mid

Crystal structures of an imidazo[1,5-a]pyridinium-based ligand and its (C13H12N3)2[CdI4] hybrid salt

The monocation product of the oxidative condensation–cyclization between two mol­ecules of pyridine-2-carbaldehyde and one mol­ecule of CH3NH2·HCl in methanol, 2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridinium, was isolated in the presence of metal ions as bis­[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] tetra­iodo­cadmate, (C13H12N3)2[CdI4], (I), and the mixed chloride/nitrate salt, bis­[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] 1.5-chlor­ide 0.5-nitrate trihydrate, 2C13H12N3+·1.5Cl−·0.5NO3−·3H2O, (II). Hybrid salt (I) crystallizes in the space group P21/n with two [L]2[CdI4] mol­ecules in the asymmetric unit related by pseudosymmetry. In the crystal of (I), layers of organic cations and of tetra­halometallate anions are stacked parallel to the ab plane. Anti­parallel L+ cations disposed in a herring-bone pattern form π-bonded chains through aromatic stacking. In the inorganic layer, adjacent tetra­hedral CdI4 units have no connectivity but demonstrate close packing of iodide anions. In the crystal lattice of (II), the cations are arranged in stacks propagating along the a axis; the one-dimensional hydrogen-bonded polymer built of chloride ions and water mol­ecules runs parallel to a column of stacked cations.




mid

Crystal structures of four dimeric manganese(II) bromide coordination complexes with various derivatives of pyridine N-oxide

Four manganese(II) bromide coordination complexes have been prepared with four pyridine N-oxides, viz. pyridine N-oxide (PNO), 2-methyl­pyridine N-oxide (2MePNO), 3-methyl­pyridine N-oxide (3MePNO), and 4-methyl­pyridine N-oxide (4MePNO). The compounds are bis­(μ-pyridine N-oxide)bis­[aqua­dibromido­(pyridine N-oxide)manganese(II)], [Mn2Br4(C5H5NO)4(H2O)2] (I), bis­(μ-2-methyl­pyridine N-oxide)bis­[di­aqua­dibromido­manganese(II)]–2-methyl­pyridine N-oxide (1/2), [Mn2Br4(C6H7NO)2(H2O)4]·2C6H7NO (II), bis­(μ-3-methyl­pyridine N-oxide)bis­[aqua­dibromido­(3-methyl­pyridine N-oxide)manganese(II)], [Mn2Br4(C6H7NO)4(H2O)2] (III), and bis­(μ-4-methyl­pyridine N-oxide)bis­[di­bromido­methanol(4-methyl­pyridine N-oxide)manganese(II)], [Mn2Br4(C6H7NO)4(CH3OH)2] (IV). All the compounds have one unique MnII atom and form a dimeric complex that contains two MnII atoms related by a crystallographic inversion center. Pseudo-octa­hedral six-coordinate manganese(II) centers are found in all four compounds. All four compounds form dimers of Mn atoms bridged by the oxygen atom of the PNO ligand. Compounds I, II and III exhibit a bound water of solvation, whereas compound IV contains a bound methanol mol­ecule of solvation. Compounds I, III and IV exhibit the same arrangement of mol­ecules around each manganese atom, ligated by two bromide ions, oxygen atoms of two PNO ligands and one solvent mol­ecule, whereas in compound II each manganese atom is ligated by two bromide ions, one O atom of a PNO ligand and two water mol­ecules with a second PNO mol­ecule inter­acting with the complex via hydrogen bonding through the bound water mol­ecules. All of the compounds form extended hydrogen-bonding networks, and compounds I, II, and IV exhibit offset π-stacking between PNO ligands of neighboring dimers.




mid

Crystal structure and Hirshfeld surface analysis of a new di­thio­glycoluril: 1,4-bis­(4-meth­oxy­phen­yl)-3a-methyl­tetra­hydro­imidazo[4,5-d]imidazole-2,5(1H,3H)-di­thione

