of its known role in glycolysis. Altogether, our findings provide new insights into the Reelin-dependent signaling pathways and effector proteins that are crucial for dendritic development. Full Article
is This Week in The Journal By www.jneurosci.org Published On :: 2024-10-16T09:30:19-07:00 Full Article
is Coupling of Slow Oscillations in the Prefrontal and Motor Cortex Predicts Onset of Spindle Trains and Persistent Memory Reactivations By www.jneurosci.org Published On :: 2024-10-23T09:30:29-07:00 Sleep is known to drive the consolidation of motor memories. During nonrapid eye movement (NREM) sleep, the close temporal proximity between slow oscillations (SOs) and spindles ("nesting" of SO-spindles) is known to be essential for consolidation, likely because it is closely associated with the reactivation of awake task activity. Interestingly, recent work has found that spindles can occur in temporal clusters or "trains." However, it remains unclear how spindle trains are related to the nesting phenomenon. Here, we hypothesized that spindle trains are more likely when SOs co-occur in the prefrontal and motor cortex. We conducted simultaneous neural recordings in the medial prefrontal cortex (mPFC) and primary motor cortex (M1) of male rats training on the reach-to-grasp motor task. We found that intracortically recorded M1 spindles are organized into distinct temporal clusters. Notably, the occurrence of temporally precise SOs between mPFC and M1 was a strong predictor of spindle trains. Moreover, reactivation of awake task patterns is much more persistent during spindle trains in comparison with that during isolated spindles. Together, our work suggests that the precise coupling of SOs across mPFC and M1 may be a potential driver of spindle trains and persistent reactivation of motor memory during NREM sleep. Full Article
is Distinct Neuron Types Contribute to Hybrid Auditory Spatial Coding By www.jneurosci.org Published On :: 2024-10-23T09:30:29-07:00 Neural decoding is a tool for understanding how activities from a population of neurons inside the brain relate to the outside world and for engineering applications such as brain–machine interfaces. However, neural decoding studies mainly focused on different decoding algorithms rather than different neuron types which could use different coding strategies. In this study, we used two-photon calcium imaging to assess three auditory spatial decoders (space map, opponent channel, and population pattern) in excitatory and inhibitory neurons in the dorsal inferior colliculus of male and female mice. Our findings revealed a clustering of excitatory neurons that prefer similar interaural level difference (ILD), the primary spatial cues in mice, while inhibitory neurons showed random local ILD organization. We found that inhibitory neurons displayed lower decoding variability under the opponent channel decoder, while excitatory neurons achieved higher decoding accuracy under the space map and population pattern decoders. Further analysis revealed that the inhibitory neurons’ preference for ILD off the midline and the excitatory neurons’ heterogeneous ILD tuning account for their decoding differences. Additionally, we discovered a sharper ILD tuning in the inhibitory neurons. Our computational model, linking this to increased presynaptic inhibitory inputs, was corroborated using monaural and binaural stimuli. Overall, this study provides experimental and computational insight into how excitatory and inhibitory neurons uniquely contribute to the coding of sound locations. Full Article
is PDE4B Missense Variant Increases Susceptibility to Post-traumatic Stress Disorder-Relevant Phenotypes in Mice By www.jneurosci.org Published On :: 2024-10-23T09:30:29-07:00 Large-scale genome-wide association studies (GWASs) have associated intronic variants in PDE4B, encoding cAMP-specific phosphodiesterase-4B (PDE4B), with increased risk for post-traumatic stress disorder (PTSD), as well as schizophrenia and substance use disorders that are often comorbid with it. However, the pathophysiological mechanisms of genetic risk involving PDE4B are poorly understood. To examine the effects of PDE4B variation on phenotypes with translational relevance to psychiatric disorders, we focused on PDE4B missense variant M220T, which is present in the human genome as rare coding variant rs775201287. When expressed in HEK-293 cells, PDE4B1-M220T exhibited an attenuated response to a forskolin-elicited increase in the intracellular cAMP concentration. In behavioral tests, homozygous Pde4bM220T male mice with a C57BL/6JJcl background exhibited increased reactivity to novel environments, startle hyperreactivity, prepulse inhibition deficits, altered cued fear conditioning, and enhanced spatial memory, accompanied by an increase in cAMP signaling pathway-regulated expression of BDNF in the hippocampus. In response