ame Countries That Start With 'W' and How They Got Their Names By history.howstuffworks.com Published On :: Mon, 11 Nov 2024 10:20:02 -0500 Ever wondered how many countries start with "W"? Well, spoiler alert: You won't need many fingers to count them. Full Article
ame Gen Z Age Range, Traits and Nicknames By people.howstuffworks.com Published On :: Tue, 12 Nov 2024 10:20:03 -0500 What is unique about Generation Z? Learn more about Generation Z at HowStuffWorks. Full Article
ame 'Free Cholsoo Lee' Named Outstanding Historical Documentary at 45th Emmys By world.kbs.co.kr Published On :: Sat, 28 Sep 2024 15:59:20 +0900 [Culture] : A documentary about a 1970s campaign in the United States to release a Korean immigrant, who was wrongfully convicted of murder, from prison was honored at this year's Emmy Awards. According to the National Academy of Television Arts and Sciences(NATAS), the documentary, titled "Free Cholsoo ...[more...] Full Article Culture
ame Korean American Writer Kim Ju-hea Wins Russia's Yasnaya Polyana Literary Award By world.kbs.co.kr Published On :: Fri, 11 Oct 2024 15:33:06 +0900 [Culture] : Korean American writer Kim Ju-hea was named the winner of the 2024 Yasnaya Polyana Literary Award in the foreign fiction category for her debut novel, "Beasts of a Little Land." Kim and Kirill Batygin, who translated the book into Russian, were awarded Russia's largest annual prize in literature at Moscow's ...[more...] Full Article Culture
ame Seoul City Campaigns to Promote Standardized Korean Dish Names in Foreign Languages By world.kbs.co.kr Published On :: Thu, 24 Oct 2024 15:27:03 +0900 [Culture] : The Seoul Metropolitan Government will run a campaign to promote standardized naming of Korean dishes in foreign languages. According to city officials on Thursday, the campaign, in cooperation with the Seoul Tourism Organization and the Korea Food Service Industry Association, is set to continue through ...[more...] Full Article Culture
ame Is Tomato Catsup the Same as Tomato Ketchup? By recipes.howstuffworks.com Published On :: Thu, 04 Apr 2024 16:03:19 -0400 In short, yes. Tomato-based catsup and ketchup are more or less the same condiment. There may be slight recipe variations on the traditional tomato-based version, but the main difference between ketchup and catsup is the alternative spelling of the same word. Full Article
ame [4K] SEVENTEEN, CNBLUE, AB6IX, Billlie, SAY MY NAME, YENA, EPEX, VANNER, Xdinary Heroes, JD1 | On the way to music bank 241018 By world.kbs.co.kr Published On :: 2024-10-18 +09:00 On the morning of October 18, at Yeoido KBS HallKBS WORLD Radio filmed K-pop stars making their way to attend rehearsals for Music Bank.[more...] Full Article Economy&It
ame [4K] aespa, THE BOYZ, ITZY, STAYC, Kep1er, FIFTY FIFTY, tripleS VV, SAY MY NAME | On the way to music bank 241101 By world.kbs.co.kr Published On :: 2024-11-01 +09:00 On the morning of November 1, at Yeoido KBS HallKBS WORLD Radio filmed K-pop stars making their way to attend rehearsals for Music Bank.[more...] Full Article Economy&It
ame Trailblazing seismologist named new editor-in-chief of GJI - The Royal Astronomical Society By news.google.com Published On :: Tue, 27 Feb 2024 08:00:00 GMT Trailblazing seismologist named new editor-in-chief of GJI The Royal Astronomical Society Full Article
ame Responsible extraction in South America’s Lithium Triangle - British Geological Survey By news.google.com Published On :: Fri, 02 Aug 2024 07:00:00 GMT Responsible extraction in South America’s Lithium Triangle British Geological Survey Full Article
ame Parameterized absorptive electron scattering factors By journals.iucr.org Published On :: 2024-01-25 In electron diffraction, thermal atomic motion produces incoherent scattering over a relatively wide angular range, which appears as a diffuse background that is usually subtracted from measurements of Bragg spot intensities in structure solution methods. The transfer of electron flux from Bragg spots to diffuse scatter is modelled using complex scattering factors f + if' in the Bloch wave methodology. In a two-beam Einstein model the imaginary `absorptive' scattering factor f' can be obtained by the evaluation of an integral containing f over all possible scattering angles. While more sophisticated models of diffuse scatter are widely used in the electron microscopy community, it is argued in this paper that this simple model is appropriate for current structure solution and refinement methods. The two-beam model is a straightforward numerical calculation, but even this simplistic approach can become time consuming for simulations of materials with large numbers of atoms in the unit cell and/or many incident beam orientations. Here, a parameterized form of f' is provided for 103 elements as neutral, spherical atoms that reduces calculation time considerably. Full Article text
ame Universal parameters of bulk-solvent masks By journals.iucr.org Published On :: 2024-02-09 The bulk solvent is a major component of biomacromolecular crystals that contributes significantly to the observed diffraction intensities. Accurate modelling of the bulk solvent has been recognized as important for many crystallographic calculations. Owing to its simplicity and modelling power, the flat (mask-based) bulk-solvent model is used by most modern crystallographic software packages to account for disordered solvent. In this model, the bulk-solvent contribution is defined by a binary mask and a scale (scattering) function. The mask is calculated on a regular grid using the atomic model coordinates and their chemical types. The grid step and two radii, solvent and shrinkage, are the three parameters that govern the mask calculation. They are highly correlated and their choice is a compromise between the computer time needed to calculate the mask and the accuracy of the mask. It is demonstrated here that this choice can be optimized using a unique value of 0.6 Å for the grid step irrespective of the data resolution, and the radii values adjusted correspondingly. The improved values were tested on a large sample of Protein Data Bank entries derived from X-ray diffraction data and are now used in the computational crystallography toolbox (CCTBX) and in Phenix as the default choice. Full Article text
ame Understanding secondary order parameters in perovskites with tilted octahedra By journals.iucr.org Published On :: A symmetry guide for the secondary structural degrees of freedom and related physical properties generated by tilts of BX6 octahedra in perovskites is proposed. Full Article text
