han Crystal structures and circular dichroism of {2,2'-[(1S,2S)-1,2-diphenylethane-1,2-diylbis(nitrilophenylmethanylylidene)]diphenolato}nickel(II) and its ethanol solvate By journals.iucr.org Published On :: 2024-11-08 The title compound, [Ni(C40H30N2O2)] (1), with an optically active Schiff base ligand derived from 2-hydroxybenzophenone and (1S,2S)-1,2-diphenylethylenediamine, was crystallized as the solvent-free and ethanol solvate forms (1 and 1·2C2H5OH). In both structures, the two phenyl groups on the stereogenic centers of the O,N,N,O-tetradentate ligand are axially oriented, and the conformation of the central diamine chelate ring is λ. The circular dichroism (CD) spectra of 1 and the analogous nickel(II) complex [Ni(C30H26N2O2)] (2) in solution show partially similar patterns in the 350–450 nm range, but are mirror images in the longer wavelength region (450–650 nm). In the latter region, the sign of CD for these complexes is sensitive to the substituents on the C=N carbon atoms (phenyl for 1 and methyl for 2) rather than the diamine chelate ring conformation. Full Article text
han An active piezoelectric plane X-ray focusing mirror with a linearly changing thickness By journals.iucr.org Published On :: 2024-01-01 X-ray mirrors for synchrotron radiation are often bent into a curved figure and work under grazing-incidence conditions due to the strong penetrating nature of X-rays to most materials. Mirrors of different cross sections have been recommended to reduce the mirror's slope inaccuracy and clamping difficulty in order to overcome mechanical tolerances. With the development of hard X-ray focusing, it is difficult to meet the needs of focusing mirrors with small slope error with the existing mirror processing technology. Deformable mirrors are adaptive optics that can produce a flexible surface figure. A method of using a deformable mirror as a phase compensator is described to enhance the focusing performance of an X-ray mirror. This paper presents an active piezoelectric plane X-ray focusing mirror with a linearly changing thickness that has the ability of phase compensation while focusing X-rays. Benefiting from its special structural design, the mirror can realize flexible focusing at different focusing geometries using a single input driving voltage. A prototype was used to measure its performance under one-dimension and two-dimension conditions. The results prove that, even at a bending magnet beamline, the mirror can easily achieve a single-micrometre focusing without a complicated bending mechanism or high-precision surface processing. It is hoped that this kind of deformable mirror will have a wide and flexible application in the synchrotron radiation field. Full Article text
han Angle-resolved X-ray emission spectroscopy facility realized by an innovative spectrometer rotation mechanism at SPring-8 BL07LSU By journals.iucr.org Published On :: 2024-02-01 The X-ray emission spectrometer at SPring-8 BL07LSU has recently been upgraded with advanced modifications that enable the rotation of the spectrometer with respect to the scattering angle. This major upgrade allows the scattering angle to be flexibly changed within the range of 45–135°, which considerably simplifies the measurement of angle-resolved X-ray emission spectroscopy. To accomplish the rotation system, a sophisticated sample chamber and a highly precise spectrometer rotation mechanism have been developed. The sample chamber has a specially designed combination of three rotary stages that can smoothly move the connection flange along the wide scattering angle without breaking the vacuum. In addition, the spectrometer is rotated by sliding on a flat metal surface, ensuring exceptionally high accuracy in rotation and eliminating the need for any further adjustments during rotation. A control system that integrates the sample chamber and rotation mechanism to automate the measurement of angle-resolved X-ray emission spectroscopy has also been developed. This automation substantially streamlines the process of measuring angle-resolved spectra, making it far easier than ever before. Furthermore, the upgraded X-ray emission spectrometer can now also be utilized in diffraction experiments, providing even greater versatility to our research capabilities. Full Article text
han Submillisecond in situ X-ray diffraction measurement system with changing temperature and pressure using diamond anvil cells at BL10XU/SPring-8 By journals.iucr.org Published On :: 2024-02-19 Recently, there has been a high demand for elucidating kinetics and visualizing reaction processes under extreme dynamic conditions, such as chemical reactions under meteorite impact conditions, structural changes under nonequilibrium conditions, and in situ observations of dynamic changes. To accelerate material science studies and Earth science fields under dynamic conditions, a submillisecond in situ X-ray diffraction measurement system has been developed using a diamond anvil cell to observe reaction processes under rapidly changing pressure and temperature conditions replicating extreme dynamic conditions. The development and measurements were performed at the high-pressure beamline BL10XU/SPring-8 by synchronizing a high-speed hybrid pixel array detector, laser heating and temperature measurement system, and gas-pressure control system that enables remote and rapid pressure changes using the diamond anvil cell. The synchronized system enabled momentary heating and rapid cooling experiments up to 5000 K via laser heating as well as the visualization of structural changes in high-pressure samples under extreme dynamic conditions during high-speed pressure changes. Full Article text
han Enhancing electrospray ionization efficiency for particle transmission through an aerodynamic lens stack By journals.iucr.org Published On :: 2024-02-02 This work investigates the performance of the electrospray aerosol generator at the European X-ray Free Electron Laser (EuXFEL). This generator is, together with an aerodynamic lens stack that transports the particles into the X-ray interaction vacuum chamber, the method of choice to deliver particles for single-particle coherent diffractive imaging (SPI) experiments at the EuXFEL. For these experiments to be successful, it is necessary to achieve high transmission of particles from solution into the vacuum interaction region. Particle transmission is highly dependent on efficient neutralization of the charged aerosol generated by the electrospray mechanism as well as the geometry in the vicinity of the Taylor cone. We report absolute particle transmission values for different neutralizers and geometries while keeping the conditions suitable for SPI experiments. Our findings reveal that a vacuum ultraviolet ionizer demonstrates a transmission efficiency approximately seven times greater than the soft X-ray ionizer used previously. Combined with an optimized orifice size on the counter electrode, we achieve >40% particle transmission from solution into the X-ray interaction region. These findings offer valuable insights for optimizing electrospray aerosol generator configurations and data rates for SPI experiments. Full Article text