to a traumatic event (10 tone–shock pairings), neuronal activity was decreased in the cortex but enhanced in the amygdala and hippocampus of Pde4bM220T mice. At 24 h post-trauma, Pde4bM220T mice exhibited increased startle hyperreactivity and decreased plasma corticosterone levels, similar to phenotypes exhibited by PTSD patients. Trauma-exposed Pde4bM220T mice also exhibited a slower decay in freezing at 15 and 30 d post-trauma, demonstrating enhanced persistence of traumatic memories, similar to that exhibited by PTSD patients. These findings provide substantive mouse model evidence linking PDE4B variation to PTSD-relevant phenotypes and thus highlight how genetic variation of PDE4B may contribute to PTSD risk. Full Article
is Neuregulin1 Nuclear Signaling Influences Adult Neurogenesis and Regulates a Schizophrenia Susceptibility Gene Network within the Mouse Dentate Gyrus By www.jneurosci.org Published On :: 2024-10-23T09:30:29-07:00 Neuregulin1 (Nrg1) signaling is critical for neuronal development and function from fate specification to synaptic plasticity. Type III Nrg1 is a synaptic protein which engages in bidirectional signaling with its receptor ErbB4. Forward signaling engages ErbB4 phosphorylation, whereas back signaling engages two known mechanisms: (1) local axonal PI3K-AKT signaling and (2) cleavage by -secretase resulting in cytosolic release of the intracellular domain (ICD), which can traffic to the nucleus (Bao et al., 2003; Hancock et al., 2008). To dissect the contribution of these alternate signaling strategies to neuronal development, we generated a transgenic mouse with a missense mutation (V321L) in the Nrg1 transmembrane domain that disrupts nuclear back signaling with minimal effects on forward signaling or local back signaling and was previously found to be associated with psychosis (Walss-Bass et al., 2006). We combined RNA sequencing, retroviral fate mapping of neural stem cells, behavioral analyses, and various network analyses of transcriptomic data to investigate the effect of disrupting Nrg1 nuclear back signaling in the dentate gyrus (DG) of male and female mice. The V321L mutation impairs nuclear translocation of the Nrg1 ICD and alters gene expression in the DG. V321L mice show reduced stem cell proliferation, altered cell cycle dynamics, fate specification defects, and dendritic dysmorphogenesis. Orthologs of known schizophrenia (SCZ)-susceptibility genes were dysregulated in the V321L DG. These genes coordinated a larger network with other dysregulated genes. Weighted gene correlation network analysis and protein interaction network analyses revealed striking similarity between DG transcriptomes of V321L mouse and humans with SCZ. Full Article
is This Week in The Journal By www.jneurosci.org Published On :: 2024-10-23T09:30:30-07:00 Full Article
is Transcriptomic Correlates of State Modulation in GABAergic Interneurons: A Cross-Species Analysis By www.jneurosci.org Published On :: 2024-10-30T09:30:22-07:00 GABAergic inhibitory interneurons comprise many subtypes that differ in their molecular, anatomical, and functional properties. In mouse visual cortex, they also differ in their modulation with an animal’s behavioral state, and this state modulation can be predicted from the first principal component (PC) of the gene expression matrix. Here, we ask whether this link between transcriptome and state-dependent processing generalizes across species. To this end, we analysed seven single-cell and single-nucleus RNA sequencing datasets from mouse, human, songbird, and turtle forebrains. Despite homology at the level of cell types, we found clear differences between transcriptomic PCs, with greater dissimilarities between evolutionarily distant species. These dissimilarities arise from two factors: divergence in gene expression within homologous cell types and divergence in cell-type abundance. We also compare the expression of cholinergic receptors, which are thought to causally link transcriptome and state modulation. Several cholinergic receptors predictive of state modulation in mouse interneurons are differentially expressed between species. Circuit modelling and mathematical analyses suggest conditions under which these expression differences could translate into functional differences. Full Article