In the title di­thio­glycoluril derivative, C19H20N4O3S2, there is a difference in the torsion angles between the thio­imidazole moiety and the meth­oxy­phenyl groups on either side of the mol­ecule [C—N—Car—Car = 116.9 (2) and −86.1 (3)°, respectively]. The N—C—N bond angle on one side of the di­thio­glycoluril moiety is slightly smaller compared to that on the opposite side, [110.9 (2)° cf. 112.0 (2)°], probably as a result of the steric effect of the methyl group. In the crystal, N—H⋯S hydrogen bonds link adjacent mol­ecules to form chains propagating along the c-axis direction. The chains are linked by C—H⋯S hydrogen bonds, forming layers parallel to the bc plane. The layers are then linked by C—H⋯π inter­actions, leading to the formation of a three-dimensional supra­molecular network. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to investigate the mol­ecular inter­actions in the crystal.




mid

Synthesis and crystal structure of 1,3-bis­(4-hy­droxy­phen­yl)-1H-imidazol-3-ium chloride

Imidazolium salts are common building blocks for functional materials and in the synthesis of N-heterocyclic carbene (NHC) as σ-donor ligands for stable metal complexes. The title salt, 1,3-bis­(4-hy­droxy­phen­yl)-1H-imidazol-3-ium chloride (IOH·Cl), C15H13N2O2+·Cl−, is a new imidazolium salt with a hy­droxy functionality. The synthesis of IOH·Cl was achieved in high yield via a two-step procedure involving a di­aza­butadiene precursor followed by ring closure using tri­methylchloro­silane and paraformaldehyde. The structure of IOH·Cl consists of a central planar imidazolium ring (r.m.s. deviation = 0.0015 Å), with out-of-plane phenolic side arms. The dihedral angles between the 4-hy­droxy­phenyl substituents and the imidazole ring are 55.27 (7) and 48.85 (11)°. In the crystal, O—H⋯Cl hydrogen bonds connect the distal hy­droxy groups and Cl− anions in adjacent asymmetric units, one related by inversion (−x + 1, −y + 1, −z + 1) and one by the n-glide (x − {1over 2}, −y + {1over 2}, z − {1over 2}), with donor–acceptor distances of 2.977 (2) and 3.0130 (18) Å, respectively. The phenolic rings are each π–π stacked with their respective inversion-related [(−x + 1, −y + 1, −z + 1) and (−x, −y + 1, −z + 1)] counterparts, with inter­planar distances of 3.560 (3) and 3.778 (3) Å. The only other noteworthy inter­molecular inter­action is an O⋯O (not hydrogen bonded) close contact of 2.999 (3) Å between crystallographically different hy­droxy O atoms on translationally adjacent mol­ecules (x + 1, y, x + 1).




mid

The structure and Hirshfeld surface analysis of the salt 3-methacryl­amido-N,N,N-tri­methyl­propan-1-aminium 2-acryl­amido-2-methyl­propane-1-sulfonate

The title salt, C10H21N2O+·C7H12NO4S−, comprises a 3-methacryl­amido-N,N,N-tri­methyl­propan-1-aminium cation and a 2-acryl­amido-2-methyl­propane-1-sulfonate anion. The salt crystallizes with two unique cation–anion pairs in the asymmetric unit of the ortho­rhom­bic unit cell. The crystal studied was an inversion twin with a 0.52 (4):0.48 (4) domain ratio. In the crystal, the cations and anions stack along the b-axis direction and are linked by an extensive series of N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network. Hirshfeld surface analysis was carried out on both the asymmetric unit and the two individual salts. The contribution of inter­atomic contacts to the surfaces of the individual cations and anions are also compared.




mid

Crystal structure of bis­[2-(1H-benzimidazol-2-yl-κN3)aniline-κN]bis­(nitrato-κO)cadmium(II)

In the title compound, [Cd(NO3)2(C13H11N3)2], the CdII atom lies on a twofold rotation axis and is coordinated by four N atoms and two O atoms, provided by two bidentate 2-(1H-benzimidazol-2-yl)aniline ligands, and two nitrato O atoms, forming a distorted octa­hedral geometry [range of bond angles around the Cd atom = 73.82 (2)–106.95 (8)°]. In the ligand, the dihedral angle between the aniline ring and the benzimidazole ring system is 30.43 (7)°. The discrete complex mol­ecule is stabilized by an intra­molecular N—H⋯O hydrogen bond. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules, forming a three-dimensional network.