han Enhanced X-ray free-electron laser performance with optical klystron and helical undulators By journals.iucr.org Published On :: 2024-06-11 This article presents a demonstration of the improved performance of an X-ray free-electron laser (FEL) using the optical klystron mechanism and helical undulator configuration, in comparison with the common planar undulator configuration without optical klystron. The demonstration was carried out at Athos, the soft X-ray beamline of SwissFEL. Athos has variable-polarization undulators, and small magnetic chicanes placed between every two undulators to fully exploit the optical klystron. It was found that, for wavelengths of 1.24 nm and 3.10 nm, the required length to achieve FEL saturation is reduced by about 35% when using both the optical klystron and helical undulators, with each effect accounting for about half of the improvement. Moreover, it is shown that a helical undulator configuration provides a 20% to 50% higher pulse energy than planar undulators. This work represents an important step towards more compact and high-power FELs, rendering this key technology more efficient, affordable and accessible to the scientific community. Full Article text
han GIWAXS experimental methods at the NFPS-BL17B beamline at Shanghai Synchrotron Radiation Facility By journals.iucr.org Published On :: 2024-06-25 The BL17B beamline at the Shanghai Synchrotron Radiation Facility was first designed as a versatile high-throughput protein crystallography beamline and one of five beamlines affiliated to the National Facility for Protein Science in Shanghai. It was officially opened to users in July 2015. As a bending magnet beamline, BL17B has the advantages of high photon flux, brightness, energy resolution and continuous adjustable energy between 5 and 23 keV. The experimental station excels in crystal screening and structure determination, providing cost-effective routine experimental services to numerous users. Given the interdisciplinary and green energy research demands, BL17B beamline has undergone optimization, expanded its range of experimental methods and enhanced sample environments for a more user-friendly testing mode. These methods include single-crystal X-ray diffraction, powder crystal X-ray diffraction, wide-angle X-ray scattering, grazing-incidence wide-angle X-ray scattering (GIWAXS), and fully scattered atom pair distribution function analysis, covering structure detection from crystalline to amorphous states. This paper primarily presents the performance of the BL17B beamline and the application of the GIWAXS methodology at the beamline in the field of perovskite materials. Full Article text
han trans-Bis[bis(diphenylphosphanyl)methane-κ2P,P']dichloridoruthenium(II): a triclinic polymorph By journals.iucr.org Published On :: 2023-11-14 The title compound, [RuCl2(C25H22P2)2] or [RuCl2(dppm)2] (dppm = bis(diphenylphosphanyl)methane, C25H22P2) crystallizes as two half-molecules (completed by inversion symmetry) in space group Poverline{1} (Z = 2), with the RuII atoms occupying inversion centers at 0,0,0 and 1/2, 1/2, 1/2, respectively. The bidentate phosphane ligands occupy equatorial positions while the chlorido ligands complete the distorted octahedral coordination spheres at axial positions. The bite angles of the phosphane chelates are similar for the two molecules [(P—Ru—P)avg. = 71.1°], while there are significant differences in the twisting of the methylene backbone, with a distance of the methylene C atom from the RuP4 plane of 0.659 (2) and 0.299 (3) Å, respectively, and also for the phenyl substituents for both molecules due to variations in weak C—H⋯Cl interactions. Full Article text
han Tetraaqua(ethane-1,2-diamine-κ2N,N')nickel(II) naphthalene-1,5-disulfonate dihydrate By journals.iucr.org Published On :: 2023-12-14 The reaction of ethane-1,2-diamine (en, C2H8N2), the sodium salt of naphthalene-1,5-disulfonic acid (H2NDS, C10H8O6S2), and nickel sulfate in an aqueous solution resulted in the formation of the title salt, [Ni(C2H8N2)(H2O)4](C10H6O6S2)·2H2O or [Ni(en)(H2O)4](NDS)·2H2O. In the asymmetric unit, one half of an [Ni(en)(H2O)4]2+ cation and one half of an NDS2− anion, and one water molecule of crystallization are present. The Ni2+ cation in the complex is positioned on a twofold rotation axis and exhibits a slight tetragonal distortion of the cis-NiO4N2 octahedron, with an Ni—N bond length of 2.0782 (16) Å, and Ni—O bond lengths of 2.1170 (13) Å and 2.0648 (14) Å. The anion is completed by inversion symmetry. In the extended structure, the cations, anions, and non-coordinating water molecules are connected by intermolecular N—H⋯O and O—H⋯O hydrogen bonding, as well as C—H⋯π interactions, forming a three-dimensional network. Full Article text
han (4-Butyl-1-ethyl-1,2,4-triazol-5-ylidene)[(1,2,5,6-η)-cycloocta-1,5-diene](triphenylphosphane)rhodium(I) tetrafluoridoborate By journals.iucr.org Published On :: 2024-01-26 In the title triazole-based N-heterocyclic carbene rhodium(I) cationic complex with a tetrafluoridoborate counter-anion, [Rh(C8H12)(C8H15N3)(C18H15P)]BF4, which crystallizes with two cations and two anions in the asymmetric unit, the Rh center has a distorted square-planar coordination geometry with expected bond distances. Several nonclassical C—H⋯F hydrogen-bonding interactions help to consolidate the packing. Two of the F atoms of one of the anions are disordered over adjacent sites in a 0.814 (4):0.186 (4) ratio. Full Article text
han Bis[2,6-bis(benzimidazol-2-yl)pyridine-κ3N,N',N'']nickel(II) bis(trifluoromethanesulfonate) diethyl ether monosolvate By journals.iucr.org Published On :: 2024-01-31 In the title complex, [Ni(C19H13N5)2](CF3SO3)2·(CH3CH2)2O, the central NiII atom is sixfold coordinated by three nitrogen atoms of each 2,6-bis(2-benzimidazolyl)pyridine ligand in a distorted octahedral geometry with two trifluoromethanesulfonate ions and a molecule of diethyl ether completing the outer coordination sphere of the complex. Hydrogen bonding contributes to the organization of the asymmetric units in columns along the a axis generating a porous supramolecular structure. The structure was refined as a two-component twin with a refined BASF value of 0.4104 (13). Full Article text
han Aquabis(2,2'-bipyridine-κ2N,N')(isonicotinamide-κN)ruthenium(II) bis(trifluoromethanesulfonate) By journals.iucr.org Published On :: 2024-02-08 In the title complex, [Ru(C10H8N2)2(C6H6N2O)(H2O)](CF3SO3)2, the central RuII atom is sixfold coordinated by two bidentate 2,2'-bipyridine, an isonicotinamide ligand, and a water molecule in a distorted octahedral environment with trifluoromethanesulfonate ions completing the outer coordination sphere of the complex. Hydrogen bonding involving the water molecule and weak π–π stacking interactions between the pyridyl rings in adjacent molecules contribute to the alignment of the complexes in columns parallel to the c axis. Full Article text