is Neurophysiology of Effortful Listening: Decoupling Motivational Modulation from Task Demands By www.jneurosci.org Published On :: 2024-10-30T09:30:22-07:00 In demanding listening situations, a listener's motivational state may affect their cognitive investment. Here, we aim to delineate how domain-specific sensory processing, domain-general neural alpha power, and pupil size as a proxy for cognitive investment encode influences of motivational state under demanding listening. Participants (male and female) performed an auditory gap-detection task while the pupil size and the magnetoencephalogram were simultaneously recorded. Task demand and a listener's motivational state were orthogonally manipulated through changes in gap duration and monetary-reward prospect, respectively. Whereas task difficulty impaired performance, reward prospect enhanced it. The pupil size reliably indicated the modulatory impact of an individual's motivational state. At the neural level, the motivational state did not affect auditory sensory processing directly but impacted attentional postprocessing of an auditory event as reflected in the late evoked-response field and alpha-power change. Both pregap pupil dilation and higher parietal alpha power predicted better performance at the single-trial level. The current data support a framework wherein the motivational state acts as an attentional top–down neural means of postprocessing the auditory input in challenging listening situations. Full Article
is Cortically Disparate Visual Features Evoke Content-Independent Load Signals during Storage in Working Memory By www.jneurosci.org Published On :: 2024-10-30T09:30:22-07:00 It is well established that holding information in working memory (WM) elicits sustained stimulus-specific patterns of neural activity. Nevertheless, here we provide evidence for a distinct class of neural activity that tracks the number of individuated items in working memory, independent of the type of visual features stored. We present two EEG studies of young adults of both sexes that provide robust evidence for a signal tracking the number of individuated representations in working memory, regardless of the specific feature values stored. In Study 1, subjects maintained either colors or orientations across separate blocks in a single session. We found near-perfect generalization of the load signal between these two conditions, despite being able to simultaneously decode which feature had been voluntarily stored. In Study 2, participants attended to two features with very distinct cortical representations: color and motion coherence. We again found evidence for a neural load signal that robustly generalized across these distinct visual features, even though cortically disparate regions process color and motion coherence. Moreover, representational similarity analysis provided converging evidence for a content-independent load signal, while simultaneously showing that unique variance in EEG activity tracked the specific features that were stored. We posit that this load signal reflects a content-independent "pointer" operation that binds objects to the current context while parallel but distinct neural signals represent the features that are stored for each item in memory. Full Article
is This Week in The Journal By www.jneurosci.org Published On :: 2024-10-30T09:30:22-07:00 Full Article
is The Effect of Congruent versus Incongruent Distractor Positioning on Electrophysiological Signals during Perceptual Decision-Making By www.jneurosci.org Published On :: 2024-11-06T09:30:07-08:00 Key event-related potentials (ERPs) of perceptual decision-making such as centroparietal positivity (CPP) elucidate how evidence is accumulated toward a given choice. Furthermore, this accumulation can be impacted by visual target selection signals such as the N2 contralateral (N2c). How these underlying neural mechanisms of perceptual decision-making are influenced by the spatial congruence of distractors relative to target stimuli remains unclear. Here, we used electroencephalography (EEG) in humans of both sexes to investigate the effect of distractor spatial congruency (same vs different hemifield relative to targets) on perceptual decision-making. We confirmed that responses for perceptual decisions were slower for spatially incongruent versus congruent distractors of high salience. Similarly, markers of target selection (N2c peak amplitude) and evidence accumulation (CPP slope) were found to be lower when distractors were spatially incongruent versus congruent. To evaluate the effects of congruency further, we applied drift diffusion modeling to participant responses, which showed that larger amplitudes of both ERPs were correlated with shorter nondecision times when considering the effect of congruency. The modeling also suggested that congruency's effect on behavior occurred prior to and during evidence accumulation when considering the effects of the N2c peak and CPP slope. These findings point to spatially incongruent distractors, relative to congruent distractors, influencing decisions as early as the initial sensory processing phase and then continuing to exert an effect as evidence is accumulated throughout the decision-making process. Overall, our findings highlight how key electrophysiological signals of perceptual decision-making are influenced by the spatial congruence of target and distractor. Full Article