ame Understanding secondary order parameters in perovskites with tilted octahedra By journals.iucr.org Published On :: 2024-10-16 In the family of perovskite materials, the tilts of BX6 octahedra are the most common type of structural distortion. Conventionally, the formation of low-symmetry perovskite phases with tilted octahedra is analyzed by considering only primary order parameters. However, octahedral tilting also gives rise to secondary order parameters which contribute to additional atomic displacements, ordering and lattice distortions. Our study highlights the significant impact of secondary order parameters on the structural formation and emergent physical properties of perovskites. Through group-theoretical and crystallographic analyses, we have identified all secondary order parameters within Glazer-type tilt systems and clarified their physical manifestations. We explore the fundamental symmetry relationships among various structural degrees of freedom in perovskites, including tilt-induced ferroelasticity, correlations between displacements and ordering of atoms occupying different positions, and the potential for rigid unit rotations and unconventional octahedral tilts. Particular emphasis is placed on the emergence of secondary order parameters and their coupling with primary order parameters, as well as their symmetry-based hierarchy, illustrated through a modified Bärnighausen tree. We applied our theoretical insights to elucidate phase transitions in well known perovskites such as CaTiO3 and RMnO3 (where R = La and lanthanide ions), thereby demonstrating the significant influence of secondary order parameters on crystal structure formation. Our results serve as a symmetry-based guide for the design, identification and structural characterization of perovskites with tilted octahedra, and for understanding tilt-induced physical properties. Full Article text
ame A new modular framework for high-level application development at HEPS By journals.iucr.org Published On :: 2024-02-01 As a representative of the fourth-generation light sources, the High Energy Photon Source (HEPS) in Beijing, China, utilizes a multi-bend achromat lattice to obtain an approximately 100 times emittance reduction compared with third-generation light sources. New technologies bring new challenges to operate the storage ring. In order to meet the beam commissioning requirements of HEPS, a new framework for the development of high-level applications (HLAs) has been created. The key part of the new framework is a dual-layer physical module to facilitate the seamless fusion of physical simulation models with the real machine, allowing for fast switching between different simulation models to accommodate the various simulation scenarios. As a framework designed for development of physical applications, all variables are based on physical quantities. This allows physicists to analytically assess measurement parameters and optimize machine parameters in a more intuitive manner. To enhance both extensibility and adaptability, a modular design strategy is utilized, partitioning the entire framework into discrete modules in alignment with the requirements of HLA development. This strategy not only facilitates the independent development of each module but also minimizes inter-module coupling, thereby simplifying the maintenance and expansion of the entire framework. To simplify the development complexity, the design of the new framework is implemented using Python and is called Python-based Accelerator Physics Application Set (Pyapas). Taking advantage of Python's flexibility and robust library support, we are able to develop and iterate quickly, while also allowing for seamless integration with other scientific computing applications. HLAs for both the HEPS linac and booster have been successfully developed. During the beam commissioning process at the linac, Pyapas's ease of use and reliability have significantly reduced the time required for the beam commissioning operators. As a development framework for HLA designed for the new-generation light sources, Pyapas has the versatility to be employed with HEPS, as well as with other comparable light sources, due to its adaptability. Full Article text
ame DOMAS: a data management software framework for advanced light sources By journals.iucr.org Published On :: 2024-02-01 In recent years, China's advanced light sources have entered a period of rapid construction and development. As modern X-ray detectors and data acquisition technologies advance, these facilities are expected to generate massive volumes of data annually, presenting significant challenges in data management and utilization. These challenges encompass data storage, metadata handling, data transfer and user data access. In response, the Data Organization Management Access Software (DOMAS) has been designed as a framework to address these issues. DOMAS encapsulates four fundamental modules of data management software, including metadata catalogue, metadata acquisition, data transfer and data service. For light source facilities, building a data management system only requires parameter configuration and minimal code development within DOMAS. This paper firstly discusses the development of advanced light sources in China and the associated demands and challenges in data management, prompting a reconsideration of data management software framework design. It then outlines the architecture of the framework, detailing its components and functions. Lastly, it highlights the application progress and effectiveness of DOMAS when deployed for the High Energy Photon Source (HEPS) and Beijing Synchrotron Radiation Facility (BSRF). Full Article text
ame The role of carboxylate ligand orbitals in the breathing dynamics of a metal-organic framework by resonant X-ray emission spectroscopy By journals.iucr.org Published On :: 2024-02-16 Metal-organic frameworks (MOFs) exhibit structural flexibility induced by temperature and guest adsorption, as demonstrated in the structural breathing transition in certain MOFs between narrow-pore and large-pore phases. Soft modes were suggested to entropically drive such pore breathing through enhanced vibrational dynamics at high temperatures. In this work, oxygen K-edge resonant X-ray emission spectroscopy of the MIL-53(Al) MOF was performed to selectively probe the electronic perturbation accompanying pore breathing dynamics at the ligand carboxylate site for metal–ligand interaction. It was observed that the temperature-induced vibrational dynamics involves switching occupancy between antisymmetric and symmetric configurations of the carboxylate oxygen lone pair orbitals, through which electron density around carboxylate oxygen sites is redistributed and metal–ligand interactions are tuned. In turn, water adsorption involves an additional perturbation of π orbitals not observed in the structural change solely induced by temperature. Full Article text