han Bis[μ-bis(pyridin-2-yl)methanone oxime-κ3N:,N',N'']bis[diacetato-κ2O,O';κO-zinc(II)] By journals.iucr.org Published On :: 2024-02-16 The structure of the title complex, [Zn2(C2H3O2)4(C11H9N3O)2], is triclinic containing half of the molecule in the asymmetric unit. Each zinc atom is coordinated to a pyridyl and oxime nitrogen from one di-2-pyridyl ketone oxime (dpko) ligand and a third nitrogen from the other dpko pyridyl ring. Additionally, each zinc is coordinated to two acetato anions, one of which is bidentate and the other monodentate. The uncoordinated oxygen of the monodentate acetato group is involved in a hydrogen bond with the oxime hydrogen. The packing in the crystal is assisted by weak C—H⋯O interactions between acetato groups and neighboring pyridyl rings. Full Article text
han Ethidium benzoate methanol monosolvate By journals.iucr.org Published On :: 2024-04-18 In the title salt solvate (systematic name: 8-amino-5-ethyl-6-phenylphenanthridin-5-ium benzoate methanol monosolvate), C21H20N3+·C6H5CO2−·CH3OH, two ethidium cations, C21H20N3+, dimerize about a twofold axis through π–π interactions [inter-centroid separation = 3.6137 (4) Å]. The benzoate anions are connected through hydrogen bonding with the –NH2 groups of the ethidium cations and the –OH group of the MeOH molecule. The MeOH molecule also accepts a hydrogen bond from the –NH2 group of the ethidium cation. The result is a one-dimensional hydrogen-bonded chain along the b-axis direction. Full Article text
han Bis[2,3-bis(thiophen-2-yl)pyrido[3,4-b]pyrazine]silver(I) perchlorate methanol disolvate By journals.iucr.org Published On :: 2024-04-26 The title compound, [Ag(C15H9N3S2)2]ClO4·2CH3OH, is monoclinic. The AgI atom is coordinated by pyrido N atoms and is two-coordinate; however, the AgI atom has nearby O atoms that can be assumed to be weakly bonded – one from the perchlorate anion and one from the methanol solvate molecule. One of the thienyl groups on a 2,3-bis(thiophen-2-yl)pyrido[3,4-b]pyrazine is flipped disordered and was refined to occupancies of 68.4 (6) and 31.6 (6)%. Full Article text
han mer-Bis(quinoline-2-carboxaldehyde 4-ethylthiosemicarbazonato)nickel(II) methanol 0.33-solvate 0.67-hydrate By journals.iucr.org Published On :: 2024-04-26 In the title compound, [Ni(C13H13N4S)2]·0.33CH3OH·0.67H2O, the NiII atom is coordinated by two tridentate quinoline-2-carboxaldehyde 4-ethylthiosemicarbazonate ligands in a distorted octahedral shape. At 100 K, the crystal symmetry is monoclinic (space group P21/n). A mixture of water and methanol crystallizes with the title complex, and one of the ethyl groups in the coordinating ligands is disordered over two positions, with an occupancy ratio of 58:42. There is intermolecular hydrogen bonding between the solvent molecules and the amine and thiolate groups in the ligands. No other significant interactions are present in the crystal packing. Full Article text
han Chlorido(2-{(2-hydroxyethyl)[tris(hydroxymethyl)methyl]amino}ethanolato-κ5N,O,O',O'',O''')copper(II) By journals.iucr.org Published On :: 2024-05-24 The title complex, [Cu(C8H18NO5)Cl] or [Cu(H4bis-tris)Cl], was obtained starting from the previously reported [Cu(H5bis-tris)Cl]Cl compound. The deprotonation of the aminopolyol ligand H5bis-tris {[bis(2-hydroxyethyl)amino]tris(hydroxymethyl)methane, C8H19NO5} promotes the formation of a very strong O—H⋯O intermolecular hydrogen bond, characterized by an H⋯O separation of 1.553 (19) Å and an O—H⋯O angle of 178 (4)°. The remaining hydroxy groups are also engaged in hydrogen bonds, forming R22(8), R44(16), R44(20) and R44(22) ring motifs, which stabilize the triperiodic supramolecular network. Full Article text
han (4-Butyl-1-ethyl-1,2,4-triazol-5-ylidene)[(1,2,5,6-η)-cycloocta-1,5-diene](triphenylphosphane)iridium(I) tetrafluoridoborate By journals.iucr.org Published On :: 2024-06-07 The title compound, [Ir(C8H12)(C8H15N3)(C18H15P)]BF4, a new triazole-based N-heterocyclic carbene iridium(I) cationic complex with a tetrafluoridoborate counter-anion, crystallizes with two cations and two anions in the asymmetric unit of space group Pc. The Ir centers of the cations have distorted square-planar conformations, formed by a bidentate (η2 + η2) cycloocta-1,5-diene (COD) ligand, an N-heterocyclic carbene and a triphenylphosphane ligand with the NHC carbon atom and P atom being cis. In the extended structure, non-classical C–H⋯F hydrogen bonds, one of which is notably short (H⋯F = 2.21 Å), link the cations and anions. The carbon atoms of one of the COD ligands are disordered over adjacent sites in a 0.62:0.38 ratio. Full Article text
han Poly[[μ3-2-(benzotriazol-1-yl)acetato-κ3O:O':N3]chlorido(ethanol-κO)cobalt(II)] By journals.iucr.org Published On :: 2024-07-05 In the title compound, [Co(C8H6N3O2)Cl(C2H5OH)]n, the CoII atoms adopt octahedral trans-CoN2O4 and tetrahedral CoCl2O2 coordination geometries (site symmetries overline{1} and m, respectively). The bridging μ3-O:O:N 2-(benzotriazol-1-yl)acetato ligands connect the octahedral cobalt nodes into (010) sheets and the CoCl2 fragments link the sheets into a tri-periodic network. The structure displays O—H⋯O hydrogen bonding and the ethanol molecule is disordered over two orientations. Full Article text
han [(1,2,5,6-η)-Cycloocta-1,5-diene](1-ethyl-4-isobutyl-1,2,4-triazol-5-ylidene)(triphenylphosphane)rhodium(I) tetrafluoridoborate By journals.iucr.org Published On :: 2024-08-02 A new, cationic N-heterocyclic carbene RhI complex with a tetrafluoridoborate counter-anion, [Rh(C8H12)(C8H15N3)(C18H15P)]BF4, has been synthesized and structurally characterized. There are two independent ion pairs in the asymmetric unit. Each complex cation exhibits a distorted square-planar conformation around the RhI atom. Bond lengths and bond angles are as expected for an Rh–NHC complex. There are several close, non-standard C—H⋯F hydrogen-bonding interactions between the ions. One of the tetrafluoridoborate anions shows statistical disorder of the F atoms. Full Article text
han μ-Chlorido-bis{[1-benzyl-3-(2,4,6-trimethylphenyl)imidazol-2-ylidene-κC]silver(I)} chloride 1,2-dichloroethane hemisolvate By journals.iucr.org Published On :: 2024-09-10 The title compound, [Ag2(C19H20N2)4]Cl·0.5C2H4Cl2, can be readily generated by treatment of (1-benzyl-3-(2,4,6-trimethylphenyl)imidazolium chloride with sodium bis(trimethylsilyl)amide followed by silver chloride. The molecular structure of the compound was confirmed using NMR spectroscopy and single-crystal X-ray diffraction analysis. The crystal structure of the title compound at 110 K has monoclinic (P21/c) symmetry. The represented silver compound is of interest with respect to antibacterial properties and the structure displays a series of weak intermolecular hydrogen-bonding interactions with the chloride counter-anion. Full Article text
han Bis[2-(isoquinolin-1-yl)phenyl-κ2N,C1](2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline-κ2N,N')iridium(III) hexafluoridophosphate methanol monosolvate By journals.iucr.org Published On :: 2024-09-06 The title compound, [Ir(C15H10N)2(C19H12N4)]PF6·CH3OH, crystallizes in the C2/c space group with one monocationic iridium complex, one hexafluoridophosphate anion, and one methanol solvent molecule of crystallization in the asymmetric unit, all in general positions. The anion and solvent are linked to the iridium complex cation via hydrogen bonding. All bond lengths and angles fall into expected ranges compared to similar compounds. Full Article text