is G-Protein Signaling in Alzheimer's Disease: Spatial Expression Validation of Semi-supervised Deep Learning-Based Computational Framework By www.jneurosci.org Published On :: 2024-11-06T09:30:07-08:00 Systemic study of pathogenic pathways and interrelationships underlying genes associated with Alzheimer's disease (AD) facilitates the identification of new targets for effective treatments. Recently available large-scale multiomics datasets provide opportunities to use computational approaches for such studies. Here, we devised a novel disease gene identification (digID) computational framework that consists of a semi-supervised deep learning classifier to predict AD-associated genes and a protein–protein interaction (PPI) network-based analysis to prioritize the importance of these predicted genes in AD. digID predicted 1,529 AD-associated genes and revealed potentially new AD molecular mechanisms and therapeutic targets including GNAI1 and GNB1, two G-protein subunits that regulate cell signaling, and KNG1, an upstream modulator of CDC42 small G-protein signaling and mediator of inflammation and candidate coregulator of amyloid precursor protein (APP). Analysis of mRNA expression validated their dysregulation in AD brains but further revealed the significant spatial patterns in different brain regions as well as among different subregions of the frontal cortex and hippocampi. Super-resolution STochastic Optical Reconstruction Microscopy (STORM) further demonstrated their subcellular colocalization and molecular interactions with APP in a transgenic mouse model of both sexes with AD-like mutations. These studies support the predictions made by digID while highlighting the importance of concurrent biological validation of computationally identified gene clusters as potential new AD therapeutic targets. Full Article
is A Novel Directed Seed-Based Connectivity Analysis Toolbox Applied to Human and Marmoset Resting-State FMRI By www.jneurosci.org Published On :: 2024-11-06T09:30:07-08:00 Estimating the direction of functional connectivity (FC) can help further elucidate complex brain function. However, the estimation of directed FC at the voxel level in fMRI data, and evaluating its performance, has yet to be done. We therefore developed a novel directed seed-based connectivity analysis (SCA) method based on normalized pairwise Granger causality that provides greater detail and accuracy over ROI-based methods. We evaluated its performance against 145 cortical retrograde tracer injections in male and female marmosets that were used as ground truth cellular connectivity on a voxel-by-voxel basis. The receiver operating characteristic (ROC) curve was calculated for each injection, and we achieved area under the ROC curve of 0.95 for undirected and 0.942 for directed SCA in the case of high cell count threshold. This indicates that SCA can reliably estimate the strong cellular connections between voxels in fMRI data. We then used our directed SCA method to analyze the human default mode network (DMN) and found that dlPFC (dorsolateral prefrontal cortex) and temporal lobe were separated from other DMN regions, forming part of the language-network that works together with the core DMN regions. We also found that the cerebellum (Crus I-II) was strongly targeted by the posterior parietal cortices and dlPFC, but reciprocal connections were not observed. Thus, the cerebellum may not be a part of, but instead a target of, the DMN and language-network. Summarily, our novel directed SCA method, visualized with a new functional flat mapping technique, opens a new paradigm for whole-brain functional analysis. Full Article
is EphB2 Signaling Is Implicated in Astrocyte-Mediated Parvalbumin Inhibitory Synapse Development By www.jneurosci.org Published On :: 2024-11-06T09:30:07-08:00 Impaired inhibitory synapse development is suggested to drive neuronal hyperactivity in autism spectrum disorders (ASD) and epilepsy. We propose a novel mechanism by which astrocytes control the development of parvalbumin (PV)-specific inhibitory synapses in the hippocampus, implicating ephrin-B/EphB signaling. Here, we utilize genetic approaches to assess functional and structural connectivity between PV and pyramidal cells (PCs) through whole-cell patch–clamp electrophysiology, optogenetics, immunohistochemical analysis, and behaviors in male and female mice. While inhibitory synapse development is adversely affected by PV-specific expression of EphB2, a strong candidate ASD risk gene, astrocytic ephrin-B1 facilitates PV->PC connectivity through a mechanism involving EphB signaling in PV boutons. In contrast, the loss of astrocytic ephrin-B1 reduces PV->PC connectivity and inhibition, resulting in increased seizure susceptibility and an ASD-like phenotype. Our findings underscore the crucial role of astrocytes in regulating inhibitory circuit development and discover a new role of EphB2 receptors in PV-specific inhibitory synapse development. Full Article