mid

Crystal structure and Hirshfeld surface analysis of 5-(3,5-di-tert-butyl-4-hy­droxy­phen­yl)-3-phenyl-4,5-di­hydro-1H-pyrazole-1-carboxamide

In the title compound, C24H31N3O2, the mean plane of the central pyrazole ring [r.m.s. deviation = 0.095 Å] makes dihedral angles of 11.93 (9) and 84.53 (8)°, respectively, with the phenyl and benzene rings. There is a short intra­molecular N—H⋯N contact, which generates an S(5) ring motif. In the crystal, pairs of N—H⋯O hydrogen bonds link inversion-related mol­ecules into dimers, generating an R22(8) ring motif. The Hirshfeld surface analysis indicates that the most significant contribution involves H⋯H contacts of 68.6%




mid

Crystal structure and Hirshfeld surface analysis of N-(tert-but­yl)-2-(phenyl­ethyn­yl)imidazo[1,2-a]pyridin-3-amine

The bicyclic imidazo[1,2-a]pyridine core of the title compound, C19H19N3, is relatively planar with an r.m.s. deviation of 0.040 Å. The phenyl ring is inclined to the mean plane of the imidazo[1,2-a]pyridine unit by 18.2 (1)°. In the crystal, mol­ecules are linked by N—H⋯H hydrogen bonds, forming chains along the c-axis direction. The chains are linked by C—H⋯π inter­actions, forming slabs parallel to the ac plane. The Hirshfeld surface analysis and fingerprint plots reveal that the crystal structure is dominated by H⋯H (54%) and C⋯H/H⋯C (35.6%) contacts. The crystal studied was refined as an inversion twin




mid

Crystal structure and Hirshfeld surface analysis of 3-(cyclo­propyl­meth­oxy)-4-(di­fluoro­meth­oxy)-N-(pyridin-2-ylmeth­yl)benzamide

The title compound, C18H18F2N2O3, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. They differ essentially in the orientation of the pyridine ring with respect to the benzene ring; these two rings are inclined to each other by 53.3 (2)° in mol­ecule A and by 72.9 (2)° in mol­ecule B. The 3-(cyclo­propyl­meth­oxy) side chain has an extended conformation in both mol­ecules. The two mol­ecules are linked by a pair of C—H⋯O hydrogen bonds and two C—H⋯π inter­actions, forming an A–B unit. In the crystal, this unit is linked by N—H⋯O hydrogen bonds, forming a zigzag –A–B–A–B– chain along [001]. The chains are linked by C—H⋯N and C—H⋯F hydrogen bonds to form layers parallel to the ac plane. Finally, the layers are linked by a third C—H⋯π inter­action, forming a three-dimensional structure. The major contributions to the Hirshfeld surface are those due to H⋯H contacts (39.7%), followed by F⋯H/H⋯F contacts (19.2%).




mid

Crystal structure and Hirshfeld surface analysis of 2-[(1,3-benzoxazol-2-yl)sulfan­yl]-N-(2-meth­oxy­phen­yl)acetamide

In the title compound, C16H14N2O3S, the 1,3-benzoxazole ring system is essentially planar (r.m.s deviation = 0.004 Å) and makes a dihedral angle of 66.16 (17)° with the benzene ring of the meth­oxy­phenyl group. Two intra­molecular N—H⋯O and N—H⋯N hydrogen bonds occur, forming S(5) and S(7) ring motifs, respectively. In the crystal, pairs of C—H⋯O hydrogen bonds link the mol­ecules into inversion dimers with R22(14) ring motifs, stacked along the b-axis direction. The inversion dimers are linked by C—H⋯π and π–π-stacking inter­actions [centroid-to-centroid distances = 3.631 (2) and 3.631 (2) Å], forming a three-dimensional network. Two-dimensional fingerprint plots associated with the Hirshfeld surface show that the largest contributions to the crystal packing come from H⋯H (39.3%), C⋯H/H⋯C (18.0%), O⋯H/H⋯O (15.6) and S⋯H/H⋯S (10.2%) inter­actions.




mid

In situ deca­rbonylation of N,N-di­methyl­formamide to form di­methyl­ammonium cations in the hybrid framework compound {[(CH3)2NH2]2[Zn{O3PC6H2(OH)2PO3}]}n