han [(1,2,5,6-η)-Cycloocta-1,5-diene](1-ethyl-4-isobutyl-1,2,4-triazol-5-ylidene)(triphenylphosphane)iridium(I) tetrafluoridoborate dichloromethane hemisolvate By journals.iucr.org Published On :: 2024-09-30 A new triazole-based N-heterocyclic carbene IrI cationic complex with a tetrafluoridoborate counter-anion and hemi-solvating dichloromethane, [Ir(C8H12)(C8H15N3)(C18H15P)]BF4·0.5CH2Cl2, has been synthesized and structurally characterized. There are two independent ion pairs in the asymmetric unit and one dichloromethane solvent molecule per two ion pairs. The cationic complex exhibits a distorted square-planar conformation around the IrI atom, formed by a bidentate cycloocta-1,5,diene (COD) ligand, a triphenylphosphane ligand, and an N-heterocyclic carbene (NHC). There are several close non-standard H⋯F hydrogen-bonding interactions that orient the tetrafluoridoborate anions with respect to the IrI complex molecules. The complex shows promising catalytic activity in transfer hydrogenation reactions. The structure was refined as a non-merohedral twin, and one of the COD molecules is statistically disordered. Full Article text
han (Z)-N-(2,6-Diisopropylphenyl)-1-[(2-methoxyphenyl)amino]methanimine oxide By journals.iucr.org Published On :: 2024-10-21 The molecular structure of the title compound, C20H26N2O2 reveals non-co-planarity between the central formamidine backbone and each of the outer methoxy- and i-propyl- substituted benzene rings with dihedral angles of 7.88 (15) and 81.17 (15)°, respectively, indicating significant twists in the molecule. In the crystal, intermolecular C—H⋯O interactions, forming an R34(30) graph set, occur within a two-dimensional layer that extends along the ac plane. Full Article text
han (Z)-N-(2,6-Dimethylphenyl)-1-[(2-methoxyphenyl)amino]methanimine oxide methanol monosolvate By journals.iucr.org Published On :: 2024-10-21 In the title solvate, C16H18N2O2·CH4O, the dihedral angles between the formamidine backbone and the pendant 2-methoxyphenyl and 2,6-dimethylphenyl groups are 14.84 (11) and 81.61 (12)°, respectively. In the crystal, the components are linked by C—H⋯O, O—H⋯O and C—H⋯ π hydrogen bonds, generating a supramolecular chain that extends along the crystallographic a-axis direction. Full Article text
han Crystal structure and analytical profile of 1,2-diphenyl-2-pyrrolidin-1-ylethanone hydrochloride or `α-D2PV': a synthetic cathinone seized by law enforcement, along with its diluent sugar, myo-inositol By journals.iucr.org Published On :: 2024-01-22 A confiscated package of street drugs was characterized by the usual mass spectral (MS) and FT–IR analyses. The confiscated powder material was highly crystalline and was found to consist of two very different species, accidentally of sizes convenient for X-ray diffraction. Thus, one each was selected and redundant complete sets of data were collected at 100 K using Cu Kα radiation. The selected crystals contained: (a) 1,2-diphenyl-2-(pyrrolidin-1-yl)ethanone hydrochloride hemihydrate or 1-(2-oxo-1,2-diphenylethyl)pyrrolidin-1-ium chloride hemihydrate, C18H20NO+·Cl−·0.5H2O, (I), a synthetic cathinone called `α-D2PV', and (b) the sugar myo-inositol, C6H12O6, (II), probably the only instance in which the drug and its diluent have been fully characterized from a single confiscated sample. Moreover, the structural details of both are rather attractive showing: (i) interesting hydrogen bonding observed in pairwise interactions by the drug molecules, mediated by the chloride counter-anions and the waters of crystallization, and (ii) π–π interactions in the case of the phenyl rings of the drug which are of two different types, namely, π–π stacking and edge-to-π. Finally, the inositol crystallizes with Z' = 2 and the resulting diastereoisomers were examined by overlay techniques. Full Article text
han Molecular structure and selective theophylline complexation by conformational change of diethyl N,N'-(1,3-phenylene)dicarbamate By journals.iucr.org Published On :: 2024-05-07 The receptor ability of diethyl N,N'-(1,3-phenylene)dicarbamate (1) to form host–guest complexes with theophylline (TEO) and caffeine (CAF) by mechanochemistry was evaluated. The formation of the 1–TEO complex (C12H16N2O4·C7H8N4O2) was preferred and involves the conformational change of one of the ethyl carbamate groups of 1 from the endo conformation to the exo conformation to allow the formation of intermolecular interactions. The formation of an N—H⋯O=C hydrogen bond between 1 and TEO triggers the conformational change of 1. CAF molecules are unable to form an N—H⋯O=C hydrogen bond with 1, making the conformational change and, therefore, the formation of the complex impossible. Conformational change and selective binding were monitored by IR spectroscopy, solid-state 13C nuclear magnetic resonance and single-crystal X-ray diffraction. The 1–TEO complex was characterized by IR spectroscopy, solid-state 13C nuclear magnetic resonance, powder X-ray diffraction and single-crystal X-ray diffraction. Full Article text
han Using cocrystals as a tool to study non-crystallizing molecules: crystal structure, Hirshfeld surface analysis and computational study of the 1:1 cocrystal of (E)-N-(3,4-difluorophenyl)-1-(pyridin-4-yl)methanimine and acetic By journals.iucr.org Published On :: 2024-07-05 Using a 1:1 cocrystal of (E)-N-(3,4-difluorophenyl)-1-(pyridin-4-yl)methanimine with acetic acid, C12H8F2N2·C2H4O2, we investigate the influence of F atoms introduced to the aromatic ring on promoting π–π interactions. The cocrystal crystallizes in the triclinic space group P1. Through crystallographic analysis and computational studies, we reveal the molecular arrangement within this cocrystal, demonstrating the presence of hydrogen bonding between the acetic acid molecule and the pyridyl group, along with π–π interactions between the aromatic rings. Our findings highlight the importance of F atoms in promoting π–π interactions without necessitating full halogenation of the aromatic ring. Full Article text
han Crystal structure elucidation of a geminal and vicinal bis(trifluoromethanesulfonate) ester By journals.iucr.org Published On :: 2024-06-14 Geminal and vicinal bis(trifluoromethanesulfonate) esters are highly reactive alkylene synthons used as potent electrophiles in the macrocyclization of imidazoles and the transformation of bypyridines to diquat derivatives via nucleophilic substitution reactions. Herein we report the crystal structures of methylene (C3H2F6O6S2) and ethylene bis(trifluoromethanesulfonate) (C4H4F6O6S2), the first examples of a geminal and vicinal bis(trifluoromethanesulfonate) ester characterized by single-crystal X-ray diffraction (SC-XRD). With melting points slightly below ambient temperature, both reported bis(trifluoromethanesulfonate)s are air- and moisture-sensitive oils and were crystallized at 277 K to afford two-component non-merohedrally twinned crystals. The dominant interactions present in both compounds are non-classical C—H⋯O hydrogen bonds and intermolecular C—F⋯F—C interactions between trifluoromethyl groups. Molecular electrostatic potential (MEP) calculations by DFT-D3 helped to quantify the polarity between O⋯H and F⋯F contacts to rationalize the self-sorting of both bis(trifluoromethanesulfonate) esters in polar (non-fluorous) and non-polar (fluorous) domains within the crystal structure. Full Article text