ame Optimization of synchrotron radiation parameters using swarm intelligence and evolutionary algorithms By journals.iucr.org Published On :: 2024-02-22 Alignment of each optical element at a synchrotron beamline takes days, even weeks, for each experiment costing valuable beam time. Evolutionary algorithms (EAs), efficient heuristic search methods based on Darwinian evolution, can be utilized for multi-objective optimization problems in different application areas. In this study, the flux and spot size of a synchrotron beam are optimized for two different experimental setups including optical elements such as lenses and mirrors. Calculations were carried out with the X-ray Tracer beamline simulator using swarm intelligence (SI) algorithms and for comparison the same setups were optimized with EAs. The EAs and SI algorithms used in this study for two different experimental setups are the Genetic Algorithm (GA), Non-dominated Sorting Genetic Algorithm II (NSGA-II), Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC). While one of the algorithms optimizes the lens position, the other focuses on optimizing the focal distances of Kirkpatrick–Baez mirrors. First, mono-objective evolutionary algorithms were used and the spot size or flux values checked separately. After comparison of mono-objective algorithms, the multi-objective evolutionary algorithm NSGA-II was run for both objectives – minimum spot size and maximum flux. Every algorithm configuration was run several times for Monte Carlo simulations since these processes generate random solutions and the simulator also produces solutions that are stochastic. The results show that the PSO algorithm gives the best values over all setups. Full Article text
ame BEATS: BEAmline for synchrotron X-ray microTomography at SESAME By journals.iucr.org Published On :: 2024-07-15 The ID10 beamline of the SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) synchrotron light source in Jordan was inaugurated in June 2023 and is now open to scientific users. The beamline, which was designed and installed within the European Horizon 2020 project BEAmline for Tomography at SESAME (BEATS), provides full-field X-ray radiography and microtomography imaging with monochromatic or polychromatic X-rays up to photon energies of 100 keV. The photon source generated by a 2.9 T wavelength shifter with variable gap, and a double-multilayer monochromator system allow versatile application for experiments requiring either an X-ray beam with high intensity and flux, and/or a partially spatial coherent beam for phase-contrast applications. Sample manipulation and X-ray detection systems are designed to allow scanning samples with different size, weight and material, providing image voxel sizes from 13 µm down to 0.33 µm. A state-of-the-art computing infrastructure for data collection, three-dimensional (3D) image reconstruction and data analysis allows the visualization and exploration of results online within a few seconds from the completion of a scan. Insights from 3D X-ray imaging are key to the investigation of specimens from archaeology and cultural heritage, biology and health sciences, materials science and engineering, earth, environmental sciences and more. Microtomography scans and preliminary results obtained at the beamline demonstrate that the new beamline ID10-BEATS expands significantly the range of scientific applications that can be targeted at SESAME. Full Article text
ame 2-{1-[(6R,S)-3,5,5,6,8,8-Hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl]ethylidene}-N-methylhydrazinecarbothioamide By journals.iucr.org Published On :: 2023-11-30 The reaction between a racemic mixture of (R,S)-fixolide and 4-methylthiosemicarbazide in ethanol with a 1:1 stoichiometric ratio and catalysed with HCl, yielded the title compound, C20H31N3S [common name: (R,S)-fixolide 4-methylthiosemicarbazone]. There is one crystallographically independent molecule in the asymmetric unit, which is disordered over the aliphatic ring [site-occupancy ratio = 0.667 (13):0.333 (13)]. The disorder includes the chiral C atom, the neighbouring methylene group and the methyl H atoms of the methyl group bonded to the chiral C atom. The maximum deviations from the mean plane through the disordered aliphatic ring amount to 0.328 (6) and −0.334 (6) Å [r.m.s.d. = 0.2061 Å], and −0.3677 (12) and 0.3380 (12) Å [r.m.s.d. = 0.2198 Å] for the two different sites. Both fragments show a half-chair conformation. Additionally, the N—N—C(=S)—N entity is approximately planar, with the maximum deviation from the mean plane through the selected atoms being 0.0135 (18) Å [r.m.s.d. = 0.0100 Å]. The molecule is not planar due to the dihedral angle between the thiosemicarbazone entity and the aromatic ring, which amounts to 51.8 (1)°, and due to the sp3-hybridized carbon atoms of the fixolide fragment. In the crystal, the molecules are connected by H⋯S interactions with graph-set motif C(4), forming a mono-periodic hydrogen-bonded ribbon along [100]. The Hirshfeld surface analysis suggests that the major contributions for the crystal cohesion are [(R,S)-isomers considered separately] H⋯H (75.7%), H⋯S/S⋯H (11.6%), H⋯C/C⋯H (8.3% and H⋯N/N⋯H (4.4% for both of them). Full Article text
ame Structural flexibility of Toscana virus nucleoprotein in the presence of a single-chain camelid antibody By journals.iucr.org Published On :: 2024-01-24 Phenuiviridae nucleoprotein is the main structural and functional component of the viral cycle, protecting the viral RNA and mediating the essential replication/transcription processes. The nucleoprotein (N) binds the RNA using its globular core and polymerizes through the N-terminus, which is presented as a highly flexible arm, as demonstrated in this article. The nucleoprotein exists in an `open' or a `closed' conformation. In the case of the closed conformation the flexible N-terminal arm folds over the RNA-binding cleft, preventing RNA adsorption. In the open conformation the arm is extended in such a way that both RNA adsorption and N polymerization are possible. In this article, single-crystal X-ray diffraction and small-angle X-ray scattering were used to study the N protein of Toscana virus complexed with a single-chain camelid antibody (VHH) and it is shown that in the presence of the antibody the nucleoprotein is unable to achieve a functional assembly to form a ribonucleoprotein complex. Full Article text
ame Refining short-range order parameters from the three-dimensional diffuse scattering in single-crystal electron diffraction data By journals.iucr.org Published On :: 2024-01-01 Our study compares short-range order parameters refined from the diffuse scattering in single-crystal X-ray and single-crystal electron diffraction data. Nb0.84CoSb was chosen as a reference material. The correlations between neighbouring vacancies and the displacements of Sb and Co atoms were refined from the diffuse scattering using a Monte Carlo refinement in DISCUS. The difference between the Sb and Co displacements refined from the diffuse scattering and the Sb and Co displacements refined from the Bragg reflections in single-crystal X-ray diffraction data is 0.012 (7) Å for the refinement on diffuse scattering in single-crystal X-ray diffraction data and 0.03 (2) Å for the refinement on the diffuse scattering in single-crystal electron diffraction data. As electron diffraction requires much smaller crystals than X-ray diffraction, this opens up the possibility of refining short-range order parameters in many technologically relevant materials for which no crystals large enough for single-crystal X-ray diffraction are available. Full Article text