is This Week in The Journal By www.jneurosci.org Published On :: 2024-11-06T09:30:07-08:00 Full Article
is How Century-Old Paintings Reveal the Indigenous Roots and Natural History of New England Landscapes By www.smithsonianmag.com Published On :: Thu, 19 Sep 2024 12:00:00 +0000 Seven guest collaborators bring new eyes to a Smithsonian museum founder’s collection of American art Full Article
is Ants Farmed Fungi in the Wake of Dinosaurs’ Demise 66 Million Years Ago By www.smithsonianmag.com Published On :: Thu, 03 Oct 2024 18:04:00 +0000 A new study from Smithsonian scientists analyzes ant and fungus species, and uncovers the origins of their close partnership Full Article
is What the Long History of Mail-In Voting in the U.S. Reveals About the Election Process By www.smithsonianmag.com Published On :: Fri, 04 Oct 2024 15:30:00 +0000 A recent exhibition shows how soldiers sent in votes during the Civil War and World War II, as many Americans would in 2020 following the spread of the Covid-19 pandemic Full Article
is Why the Creator of One of the First ‘Lie Detectors’ Lived to Regret His Invention By www.smithsonianmag.com Published On :: Tue, 22 Oct 2024 11:00:00 +0000 The early polygraph machine was considered the most scientific way to detect deception—but that was a myth Full Article
is This Captivating Guide Uncovers the History and Mystery of Dinosaurs in 50 Fossils By www.smithsonianmag.com Published On :: Tue, 29 Oct 2024 17:16:07 +0000 A paleontologist at the Natural History Museum in London chronicles the age of the famous and fascinating massive reptiles Full Article
is See What Happened When One Museum Asked Artists to Define ‘Home’ By www.smithsonianmag.com Published On :: Mon, 04 Nov 2024 15:30:00 +0000 The Smithsonian Design Triennial presents 25 commissions that explore the physical and conceptual ideas of shelter and refuge Full Article
is This Stunning New Atlas Explores Humanity’s Ancient Relationship With Space and the Universe By www.smithsonianmag.com Published On :: Wed, 06 Nov 2024 19:00:31 +0000 Written by the former chief historian of NASA, the book examines the evolution of our cosmic understanding—from early civilizations to the present day Full Article
is See a Film That Reimagines History on the Malaysian Island That Served as a Refugee Site After the Vietnam War By www.smithsonianmag.com Published On :: Thu, 07 Nov 2024 16:11:03 +0000 The work, now on view at the Smithsonian American Art Museum, tells the story of two characters on the island—the last people alive in the world Full Article
is Six months after disaster, Philippine farmers bring in the harvest By www.fao.org Published On :: Wed, 07 May 2014 00:00:00 GMT Tens of thousands of farmers are bringing in their first rice harvest just six months after one of the worst typhoons to ever hit the Philippines left their fields in [...] Full Article
is Crisis-hit farmers receive seeds and tools in Central African Republic By www.fao.org Published On :: Fri, 16 May 2014 00:00:00 GMT A major operation to distribute seeds and tools has been launched in the Central African Republic to support [...] Full Article
is Pope Francis to attend the Second International Conference on Nutrition (ICN2) By www.fao.org Published On :: Tue, 20 May 2014 00:00:00 GMT Pope Francis will add his voice to the fight against hunger and malnutrition by addressing the Second International [...] Full Article
is Countries recognize vital role of small-scale fishers By www.fao.org Published On :: Tue, 10 Jun 2014 00:00:00 GMT Countries today endorsed a set of wide-reaching guidelines that will boost the already vital [...] Full Article
is MERCOSUR Government representatives praise FAO's support of family farming and hunger eradication efforts By www.fao.org Published On :: Thu, 03 Jul 2014 00:00:00 GMT Santiago, Chile- The declaration of the XXI Specialized Meeting on Family Farming of MERCOSUR (REAF, in Spanish) held last week in Argentina, acknowledged the advances promoted by FAO’s Director General, [...] Full Article
is President of Azerbaijan visits FAO By www.fao.org Published On :: Tue, 15 Jul 2014 00:00:00 GMT The President of the Republic of Azerbaijan, Ilham Aliyev, met today with FAO Director-General José Graziano da Silva at FAO headquarters in Rome. With agriculture growing at a 6 [...] Full Article
is FAO Director-General to visit 7 countries and to attend 3 multilateral conferences in the next seven weeks By www.fao.org Published On :: Fri, 18 Jul 2014 00:00:00 GMT FAO Director-General José Graziano da Silva will be away from Rome during the next few weeks. During this period he will be involved in a range of [...] Full Article
is Food security tops agenda of FAO Director-General's meeting with India's Prime Minister Modi By www.fao.org Published On :: Wed, 10 Sep 2014 00:00:00 GMT The [...] Full Article