han 3D electron diffraction studies of synthetic rhabdophane (DyPO4·nH2O) By journals.iucr.org Published On :: 2024-09-04 In this study, we report the results of continuous rotation electron diffraction studies of single DyPO4·nH2O (rhabdophane) nanocrystals. The diffraction patterns can be fit to a trigonal lattice (P3121) with lattice parameters a = 7.019 (5) and c = 6.417 (5) Å. However, there is also a set of diffuse background scattering features present that are associated with a disordered superstructure that is double these lattice parameters and fits with an arrangement of water molecules present in the structure pore. Pair distribution function (PDF) maps based on the diffuse background allowed the extent of the water correlation to be estimated, with 2–3 nm correlation along the c axis and ∼5 nm along the a/b axis. Full Article text
han Investigation of how gate residues in the main channel affect the catalytic activity of Scytalidium thermophilum catalase By journals.iucr.org Published On :: 2024-01-24 Catalase is an antioxidant enzyme that breaks down hydrogen peroxide (H2O2) into molecular oxygen and water. In all monofunctional catalases the pathway that H2O2 takes to the catalytic centre is via the `main channel'. However, the structure of this channel differs in large-subunit and small-subunit catalases. In large-subunit catalases the channel is 15 Å longer and consists of two distinct parts, including a hydrophobic lower region near the heme and a hydrophilic upper region where multiple H2O2 routes are possible. Conserved glutamic acid and threonine residues are located near the intersection of these two regions. Mutations of these two residues in the Scytalidium thermophilum catalase had no significant effect on catalase activity. However, the secondary phenol oxidase activity was markedly altered, with kcat and kcat/Km values that were significantly increased in the five variants E484A, E484I, T188D, T188I and T188F. These variants also showed a lower affinity for inhibitors of oxidase activity than the wild-type enzyme and a higher affinity for phenolic substrates. Oxidation of heme b to heme d did not occur in most of the studied variants. Structural changes in solvent-chain integrity and channel architecture were also observed. In summary, modification of the main-channel gate glutamic acid and threonine residues has a greater influence on the secondary activity of the catalase enzyme, and the oxidation of heme b to heme d is predominantly inhibited by their conversion to aliphatic and aromatic residues. Full Article text
han The crystal structure of mycothiol disulfide reductase (Mtr) provides mechanistic insight into the specific low-molecular-weight thiol reductase activity of Actinobacteria By journals.iucr.org Published On :: 2024-02-19 Low-molecular-weight (LMW) thiols are involved in many processes in all organisms, playing a protective role against reactive species, heavy metals, toxins and antibiotics. Actinobacteria, such as Mycobacterium tuberculosis, use the LMW thiol mycothiol (MSH) to buffer the intracellular redox environment. The NADPH-dependent FAD-containing oxidoreductase mycothiol disulfide reductase (Mtr) is known to reduce oxidized mycothiol disulfide (MSSM) to MSH, which is crucial to maintain the cellular redox balance. In this work, the first crystal structures of Mtr are presented, expanding the structural knowledge and understanding of LMW thiol reductases. The structural analyses and docking calculations provide insight into the nature of Mtrs, with regard to the binding and reduction of the MSSM substrate, in the context of related oxidoreductases. The putative binding site for MSSM suggests a similar binding to that described for the homologous glutathione reductase and its respective substrate glutathione disulfide, but with distinct structural differences shaped to fit the bulkier MSSM substrate, assigning Mtrs as uniquely functioning reductases. As MSH has been acknowledged as an attractive antitubercular target, the structural findings presented in this work may contribute towards future antituberculosis drug development. Full Article text
han Characterization of novel mevalonate kinases from the tardigrade Ramazzottius varieornatus and the psychrophilic archaeon Methanococcoides burtonii By journals.iucr.org Published On :: 2024-02-27 Mevalonate kinase is central to the isoprenoid biosynthesis pathway. Here, high-resolution X-ray crystal structures of two mevalonate kinases are presented: a eukaryotic protein from Ramazzottius varieornatus and an archaeal protein from Methanococcoides burtonii. Both enzymes possess the highly conserved motifs of the GHMP enzyme superfamily, with notable differences between the two enzymes in the N-terminal part of the structures. Biochemical characterization of the two enzymes revealed major differences in their sensitivity to geranyl pyrophosphate and farnesyl pyrophosphate, and in their thermal stabilities. This work adds to the understanding of the structural basis of enzyme inhibition and thermostability in mevalonate kinases. Full Article text
han A structural role for tryptophan in proteins, and the ubiquitous Trp Cδ1—H⋯O=C (backbone) hydrogen bond By journals.iucr.org Published On :: 2024-06-28 Tryptophan is the most prominent amino acid found in proteins, with multiple functional roles. Its side chain is made up of the hydrophobic indole moiety, with two groups that act as donors in hydrogen bonds: the Nɛ—H group, which is a potent donor in canonical hydrogen bonds, and a polarized Cδ1—H group, which is capable of forming weaker, noncanonical hydrogen bonds. Due to adjacent electron-withdrawing moieties, C—H⋯O hydrogen bonds are ubiquitous in macromolecules, albeit contingent on the polarization of the donor C—H group. Consequently, Cα—H groups (adjacent to the carbonyl and amino groups of flanking peptide bonds), as well as the Cɛ1—H and Cδ2—H groups of histidines (adjacent to imidazole N atoms), are known to serve as donors in hydrogen bonds, for example stabilizing parallel and antiparallel β-sheets. However, the nature and the functional role of interactions involving the Cδ1—H group of the indole ring of tryptophan are not well characterized. Here, data mining of high-resolution (r ≤ 1.5 Å) crystal structures from the Protein Data Bank was performed and ubiquitous close contacts between the Cδ1—H groups of tryptophan and a range of electronegative acceptors were identified, specifically main-chain carbonyl O atoms immediately upstream and downstream in the polypeptide chain. The stereochemical analysis shows that most of the interactions bear all of the hallmarks of proper hydrogen bonds. At the same time, their cohesive nature is confirmed by quantum-chemical calculations, which reveal interaction energies of 1.5–3.0 kcal mol−1, depending on the specific stereochemistry. Full Article text