ame Toward a quantitative description of solvation structure: a framework for differential solution scattering measurements By journals.iucr.org Published On :: 2024-05-01 Appreciating that the role of the solute–solvent and other outer-sphere interactions is essential for understanding chemistry and chemical dynamics in solution, experimental approaches are needed to address the structural consequences of these interactions, complementing condensed-matter simulations and coarse-grained theories. High-energy X-ray scattering (HEXS) combined with pair distribution function analysis presents the opportunity to probe these structures directly and to develop quantitative, atomistic models of molecular systems in situ in the solution phase. However, at concentrations relevant to solution-phase chemistry, the total scattering signal is dominated by the bulk solvent, prompting researchers to adopt a differential approach to eliminate this unwanted background. Though similar approaches are well established in quantitative structural studies of macromolecules in solution by small- and wide-angle X-ray scattering (SAXS/WAXS), analogous studies in the HEXS regime—where sub-ångström spatial resolution is achieved—remain underdeveloped, in part due to the lack of a rigorous theoretical description of the experiment. To address this, herein we develop a framework for differential solution scattering experiments conducted at high energies, which includes concepts of the solvent-excluded volume introduced to describe SAXS/WAXS data, as well as concepts from the time-resolved X-ray scattering community. Our theory is supported by numerical simulations and experiment and paves the way for establishing quantitative methods to determine the atomic structures of small molecules in solution with resolution approaching that of crystallography. Full Article text
ame Texture tomography, a versatile framework to study crystalline texture in 3D By journals.iucr.org Published On :: 2024-07-24 Crystallographic texture is a key organization feature of many technical and biological materials. In these materials, especially hierarchically structured ones, the preferential alignment of the nano constituents heavily influences the macroscopic behavior of the material. To study local crystallographic texture with both high spatial and angular resolution, we developed Texture Tomography (TexTOM). This approach allows the user to model the diffraction data of polycrystalline materials using the full reciprocal space of the crystal ensemble and describe the texture in each voxel via an orientation distribution function, hence it provides 3D reconstructions of the local texture by measuring the probabilities of all crystal orientations. The TexTOM approach addresses limitations associated with existing models: it correlates the intensities from several Bragg reflections, thus reducing ambiguities resulting from symmetry. Further, it yields quantitative probability distributions of local real space crystal orientations without further assumptions about the sample structure. Finally, its efficient mathematical formulation enables reconstructions faster than the time scale of the experiment. This manuscript presents the mathematical model, the inversion strategy and its current experimental implementation. We show characterizations of simulated data as well as experimental data obtained from a synthetic, inorganic model sample: the silica–witherite biomorph. TexTOM provides a versatile framework to reconstruct 3D quantitative texture information for polycrystalline samples; it opens the door for unprecedented insights into the nanostructural makeup of natural and technical materials. Full Article text
ame K0.72Na1.71Ca5.79Si6O19 – the first oligosilicate based on [Si6O19]-hexamers and its stability compared to cyclosilicates By journals.iucr.org Published On :: 2024-08-30 Synthesis experiments were conducted in the quaternary system K2O–Na2O–CaO–SiO2, resulting in the formation of a previously unknown compound with the composition K0.72Na1.71Ca5.79Si6O19. Single crystals of sufficient size and quality were recovered from a starting mixture with a K2O:Na2O:CaO:SiO2 molar ratio of 1.5:0.5:2:3. The mixture was confined in a closed platinum tube and slowly cooled from 1150°C at a rate of 0.1°C min−1 to 700°C before being finally quenched in air. The structure has tetragonal symmetry and belongs to space group P4122 (No. 91), with a = 7.3659 (2), c = 32.2318 (18) Å, V = 1748.78 (12) Å3, and Z = 4. The silicate anion consists of highly puckered, unbranched six-membered oligomers with the composition [Si6O19] and point group symmetry 2 (C2). Although several thousands of natural and synthetic oxosilicates have been structurally characterized, this compound is the first representative of a catena-hexasilicate anion, to the best of our knowledge. Structural investigations were completed using Raman spectroscopy. The spectroscopic data was interpreted and the bands were assigned to certain vibrational species with the support of density functional theory at the HSEsol level of theory. To determine the stability properties of the novel oligosilicate compared to those of the chemically and structurally similar cyclosilicate combeite, we calculated the electronegativity of the respective structures using the electronegativity equalization method. The results showed that the molecular electronegativity of the cyclosilicate was significantly higher than that of the oligostructure due to the different connectivities of the oxygen atoms within the molecular units. Full Article text
ame Crystal structure, Hirshfeld surface analysis, intermolecular interaction energies, energy frameworks and DFT calculations of 4-amino-1-(prop-2-yn-1-yl)pyrimidin-2(1H)-one By journals.iucr.org Published On :: 2023-11-21 In the title molecule, C7H7N3O, the pyrimidine ring is essentially planar, with the propynyl group rotated out of this plane by 15.31 (4)°. In the crystal, a tri-periodic network is formed by N—H⋯O, N—H⋯N and C—H⋯O hydrogen-bonding and slipped π–π stacking interactions, leading to narrow channels extending parallel to the c axis. Hirshfeld surface analysis of the crystal structure reveals that the most important contributions for the crystal packing are from H⋯H (36.2%), H⋯C/C⋯H (20.9%), H⋯O/O⋯H (17.8%) and H⋯N/N⋯H (12.2%) interactions, showing that hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the electrostatic energy contributions. The molecular structure optimized by density functional theory (DFT) calculations at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined structure in the solid state. The HOMO–LUMO behaviour was also elucidated to determine the energy gap. Full Article text
ame Synthesis, structure and Hirshfeld surface analysis of 2-oxo-2H-chromen-6-yl 4-tert-butylbenzoate: work carried out as part of the AFRAMED project By journals.iucr.org Published On :: 2024-01-05 In the title compound, C20H18O4, the dihedral angle between the 2H-chromen-2-one ring system and the phenyl ring is 89.12 (5)°. In the crystal, the molecules are connected through C—H⋯O hydrogen bonds to generate [010] double chains that are reinforced by weak aromatic π–π stacking interactions. The unit-cell packing can be described as a tilted herringbone motif. The H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and C⋯C contacts contribute 46.7, 24.2, 16.7 and 7.6%, respectively, to its Hirshfeld surface. Full Article text