The title phospho­nate-based organic–inorganic hybrid framework, poly[bis(dimethylammonium) [(μ4-2,5-dihydroxybenzene-1,4-diphosphonato)zinc(II)]], {(C2H8N)2[Zn(C6H4O8P2)]}n, was formed unexpectedly when di­methyl­ammonium cations were formed from the in situ deca­rbonylation of the N,N-di­methyl­formamide solvent. The framework is built up from ZnO4 tetra­hedra and bridging di­phospho­nate tetra-anions to generate a three-dimensional network comprising [100] channels occupied by the (CH3)2NH2+ cations. Within the channels, an array of N—H⋯O hydrogen bonds help to establish the structure. In addition, intra­molecular O—H⋯O hydrogen bonds between the appended –OH groups of the phenyl ring and adjacent PO32− groups are observed.




mid

Crystal structure and Hirshfeld surface analysis of 3-amino-5-phenyl­thia­zolidin-2-iminium bromide

In the cation of the title salt, C9H12N3S+·Br−, the thia­zolidine ring adopts an envelope conformation with the C atom adjacent to the phenyl ring as the flap. In the crystal, N—H⋯Br hydrogen bonds link the components into a three-dimensional network. Weak π–π stacking inter­actions between the phenyl rings of adjacent cations also contribute to the mol­ecular packing. A Hirshfeld surface analysis was conducted to qu­antify the contributions of the different inter­molecular inter­actions and contacts.




mid

Crystal structure, DFT calculation, Hirshfeld surface analysis and energy framework study of 6-bromo-2-(4-bromo­phen­yl)imidazo[1,2-a]pyridine

The title imidazo[1,2-a] pyridine derivative, C13H8Br2N2, was synthesized via a single-step reaction method. The title mol­ecule is planar, showing a dihedral angle of 0.62 (17)° between the phenyl and the imidazo[1,2-a] pyridine rings. An intra­molecular C—H⋯N hydrogen bond with an S(5) ring motif is present. In the crystal, a short H⋯H contact links adjacent mol­ecules into inversion-related dimers. The dimers are linked in turn by weak C—H⋯π and slipped π–π stacking inter­actions, forming layers parallel to (110). The layers are connected into a three-dimensional network by short Br⋯H contacts. Two-dimensional fingerprint plots and three-dimensional Hirshfeld surface analysis of the inter­molecular contacts reveal that the most important contributions for the crystal packing are from H⋯Br/Br⋯H (26.1%), H⋯H (21.7%), H⋯C/C⋯H (21.3%) and C⋯C (6.5%) inter­actions. Energy framework calculations suggest that the contacts formed between mol­ecules are largely dispersive in nature. Analysis of HOMO–LUMO energies from a DFT calculation reveals the pure π character of the aromatic rings with the highest electron density on the phenyl ring, and σ character of the electron density on the Br atoms. The HOMO–LUMO gap was found to be 4.343 eV.




mid

Unexpected reactions of NHC*—CuI and —AgI bromides with potassium thio- or seleno­cyanate