han Protonation of histidine rings using quantum-mechanical methods By journals.iucr.org Published On :: 2024-07-25 Histidine can be protonated on either or both of the two N atoms of the imidazole moiety. Each of the three possible forms occurs as a result of the stereochemical environment of the histidine side chain. In an atomic model, comparing the possible protonation states in situ, looking at possible hydrogen bonding and metal coordination, it is possible to predict which is most likely to be correct. A more direct method is described that uses quantum-mechanical methods to calculate, also in situ, the minimum geometry and energy for comparison, and therefore to more accurately identify the most likely protonation state. Full Article text
han Crystallographic fragment-binding studies of the Mycobacterium tuberculosis trifunctional enzyme suggest binding pockets for the tails of the acyl-CoA substrates at its active sites and a potential substrate-channeling path between them By journals.iucr.org Published On :: 2024-07-16 The Mycobacterium tuberculosis trifunctional enzyme (MtTFE) is an α2β2 tetrameric enzyme in which the α-chain harbors the 2E-enoyl-CoA hydratase (ECH) and 3S-hydroxyacyl-CoA dehydrogenase (HAD) active sites, and the β-chain provides the 3-ketoacyl-CoA thiolase (KAT) active site. Linear, medium-chain and long-chain 2E-enoyl-CoA molecules are the preferred substrates of MtTFE. Previous crystallographic binding and modeling studies identified binding sites for the acyl-CoA substrates at the three active sites, as well as the NAD binding pocket at the HAD active site. These studies also identified three additional CoA binding sites on the surface of MtTFE that are different from the active sites. It has been proposed that one of these additional sites could be of functional relevance for the substrate channeling (by surface crawling) of reaction intermediates between the three active sites. Here, 226 fragments were screened in a crystallographic fragment-binding study of MtTFE crystals, resulting in the structures of 16 MtTFE–fragment complexes. Analysis of the 121 fragment-binding events shows that the ECH active site is the `binding hotspot' for the tested fragments, with 41 binding events. The mode of binding of the fragments bound at the active sites provides additional insight into how the long-chain acyl moiety of the substrates can be accommodated at their proposed binding pockets. In addition, the 20 fragment-binding events between the active sites identify potential transient binding sites of reaction intermediates relevant to the possible channeling of substrates between these active sites. These results provide a basis for further studies to understand the functional relevance of the latter binding sites and to identify substrates for which channeling is crucial. Full Article text
han KINNTREX: a neural network to unveil protein mechanisms from time-resolved X-ray crystallography By journals.iucr.org Published On :: 2024-04-25 Here, a machine-learning method based on a kinetically informed neural network (NN) is introduced. The proposed method is designed to analyze a time series of difference electron-density maps from a time-resolved X-ray crystallographic experiment. The method is named KINNTREX (kinetics-informed NN for time-resolved X-ray crystallography). To validate KINNTREX, multiple realistic scenarios were simulated with increasing levels of complexity. For the simulations, time-resolved X-ray data were generated that mimic data collected from the photocycle of the photoactive yellow protein. KINNTREX only requires the number of intermediates and approximate relaxation times (both obtained from a singular valued decomposition) and does not require an assumption of a candidate mechanism. It successfully predicts a consistent chemical kinetic mechanism, together with difference electron-density maps of the intermediates that appear during the reaction. These features make KINNTREX attractive for tackling a wide range of biomolecular questions. In addition, the versatility of KINNTREX can inspire more NN-based applications to time-resolved data from biological macromolecules obtained by other methods. Full Article text
han Chaperone-mediated MHC-I peptide exchange in antigen presentation By journals.iucr.org Published On :: 2024-04-24 This work focuses on molecules that are encoded by the major histocompatibility complex (MHC) and that bind self-, foreign- or tumor-derived peptides and display these at the cell surface for recognition by receptors on T lymphocytes (T cell receptors, TCR) and natural killer (NK) cells. The past few decades have accumulated a vast knowledge base of the structures of MHC molecules and the complexes of MHC/TCR with specificity for many different peptides. In recent years, the structures of MHC-I molecules complexed with chaperones that assist in peptide loading have been revealed by X-ray crystallography and cryogenic electron microscopy. These structures have been further studied using mutagenesis, molecular dynamics and NMR approaches. This review summarizes the current structures and dynamic principles that govern peptide exchange as these relate to the process of antigen presentation. Full Article text
han Structural insights into the molecular mechanism of phytoplasma immunodominant membrane protein By journals.iucr.org Published On :: 2024-04-24 Immunodominant membrane protein (IMP) is a prevalent membrane protein in phytoplasma and has been confirmed to be an F-actin-binding protein. However, the intricate molecular mechanisms that govern the function of IMP require further elucidation. In this study, the X-ray crystallographic structure of IMP was determined and insights into its interaction with plant actin are provided. A comparative analysis with other proteins demonstrates that IMP shares structural homology with talin rod domain-containing protein 1 (TLNRD1), which also functions as an F-actin-binding protein. Subsequent molecular-docking studies of IMP and F-actin reveal that they possess complementary surfaces, suggesting a stable interaction. The low potential energy and high confidence score of the IMP–F-actin binding model indicate stable binding. Additionally, by employing immunoprecipitation and mass spectrometry, it was discovered that IMP serves as an interaction partner for the phytoplasmal effector causing phyllody 1 (PHYL1). It was then shown that both IMP and PHYL1 are highly expressed in the S2 stage of peanut witches' broom phytoplasma-infected Catharanthus roseus. The association between IMP and PHYL1 is substantiated through in vivo immunoprecipitation, an in vitro cross-linking assay and molecular-docking analysis. Collectively, these findings expand the current understanding of IMP interactions and enhance the comprehension of the interaction of IMP with plant F-actin. They also unveil a novel interaction pathway that may influence phytoplasma pathogenicity and host plant responses related to PHYL1. This discovery could pave the way for the development of new strategies to overcome phytoplasma-related plant diseases. Full Article text