ame Crystal structure, Hirshfeld surface analysis and energy frameworks of 1-[(E)-2-(2-fluorophenyl)diazan-1-ylidene]naphthalen-2(1H)-one By journals.iucr.org Published On :: 2024-01-12 The title compound, C16H11N2OF, is a member of the azo dye family. The dihedral angle subtended by the benzene ring and the naphthalene ring system measures 18.75 (7)°, indicating that the compound is not perfectly planar. An intramolecular N—H⋯O hydrogen bond occurs between the imino and carbonyl groups. In the crystal, the molecules are linked into inversion dimers by C—H⋯O interactions. Aromatic π–π stacking between the naphthalene ring systems lead to the formation of chains along [001]. A Hirshfeld surface analysis was undertaken to investigate and quantify the intermolecular interactions. In addition, energy frameworks were used to examine the cooperative effect of these intermolecular interactions across the crystal, showing dispersion energy to be the most influential factor in the crystal organization of the compound. Full Article text
ame (E)-N,N-Diethyl-4-{[(4-methoxyphenyl)imino]methyl}aniline: crystal structure, Hirshfeld surface analysis and energy framework By journals.iucr.org Published On :: 2024-01-26 In the title benzylideneaniline Schiff base, C18H22N2O, the aromatic rings are inclined to each other by 46.01 (6)°, while the Car—N= C—Car torsion angle is 176.9 (1)°. In the crystal, the only identifiable directional interaction is a weak C—H⋯π hydrogen bond, which generates inversion dimers that stack along the a-axis direction. Full Article text
ame Crystal structure, Hirshfeld surface analysis, crystal voids, interaction energy calculations and energy frameworks and DFT calculations of ethyl 2-cyano-3-(3-hydroxy-5-methyl-1H-pyrazol-4-yl)-3-phenylpropanoate By journals.iucr.org Published On :: 2024-01-31 The title compound, C16H17N3O3, is racemic as it crystallizes in a centrosymmetric space group (Poverline{1}), although the trans disposition of substituents about the central C—C bond is established. The five- and six-membered rings are oriented at a dihedral angle of 75.88 (8)°. In the crystal, N—H⋯N hydrogen bonds form chains of molecules extending along the c-axis direction that are connected by inversion-related pairs of O—H⋯N into ribbons. The ribbons are linked by C—H⋯π(ring) interactions, forming layers parallel to the ab plane. A Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (45.9%), H⋯N/N⋯H (23.3%), H⋯C/C⋯H (16.2%) and H⋯O/O⋯H (12.3%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. The volume of the crystal voids and the percentage of free space were calculated to be 100.94 Å3 and 13.20%, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the electrostatic energy contributions in the title compound. Moreover, the DFT-optimized structure at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
ame Crystal structure, Hirshfeld surface analysis, crystal voids, interaction energy calculations and energy frameworks, and DFT calculations of 1-(4-methylbenzyl)indoline-2,3-dione By journals.iucr.org Published On :: 2024-01-31 The indoline portion of the title molecule, C16H13NO2, is planar. In the crystal, a layer structure is generated by C—H⋯O hydrogen bonds and C—H⋯π(ring), π-stacking and C=O⋯π(ring) interactions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (43.0%), H⋯C/C⋯H (25.0%) and H⋯O/O⋯H (22.8%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. The volume of the crystal voids and the percentage of free space were calculated to be 120.52 Å3 and 9.64%, respectively, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by the dispersion energy contributions in the title compound. Moreover, the DFT-optimized structure at the B3LYP/6-311G(d,p) level is compared with the experimentally determined molecular structure in the solid state. Full Article text
ame Crystal structure, Hirshfeld surface analysis, calculations of crystal voids, interaction energy and energy frameworks as well as density functional theory (DFT) calculations of 3-[2-(morpholin-4-yl)ethyl]-5,5-diphenylimidazolidine By journals.iucr.org Published On :: 2024-03-26 In the title molecule, C21H23N3O3, the imidazolidine ring slightly deviates from planarity and the morpholine ring exhibits the chair conformation. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds form helical chains of molecules extending parallel to the c axis that are connected by C—H⋯π(ring) interactions. A Hirshfeld surface analysis reveals that the most important contributions for the crystal packing are from H⋯H (55.2%), H⋯C/C⋯H (22.6%) and H⋯O/O⋯H (20.5%) interactions. The volume of the crystal voids and the percentage of free space were calculated to be 236.78 Å3 and 12.71%, respectively. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the nearly equal electrostatic and dispersion energy contributions. The DFT-optimized molecular structure at the B3LYP/6-311 G(d,p) level is compared with the experimentally determined molecular structure in the solid state. Moreover, the HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
ame Crystal structure, Hirshfeld surface analysis, calculations of intermolecular interaction energies and energy frameworks and the DFT-optimized molecular structure of 1-[(1-butyl-1H-1,2,3-triazol-4-yl)methyl]-3-(prop-1-en-2-yl)-1H-b By journals.iucr.org Published On :: 2024-05-14 The benzimidazole entity of the title molecule, C17H21N5O, is almost planar (r.m.s. deviation = 0.0262 Å). In the crystal, bifurcated C—H⋯O hydrogen bonds link individual molecules into layers extending parallel to the ac plane. Two weak C—H⋯π(ring) interactions may also be effective in the stabilization of the crystal structure. Hirshfeld surface analysis of the crystal structure reveals that the most important contributions for the crystal packing are from H⋯H (57.9%), H⋯C/C⋯H (18.1%) and H⋯O/O⋯H (14.9%) interactions. Hydrogen bonding and van der Waals interactions are the most dominant forces in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization of the title compound is dominated via dispersion energy contributions. The molecular structure optimized by density functional theory (DFT) at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined molecular structure in the solid state. Full Article text
ame Crystal structure of Staudtienic acid, a diterpenoid from Staudtia kamerunensis Warb. (Myristicaceae) By journals.iucr.org Published On :: 2024-07-19 This title compound, C20H26O2, was isolated from the benzene fraction of the stem bark of Staudtia kamerunensis Warb. (Myristicaceae) using column chromatography techniques over silica gel. The compound was fully characterized by single-crystal X-ray diffraction, one and two-dimensional NMR spectroscopy, IR and MS spectrometry. The compound has two fused cyclohexane rings attached to a benzene ring, with a carboxylic acid on C-4. This cyclohexene ring has a chair conformation while the other adopts a half-chair conformation. The benzene ring is substituted with a propenyl moiety. The structure is characterized by intermolecular O—H⋯O hydrogen bonds, two C—H⋯O intramolecular hydrogen bonds and two C—H⋯π interactions. The molecular structure confirms previous studies carried out by spectroscopic techniques. Full Article text
ame Crystal structure determination and analyses of Hirshfeld surface, crystal voids, intermolecular interaction energies and energy frameworks of 1-benzyl-4-(methylsulfanyl)-3a,7a-dihydro-1H-pyrazolo[3,4-d]pyrimidine By journals.iucr.org Published On :: 2024-06-25 The pyrazolopyrimidine moiety in the title molecule, C13H12N4S, is planar with the methylsulfanyl substituent lying essentially in the same plane. The benzyl group is rotated well out of this plane by 73.64 (6)°, giving the molecule an approximate L shape. In the crystal, C—H⋯π(ring) interactions and C—H⋯S hydrogen bonds form tubes extending along the a axis. Furthermore, there are π–π interactions between parallel phenyl rings with centroid-to-centroid distances of 3.8418 (12) Å. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (47.0%), H⋯N/N⋯H (17.6%) and H⋯C/C⋯H (17.0%) interactions. The volume of the crystal voids and the percentage of free space were calculated to be 76.45 Å3 and 6.39%, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the cohesion of the crystal structure is dominated by the dispersion energy contributions. Full Article text
ame Three-dimensional alkaline earth metal–organic framework poly[[μ-aqua-aquabis(μ3-carbamoylcyanonitrosomethanido)barium] monohydrate] and its thermal decomposition By journals.iucr.org Published On :: 2024-08-30 In the structure of the title salt, {[Ba(μ3-C3H2N3O2)2(μ-H2O)(H2O)]·H2O}n, the barium ion and all three oxygen atoms of the water molecules reside on a mirror plane. The hydrogen atoms of the bridging water and the solvate water molecules are arranged across a mirror plane whereas all atoms of the monodentate aqua ligand are situated on this mirror plane. The distorted ninefold coordination of the Ba ions is completed with four nitroso-, two carbonyl- and three aqua-O atoms at the distances of 2.763 (3)–2.961 (4) Å and it is best described as tricapped trigonal prism. The three-dimensional framework structure is formed by face-sharing of the trigonal prisms, via μ-nitroso- and μ-aqua-O atoms, and also by the bridging coordination of the anions via carbonyl-O atoms occupying two out of the three cap positions. The solvate water molecules populate the crystal channels and facilitate a set of four directional hydrogen bonds. The principal Ba–carbamoylcyanonitrosomethanido linkage reveals a rare example of the inherently polar binodal six- and three-coordinated bipartite topology (three-letter notation sit). It suggests that small resonance-stabilized cyanonitroso anions can be utilized as bridging ligands for the supramolecular synthesis of MOF solids. Such an outcome may be anticipated for a broader range of hard Lewis acidic alkaline earth metal ions, which perfectly match the coordination preferences of highly nucleophilic nitroso-O atoms. Thermal analysis reveals two-stage dehydration of the title compound (383 and 473 K) followed by decomposition with release of CO2, HCN and H2O at 558 K. Full Article text
ame Crystal structure, Hirshfeld surface analysis, and calculations of intermolecular interaction energies and energy frameworks of 1-[(1-hexyl-1H-1,2,3-triazol-4-yl)methyl]-3-(1-methylethenyl)-benzimidazol-2-one By journals.iucr.org Published On :: 2024-09-30 The benzimidazole moiety in the title molecule, C19H25N5O, is almost planar and oriented nearly perpendicular to the triazole ring. In the crystal, C—H⋯O hydrogen bonds link the molecules into a network structure. There are no π–π interactions present but two weak C—H⋯π(ring) interactions are observed. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (62.0%), H⋯C/C⋯H (16.1%), H⋯N/N⋯H (13.7%) and H⋯O/O⋯H (7.5%) interactions. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated via the dispersion energy contributions in the title compound. Full Article text
ame Synthesis, crystal structure and Hirshfeld surface analysis of sulfamethoxazolium methylsulfate monohydrate By journals.iucr.org Published On :: 2024-09-24 The molecular salt sulfamethoxazolium {or 4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]anilinium methyl sulfate monohydrate}, C10H12N3O3S+·CH3O4S−·H2O, was prepared by the reaction of sulfamethoxazole and H2SO4 in methanol and crystallized from methanol–ether–water. Protonation takes place at the nitrogen atom of the primary amino group. In the crystal, N—H⋯O hydrogen bonds (water and methylsulfate anion) and intermolecular N—H⋯N interactions involving the sulfonamide and isoxazole nitrogen atoms, link the components into a tri-dimensional network, additional cohesion being provided by face-to-face π–π interactions between the phenyl rings of adjacent molecules. A Hirshfeld surface analysis was used to verify the contributions of the different intermolecular interactions, showing that the three most important contributions for the crystal packing are from H⋯O (54.1%), H⋯H (29.2%) and H⋯N (5.0%) interactions. Full Article text
ame Crystal structure and Hirshfeld surface analyses, crystal voids, intermolecular interaction energies and energy frameworks of 3-benzyl-1-(3-bromopropyl)-5,5-diphenylimidazolidine-2,4-dione By journals.iucr.org Published On :: 2024-10-04 The title molecule, C25H23BrN2O2, adopts a cup shaped conformation with the distinctly ruffled imidazolidine ring as the base. In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π(ring) interactions form helical chains of molecules extending along the b-axis direction that are linked by additional weak C—H⋯π(ring) interactions across inversion centres. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (51.0%), C⋯H/H⋯C (21.3%), Br⋯H/H⋯Br (12.8%) and O⋯H/H⋯O (12.4%) interactions. The volume of the crystal voids and the percentage of free space were calculated to be 251.24 Å3 and 11.71%, respectively, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by the dispersion energy. Full Article text
ame The Pixel Anomaly Detection Tool: a user-friendly GUI for classifying detector frames using machine-learning approaches By journals.iucr.org Published On :: 2024-02-12 Data collection at X-ray free electron lasers has particular experimental challenges, such as continuous sample delivery or the use of novel ultrafast high-dynamic-range gain-switching X-ray detectors. This can result in a multitude of data artefacts, which can be detrimental to accurately determining structure-factor amplitudes for serial crystallography or single-particle imaging experiments. Here, a new data-classification tool is reported that offers a variety of machine-learning algorithms to sort data trained either on manual data sorting by the user or by profile fitting the intensity distribution on the detector based on the experiment. This is integrated into an easy-to-use graphical user interface, specifically designed to support the detectors, file formats and software available at most X-ray free electron laser facilities. The highly modular design makes the tool easily expandable to comply with other X-ray sources and detectors, and the supervised learning approach enables even the novice user to sort data containing unwanted artefacts or perform routine data-analysis tasks such as hit finding during an experiment, without needing to write code. Full Article text