han Synthesis, crystal structure and Hirshfeld analysis of trans-bis(2-{1-[(6R,S)-3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl]ethylidene}-N-methylhydrazinecarbothioamidato-κ2N2,S)palladium(II) ethanol mon By journals.iucr.org Published On :: 2023-11-16 The reaction between the (R,S)-fixolide 4-methylthiosemicarbazone and PdII chloride yielded the title compound, [Pd(C20H30N3S)2]·C2H6O {common name: trans-bis[(R,S)-fixolide 4-methylthiosemicarbazonato-κ2N2S]palladium(II) ethanol monosolvate}. The asymmetric unit of the title compound consists of one bis-thiosemicarbazonato PdII complex and one ethanol solvent molecule. The thiosemicarbazononato ligands act as metal chelators with a trans configuration in a distorted square-planar geometry. A C—H⋯S intramolecular interaction, with graph-set motif S(6), is observed and the coordination sphere resembles a hydrogen-bonded macrocyclic environment. Additionally, one C—H⋯Pd anagostic interaction can be suggested. Each ligand is disordered over the aliphatic ring, which adopts a half-chair conformation, and two methyl groups [s.o.f. = 0.624 (2):0.376 (2)]. The disorder includes the chiral carbon atoms and, remarkably, one ligand has the (R)-isomer with the highest s.o.f. value atoms, while the other one shows the opposite, the atoms with the highest s.o.f. value are associated with the (S)-isomer. The N—N—C(=S)—N fragments of the ligands are approximately planar, with the maximum deviations from the mean plane through the selected atoms being 0.0567 (1) and −0.0307 (8) Å (r.m.s.d. = 0.0403 and 0.0269 Å) and the dihedral angle with the respective aromatic rings amount to 46.68 (5) and 50.66 (4)°. In the crystal, the complexes are linked via pairs of N—H⋯S interactions, with graph-set motif R22(8), into centrosymmetric dimers. The dimers are further connected by centrosymmetric pairs of ethanol molecules, building mono-periodic hydrogen-bonded ribbons along [011]. The Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are [atoms with highest/lowest s.o.f.s considered separately]: H⋯H (81.6/82.0%), H⋯C/C⋯H (6.5/6.4%), H⋯N/N⋯H (5.2/5.0%) and H⋯S/S⋯H (5.0/4.9%). Full Article text
han Crystal structures of sixteen phosphane chalcogenide complexes of gold(I) chloride, bromide and iodide By journals.iucr.org Published On :: 2024-01-01 The structures of 16 phosphane chalcogenide complexes of gold(I) halides, with the general formula R13-nR2nPEAuX (R1 = t-butyl; R2 = isopropyl; n = 0 to 3; E = S or Se; X = Cl, Br or I), are presented. The eight possible chlorido derivatives are: 1a, n = 3, E = S; 2a, n = 2, E = S; 3a, n = 1, E = S; 4a, n = 0, E = S; 5a, n = 3, E = Se; 6a, n = 2, E = Se; 7a, n = 1, E = Se; and 8a, n = 0, E = Se, and the corresponding bromido derivatives are 1b–8b in the same order. However, 2a and 2b were badly disordered and 8a was not obtained. The iodido derivatives are 2c, 6c and 7c (numbered as for the series a and b). All structures are solvent-free and all have Z' = 1 except for 6b and 6c (Z' = 2). All molecules show the expected linear geometry at gold and approximately tetrahedral angles P—E—Au. The presence of bulky ligands forces some short intramolecular contacts, in particular H⋯Au and H⋯E. The Au—E bond lengths have a slight but consistent tendency to be longer when trans to a softer X ligand, and vice versa. The five compounds 1a, 5a, 6a, 1b and 5b form an isotypic set, despite the different alkyl groups in 6a. Compounds 3a/3b, 4b/8b and 6b/6c form isotypic pairs. The crystal packing can be analysed in terms of various types of secondary interactions, of which the most frequent are `weak' hydrogen bonds from methine hydrogen atoms to the halogenido ligands. For the structure type 1a, H⋯X and H⋯E contacts combine to form a layer structure. For 3a/3b, the packing is almost featureless, but can be described in terms of a double-layer structure involving borderline H⋯Cl/Br and H⋯S contacts. In 4a and 4b/8b, which lack methine groups, Cmethyl—H⋯X contacts combine to form layer structures. In 7a/7b, short C—H⋯X interactions form chains of molecules that are further linked by association of short Au⋯Se contacts to form a layer structure. The packing of compound 6b/6c can conveniently be analysed for each independent molecule separately, because they occupy different regions of the cell. Molecule 1 forms chains in which the molecules are linked by a Cmethine⋯Au contact. The molecules 2 associate via a short Se⋯Se contact and a short H⋯X contact to form a layer structure. The packing of compound 2c can be described in terms of two short Cmethine—H⋯I contacts, which combine to form a corrugated ribbon structure. Compound 7c is the only compound in this paper to feature Au⋯Au contacts, which lead to twofold-symmetric dimers. Apart from this, the packing is almost featureless, consisting of layers with only translation symmetry except for two very borderline Au⋯H contacts. Full Article text
han Crystal structure of 2-[(5-amino-1-tosyl-1H-pyrazol-3-yl)oxy]-1-(4-methoxyphenyl)ethan-1-one 1,4-dioxane monosolvate By journals.iucr.org Published On :: 2024-01-01 In the structure of the title compound, C19H19N3O5S·C4H8O2, the two independent dioxane molecules each display inversion symmetry. The pyrazole ring is approximately parallel to the aromatic ring of the oxy-ethanone group and approximately perpendicular to the tolyl ring of the sulfonyl substituent. An extensive system of classical and `weak' hydrogen bonds connects the residues to form a layer structure parallel to (201), within which dimeric subunits are conspicuous; neighbouring layers are connected by classical hydrogen bonds to dioxanes and by `weak' hydrogen bonds from Htolyl donors. Full Article text
han Crystal structure of poly[hexa-μ-bromido-bis{2-[1-(pyridin-2-yl)ethylideneamino]ethanolato}tetracopper(II)] By journals.iucr.org Published On :: 2024-01-12 The reaction of the Schiff base 2-[1-(pyridin-2-yl)ethylideneamino]ethanol (HL), which is formed by reaction of 2-aminoethanol and 2-acetylpyridine with CuBr2 in ethanol results in the isolation of the new polymeric complex poly[hexa-μ-bromido-bis{2-[1-(pyridin-2-yl)ethylideneamino]ethanolato}tetracopper(II)], [Cu4Br6(C9H11N2O)2]n or [Cu4Br6L2]n. The asymmetric unit of the crystal structure of the polymeric [Cu4Br6L2]n complex is composed by four copper (II) cations, two monodeprotonated molecules of the ligand, and six bromide anions, which act as bridges. The ligand molecules act in a tridentate fashion through their azomethine nitrogen atoms, their pyridine nitrogen atoms, and their alcoholate O atoms. The crystal structure shows two types of geometries in the coordination polyhedrons around Cu2+ ions. Two copper cations are situated in a square-based pyramidal environment, while the two other copper cations adopt a tetrahedral geometry. Bromides anions acting as bridges between two metal ions connect the units, resulting in a tetranuclear polymer compound. Full Article text
han Synthesis and crystal structure of N1,N2-dimethylethanedihydrazide By journals.iucr.org Published On :: 2024-01-12 The title compound, N1,N2-dimethylethanedihydrazide, C4H10N4O2, was obtained by the methylation of oxalyl dihydrazide protected with phthalimide. The molecule is essentially non-planar with a dihedral angle between the two planar hydrazide fragments of 86.5 (2)°. This geometry contributes to the formation of a multi-contact three-dimensional supramolecular network via C—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds. Full Article text