ame Determination of α lamellae orientation in a β-Ti alloy using electron backscatter diffraction By journals.iucr.org Published On :: 2024-06-27 The spatial orientation of α lamellae in a metastable β-Ti matrix of Timetal LCB (Ti–6.8 Mo–4.5 Fe–1.5 Al in wt%) was examined and the orientation of the hexagonal close-packed α lattice in the α lamella was determined. For this purpose, a combination of methods of small-angle X-ray scattering, scanning electron microscopy and electron backscatter diffraction was used. The habit planes of α laths are close to {111}β, which corresponds to (1320)α in the hexagonal coordinate system of the α phase. The longest α lamella direction lies approximately along one of the 〈110〉β directions which are parallel to the specific habit plane. Taking into account the average lattice parameters of the β and α phases in aged conditions in Timetal LCB, it was possible to index all main axes and faces of an α lath not only in the cubic coordinate system of the parent β phase but also in the hexagonal system of the α phase. Full Article text
ame Energy-dispersive Laue diffraction analysis of the influence of statherin and histatin on the crystallographic texture during human dental enamel demineralization By journals.iucr.org Published On :: 2024-09-25 Energy-dispersive Laue diffraction (EDLD) is a powerful method to obtain position-resolved texture information in inhomogeneous biological samples without the need for sample rotation. This study employs EDLD texture scanning to investigate the impact of two salivary peptides, statherin (STN) and histatin-1 (HTN) 21 N-terminal peptides (STN21 and HTN21), on the crystallographic structure of dental enamel. These proteins are known to play crucial roles in dental caries progression. Three healthy incisors were randomly assigned to three groups: artificially demineralized, demineralized after HTN21 peptide pre-treatment and demineralized after STN21 peptide pre-treatment. To understand the micro-scale structure of the enamel, each specimen was scanned from the enamel surface to a depth of 250 µm using microbeam EDLD. Via the use of a white beam and a pixelated detector, where each pixel functions as a spectrometer, pole figures were obtained in a single exposure at each measurement point. The results revealed distinct orientations of hydroxyapatite crystallites and notable texture variation in the peptide-treated demineralized samples compared with the demineralized control. Specifically, the peptide-treated demineralized samples exhibited up to three orientation populations, in contrast to the demineralized control which displayed only a single orientation population. The texture index of the demineralized control (2.00 ± 0.21) was found to be lower than that of either the STN21 (2.32 ± 0.20) or the HTN21 (2.90 ± 0.46) treated samples. Hence, texture scanning with EDLD gives new insights into dental enamel crystallite orientation and links the present understanding of enamel demineralization to the underlying crystalline texture. For the first time, the feasibility of EDLD texture measurements for quantitative texture evaluation in demineralized dental enamel samples is demonstrated. Full Article text
ame Low-dose electron microscopy imaging for beam-sensitive metal–organic frameworks By journals.iucr.org Published On :: 2024-09-05 Metal–organic frameworks (MOFs) have garnered significant attention in recent years owing to their exceptional properties. Understanding the intricate relationship between the structure of a material and its properties is crucial for guiding the synthesis and application of these materials. (Scanning) Transmission electron microscopy (S)TEM imaging stands out as a powerful tool for structural characterization at the nanoscale, capable of detailing both periodic and aperiodic local structures. However, the high electron-beam sensitivity of MOFs presents substantial challenges in their structural characterization using (S)TEM. This paper summarizes the latest advancements in low-dose high-resolution (S)TEM imaging technology and its application in MOF material characterization. It covers aspects such as framework structure, defects, and surface and interface analysis, along with the distribution of guest molecules within MOFs. This review also discusses emerging technologies like electron ptychography and outlines several prospective research directions in this field. Full Article text
ame FilmWeek: ‘Demon Slayer the Movie: Mugen Train,’ Street Gang: How We Got to Sesame Street,’ ‘Together Together’ And More By www.scpr.org Published On :: Fri, 23 Apr 2021 10:25:00 -0700 Archival still from the documentary "Street Gang: How We Got to Sesame Street"; Credit: HBO FilmWeek MarqueeLarry Mantle and KPCC film critics Claudia Puig and Charles Solomon review this weekend’s new movie releases.This content is from Southern California Public Radio. View the original story at SCPR.org. Full Article
ame FilmWeek: ‘The Conjuring: The Devil Made Me Do It,’ ‘Spirit Untamed,’ ‘Edge Of The World’ And More By www.scpr.org Published On :: Fri, 04 Jun 2021 09:33:00 -0700 Vera Farmiga and Patrick Wilson in "The Conjuring: The Devil Made Me Do It"; Credit: Warner Bros. Pictures FilmWeek MarqueeLarry Mantle and KPCC film critics Amy Nicholson, Wade Major and Charles Solomon review this weekend’s new movie releases on streaming and on demand platforms.This content is from Southern California Public Radio. View the original story at SCPR.org. Full Article
ame B89 and PagBrasil partner to expand Pix across Latin America By thepaypers.com Published On :: Fri, 08 Nov 2024 11:18:00 +0100 Peruvian fintech B89 has announced a partnership with Brazil-based... Full Article
ame 2014 Americana Music Awards with Loretta Lynn, Patty Griffin and more By www.scpr.org Published On :: Wed, 17 Sep 2014 16:09:48 -0700 The finale of the 2013 Americana Music Association Honors and Awards show.; Credit: Folk Alley The 2014 Americana Music Awards are Wednesday at 5 p.m. Pacific/8 p.m. Eastern. You can watch the full show live from the Ryman Auditorium in Nashville, Tenn. below, including performances by Loretta Lynn, Jackson Browne, Emmylou Harris, Patty Griffin and more. window.onload = function(){ NPR.Iframe.load("347625625",'iframeEmbed','@KPCC',{noSharingLinks: false, hideRelatedStories: true, fbShareImageUrl: 'http://a.scpr.org/i/249842800d22989eda16b048b982fc26/92154-full.jpg'}); } Read a full list of the nominees below: Album of the Year • Build Me Up From Bones by Sarah Jarosz • The Lights From The Chemical Plant by Robert Ellis • The River And The Thread by Rosanne Cash • Southeastern by Jason Isbell Artist of the Year • Rosanne Cash • Rodney Crowell • Robert Ellis • Jason Isbell Duo/Group of the Year • The Avett Brothers • The Devil Makes Three • Hard Working Americans • Lake Street Dive • The Milk Carton Kids Song of the Year • "Cover Me Up" by Jason Isbell • "A Feather's Not A Bird" by Rosanne Cash • "Ohio" by Patty Griffin • "Only Lies" by Robert Ellis Emerging Act of the Year • Hurray For The Riff Raff • Parker Millsap • St. Paul & The Broken Bones Full Article
ame Americana Awards: Jason Isbell cleans up By www.scpr.org Published On :: Thu, 18 Sep 2014 08:22:03 -0700 Jason Isbell and Amanda Shires perform onstage at the 13th annual Americana Music Association Honors and Awards Show at the Ryman Auditorium on September 17, 2014 in Nashville, Tennessee. ; Credit: Rick Diamond/Getty Images for Americana Music Singer-songwriter Jason Isbell swept the major awards Wednesday night at the Americana Honors & Awards, creating another special moment with his wife, Amanda Shires. Isbell won artist, album and song of the year during the 13th annual awards show Wednesday night at Ryman Auditorium in Nashville, Tennessee. Though surprisingly ignored by Grammy Awards voters, Isbell's album of the year winner "Southeastern" reverberated through the Americana community and made many of 2013's best-of lists. He performed song of the year "Cover Me Up" with Shires, a significant figure on the album as muse and collaborator. "I wrote this song for my wife," Isbell said. "I've had a lot of people ask me to dedicate it to their wives, girlfriends or cousin's wife or something strange like that. This was probably the hardest song I ever had to write because I wrote it for her and then I played it for her. It was very difficult. Do the things that scare you. That's the good stuff." Isbell was one of this year's top nominees along with Rosanne Cash and Robert Ellis. Each had three nominations and all were up for artist, album and song of the year. Many of the top nominees and honors recipients performed, including all five emerging artist nominees. Former couple Patty Griffin and Robert Plant made a surprise appearance and sang their collaboration "Ohio." Sturgill Simpson, something of a modern cosmic cowboy, earned emerging artist of the year and the Milk Carton Kids took group/duo of the year. And Buddy Miller, now executive music producer for the television show "Nashville" and theAmericana's winningest performer, won his fifth instrumentalist of the year award. The Americana Music Association also honored several pioneering musicians. Loretta Lynn received the lifetime achievement award for songwriting from Kacey Musgraves and Angaleena Presley. "The truth is we both might cry giving out this award," Musgraves said. Lynn, writer of some of country music's most important female empowerment songs, accepted the award in a sparkly lavender dress and her usual humble manner. "When they told me I was going to get this award," she told the crowd, "I said, 'Naw, you got the wrong one.'" Jackson Browne received the Spirit of Americana-Free Speech in Music award, Flaco Jimenez received the lifetime achievement award for instrumentalist and Taj Mahal earned the lifetime achievement award for performance. "I was affected deeply by American music, near and far — my mother's interest in Southern music and my dad's interest in jazz and bebop and classical, all that kind of stuff," Mahal said in an interview. "But this music here, if you get this music, you can go anywhere in the world with it. For me, I play for the goddess of music. People ask me what I do and I go, deep Americana." Full Article
ame The Cosby Show at 30: Changing the face of black America By www.scpr.org Published On :: Fri, 19 Sep 2014 14:39:08 -0700 The original cast of The Cosby Show. ; Credit: Frank Carroll/Associated Press Thirty years ago, on September 20,"The Cosby Show" debuted on NBC and went on to dominate our screens for almost a decade. The award-winning sitcom introduced us to the Huxtables, an upper-middle class black family made up of Heathcliff, Clair and their five children. Plus a cast of ugly sweaters. "The Cosby Show" covered familiar territory; from children getting body piercings, bad boyfriends and maintaining a long term relationship as parents with professional lives. Speaking to Take Two's Alex Cohen, Mark Anthony Neal, professor of African and African American Studies at Duke University said "The Cosby Show" broke down racial stereotypes. "It really was the first program to present not just a middle class, or upper-middle class black family, but a professional family. Clair and Heathcliff Huxtable were educated, they had advanced degrees. It was an image we hadn't seen before." From 1985 to 1990, "The Cosby Show" held the number one spot in the TV ratings war, appealing to audiences across color lines. Black viewers in particular welcomed a broader representation of African American life on screen, building on the success of shows such as "The Jeffersons", "Sanford and Son" and "Good Times". "Bill Cosby was very honest about the fact that when he conceived the character of Heathcliff Huxtable, he was looking for images that countered, say, Fred Sanford who was a junk dealer, or James Evans, Jr. in 'Good Times' who was always struggling to find a job. Bill Cosby wanted to bring a different view of the black family into the mix." Despite its popularity, some people took issue with how "The Cosby Show" tackled race issues. "It's not that black Americans didn't enjoy the show, but there were criticisms because it didn't explore the broader world of African Americans." says Professor Neal. "The Huxtable family became a stand in for the successes of the civil rights movement. It became the rationale that if the Huxtables can do it, why can't other African Americans do it?" Today's media landscape is very different to the one "The Cosby Show" existed in. For this reason, says Professor Neal, its success has been difficult to replicate. "Right after it went off the air, cable TV takes hold and we get this niche programming. Many African American programs ended up on Fox, UPN and the WB, so there was no incentive for the major networks to do any Cosby-like programming with a black family at the center." With the debut of ABC's "Blackish" on September 24, it's hoped this will go some way to fill the Cosby-shaped void. In the meantime there's always YouTube and re-runs. Just be thankful Heathcliff's ugly sweaters are a thing of the past. Full Article
ame Mayor Garcetti's Q&A in John's car was almost over... until Hizzoner saw the backgammon game By www.scpr.org Published On :: Thu, 29 Jun 2017 14:41:46 -0700 Off-Ramp host John Rabe and Mayor Eric Garcetti playing backgammon in John’s car. Julian “The First Lady of Off-Ramp” Bermudez in the passenger seat with camera. ; Credit: Andrea Garcia John Rabe | Off-Ramp®John Rabe’s last show coincides with Eric Garcetti’s inauguration for his second term as Mayor of Los Angeles. In John's car, the two talked about: The joys of exploring Los Angeles The time the future Mayor's mom and dad took his drivers' license away Where Justin Trudeau should visit when he comes to LA And how the drop in crime has led to more people doing the Off-Ramp thing The Mayor also did some slam poetry, and then played a competitive game of backgammon. Listen with the audio player to see who was brown and who was white. And listen to Off-Ramp on the radio to find out who won the game! (Saturday at noon/Sunday at 6pm) This content is from Southern California Public Radio. View the original story at SCPR.org. Full Article