han Synthesis and crystal structures of boryl ortho-silylaryl trifluoromethanesulfonates By journals.iucr.org Published On :: 2024-01-12 We report the synthesis and structural characterization of three crystalline borylated ortho-silylaryl trifluoromethanesulfonates: 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(trimethylsilyl)phenyl trifluoromethanesulfonate, C16H24BF3O5SSi (1a), 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(trimethylsilyl)phenyl trifluoromethanesulfonate, C16H24BF3O5SSi (1b), and 2-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-6-(trimethylsilyl)phenyl trifluoromethanesulfonate, C17H26BF3O5SSi (2), which are versatile aryne precursors. For all three compounds, the heteroatom substituents are almost coplanar with the central aromatic moiety. C—heteroatom bonding metrics are unexceptional and fall withing the typical range of C—B, C—Si, and C—O single bonds. Despite numerous electronegative sites, only weak intermolecular interactions are observed in the solid state. Full Article text
han Synthesis, crystal structure and Hirshfeld surface analysis of 2-({5-[(naphthalen-1-yl)methyl]-4-phenyl-4H-1,2,4-triazol-3-yl}sulfanyl)-1-(4-nitrophenyl)ethanone By journals.iucr.org Published On :: 2024-01-26 The title compound, C27H20N4O3S, crystallizes in the monoclinic system, space group P21/n, with Z = 4. The global shape of the molecule is determined by the orientation of the substituents on the central 4H-1,2,4-triazole ring. The nitrophenyl ring, phenyl ring, and naphthalene ring system are oriented at dihedral angles of 82.95 (17), 77.14 (18) and 89.46 (15)°, respectively, with respect to the triazole ring. The crystal packing features chain formation in the b-axis direction by S⋯O interactions. A Hirshfeld surface analysis indicates that the highest contributions to surface contacts arise from contacts in which H atoms are involved. Full Article text
han Crystal structure and characterization of a new lanthanide coordination polymer, [Pr2(pydc)(phth)2(H2O)3]·H2O By journals.iucr.org Published On :: 2024-01-31 A new lanthanide coordination polymer, poly[[triaquabis(μ4-phthalato)(μ3-pyridine-2,5-dicarboxylato)dipraseodymium] monohydrate], {[Pr2(C7H3NO4)2(C8H4O4)(H2O)3]·H2O}n or {[Pr2(phth)2(pydc)(H2O)3]·H2O}n, (pydc2− = pyridine-2,5-dicarboxylate and phth2− = phthalate) was synthesized and characterized, revealing the structure to be an assembly of di-periodic {Pr2(pydc)(phth)2(H2O)3}n layers. Each layer is built up by edge-sharing {Pr2N2O14} and {Pr2O16} dimers, which are connected through a new coordination mode of pydc2− and phth2−. These layers are stabilized by internal hydrogen bonds and π–π interactions. In addition, a three-dimensional supramolecular framework is built by interlayer hydrogen-bonding interactions involving the non-coordinated water molecule. Thermogravimetric analysis shows that the title compound is thermally stable up to 400°C. Full Article text
han Crystal structures of ten phosphane chalcogenide complexes of gold(III) chloride and bromide By journals.iucr.org Published On :: 2024-03-12 The structures of ten phosphane chalcogenide complexes of gold(III) halides, with general formula R13–nR2nPEAuX3 (R1 = t-butyl; R2 = i-propyl; n = 0 to 3; E = S or Se; X = Cl or Br) are presented. The eight possible chlorido derivatives are: 9a, n = 3, E = S; 10a, n = 2, E = S; 11a, n = 1, E = S; 12a, n = 0, E = S; 13a, n = 3, E = Se; 14a, n = 2, E = Se; 15a, n = 1, E = Se; and 16a, n = 0, E = Se, and the corresponding bromido derivatives are 9b–16b in the same order. Structures were obtained for 9a, 10a (and a second polymorph 10aa), 11a (and its deuterochloroform monosolvate 11aa), 12a (as its dichloromethane monosolvate), 14a, 15a (as its deuterochloroform monosolvate 15aa, in which the solvent molecule is disordered over two positions), 9b, 11b, 13b and 15b. The structures of 11a, 15a, 11b and 15b form an isotypic set, and those of compounds 10aa and 14a form an isotypic pair. All structures have Z' = 1. The gold(III) centres show square-planar coordination geometry and the chalcogenide atoms show approximately tetrahedral angles (except for the very wide angle in 12a, probably associated with the bulky t-butyl groups). The bond lengths at the gold atoms are lengthened with respect to the known gold(I) derivatives, and demonstrate a considerable trans influence of S and Se donor atoms on a trans Au—Cl bond. Each compound with an isopropyl group shows a short intramolecular contact of the type C—Hmethine⋯Xcis; these may be regarded as intramolecular ‘weak’ hydrogen bonds, and they determine the orientation of the AuX3 groups. The molecular packing is analysed in terms of various short contacts such as weak hydrogen bonds C—H⋯X and contacts between the heavier atoms, such as X⋯X (9a, 10aa, 11aa, 15aa and 9b), S⋯S (10aa, 11a and 12a) and S⋯Cl (10a). The packing of the polymorphs 10a and 10aa is thus quite different. The solvent molecules take part in C—H⋯Cl hydrogen bonds; for 15aa, a disordered solvent region at z ≃ 0 is observed. Structure 13b involves unusual inversion-symmetric dimers with Se⋯Au and Se⋯Br contacts, further connected by Br⋯Br contacts. Full Article text
han Crystal structure and Hirshfeld surface analysis of 8-benzyl-1-[(4-methylphenyl)sulfonyl]-2,7,8,9-tetrahydro-1H-3,6:10,13-diepoxy-1,8-benzodiazacyclopentadecine ethanol hemisolvate By journals.iucr.org Published On :: 2024-03-26 The asymmetric unit of the title compound, 2C31H28N2O4S·C2H6O, contains a parent molecule and a half molecule of ethanol solvent. The main compound stabilizes its molecular conformation by forming a ring with an R12(7) motif with the ethanol solvent molecule. In the crystal, molecules are connected by C—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π interactions also strengthen the molecular packing. Full Article text
han Synthesis, crystal structure and thermal properties of the dinuclear complex bis(μ-4-methylpyridine N-oxide-κ2O:O)bis[(methanol-κO)(4-methylpyridine N-oxide-κO)bis(thiocyanato-κN)cobalt(II)] By journals.iucr.org Published On :: 2024-04-18 Reaction of Co(NCS)2 with 4-methylpyridine N-oxide in methanol leads to the formation of crystals of the title compound, [Co2(NCS)4(C6H7NO)4(CH4O)2] or Co2(NCS)4(4-methylpyridine N-oxide)4(methanol)2. The asymmetric unit consist of one CoII cation, two thiocyanate anions, two 4-methylpyridine N-oxide coligands and one methanol molecule in general positions. The H atoms of one of the methyl groups are disordered and were refined using a split model. The CoII cations octahedrally coordinate two terminal N-bonded thiocyanate anions, three 4-methylpyridine N-oxide coligands and one methanol molecule. Each two CoII cations are linked by pairs of μ-1,1(O,O)-bridging 4-methylpyridine N-oxide coligands into dinuclear units that are located on centers of inversion. Powder X-ray diffraction (PXRD) investigations prove that the title compound is contaminated with a small amount of Co(NCS)2(4-methylpyridine N-oxide)3. Thermogravimetric investigations reveal that the methanol molecules are removed in the beginning, leading to a compound with the composition Co(NCS)2(4-methylpyridine N-oxide), which has been reported in the literature and which is of poor crystallinity. Full Article text