The reactions of N-heterocyclic carbene CuI and AgI halides with potassium thio- or seleno­cyanate gave unexpected products. The attempted substitution reaction of bromido­(1,3-dibenzyl-4,5-di­phenyl­imidazol-2-yl­idene)silver (NHC*—Ag—Br) with KSCN yielded bis­[bis­(1,3-dibenzyl-4,5-di­phenyl­imidazol-2-yl­idene)silver(I)] tris­(thio­cyanato)­argentate(I) diethyl ether disolvate, [Ag(C29H24N2)2][Ag(NCS)3]·2C4H10O or [NHC*2Ag]2[Ag(SCN)3]·2Et2O, (1), while reaction with KSeCN led to bis­(μ-1,3-dibenzyl-4,5-diphenyl-2-seleno­imidazole-κ2Se:Se)bis­[bromido­(1,3-dibenzyl-4,5-diphenyl-2-seleno­imid­azole-κSe)silver(I)] di­chloro­methane hexa­solvate, [Ag2Br2(C29H24N2Se)4]·6CH2Cl2 or (NHC*Se)4Ag2Br2·6CH2Cl2, (2), via oxidation of the NHC* fragment to 2-seleno­imidazole. This oxidation was observed again in the reaction of NHC*—Cu—Br with KSeCN, yielding catena-poly[[[(1,3-dibenzyl-4,5-diphenyl-2-seleno­imidazole-κSe)copper(I)]-μ-cyanido-κ2C:N] aceto­nitrile monosolvate], {[Cu(CN)(C29H24N2Se)]·C2H3N}n or NHC*Se—CuCN·CH3CN, (3). Compound (1) represents an organic/inorganic salt with AgI in a linear coordination in each of the two cations and in a trigonal coordination in the anion, accompanied by diethyl ether solvent mol­ecules. The tri-blade boomerang-shaped complex anion [Ag(SCN)3]2− present in (1) is characterized by X-ray diffraction for the first time. Compound (2) comprises an isolated centrosymmetric mol­ecule with AgI in a distorted tetra­hedral BrSe3 coordination, together with di­chloro­methane solvent mol­ecules. Compound (3) exhibits a linear polymeric 1∞[Cu—C≡N—Cu—] chain structure with a seleno­imidazole moiety additionally coordinating to each CuI atom, and completed by aceto­nitrile solvent mol­ecules. Electron densities associated with an additional ether solvent mol­ecule in (1) and two additional di­chloro­methane solvent mol­ecules in (2) were removed with the SQUEEZE procedure [Spek (2015). Acta Cryst. C71, 9–18] in PLATON.




mid

Bis[2-(4,5-diphenyl-1H-imidazol-2-yl)-4-nitrophenolato]copper(II) dihydrate: crystal structure and Hirshfeld surface analysis

The crystal and mol­ecular structures of the title CuII complex, isolated as a dihydrate, [Cu(C21H14N3O3)2]·2H2O, reveals a highly distorted coordination geometry inter­mediate between square-planar and tetra­hedral defined by an N2O2 donor set derived from two mono-anionic bidentate ligands. Furthermore, each six-membered chelate ring adopts an envelope conformation with the Cu atom being the flap. In the crystal, imidazolyl-amine-N—H⋯O(water), water-O—H⋯O(coordinated, nitro and water), phenyl-C—H⋯O(nitro) and π(imidazol­yl)–π(nitro­benzene) [inter-centroid distances = 3.7452 (14) and 3.6647 (13) Å] contacts link the components into a supra­molecular layer lying parallel to (101). The connections between layers forming a three-dimensional architecture are of the types nitro­benzene-C—H⋯O(nitro) and phenyl-C—H⋯π(phen­yl). The distorted coordination geometry for the CuII atom is highlighted in an analysis of the Hirshfeld surface calculated for the metal centre alone. The significance of the inter­molecular contacts is also revealed in a study of the calculated Hirshfeld surfaces; the dominant contacts in the crystal are H⋯H (41.0%), O⋯H/H⋯O (27.1%) and C⋯H/H⋯C (19.6%).




mid

Crystal structure of a 1:1 cocrystal of nicotinamide with 2-chloro-5-nitro­benzoic acid

In the title 1:1 cocrystal, C7H4ClNO4·C6H6N2O, nicotinamide (NIC) and 2-chloro-5-nitro­benzoic acid (CNBA) cocrystallize with one mol­ecule each of NIC and CNBA in the asymmetric unit. In this structure, CNBA and NIC form hydrogen bonds through O—H⋯N, N—H⋯O and C—H⋯O inter­actions along with N—H⋯O dimer hydrogen bonds of NIC. Further additional weak π–π inter­actions stabilize the mol­ecular assembly of this cocrystal.




mid

Crystal structure, Hirshfeld surface analysis and PIXEL calculations of a 1:1 epimeric mixture of 3-[(4-nitro­benzyl­idene)amino]-2(R,S)-(4-nitro­phenyl)-5(S)-(propan-2-yl)imidazolidin-4-one

A 1:1 epimeric mixture of 3-[(4-nitro­benzyl­idene)amino]-2(R,S)-(4-nitro­phen­yl)-5(S)-(propan-2-yl)imidazolidin-4-one, C19H19N5O5, was isolated from a reaction mixture of 2(S)-amino-3-methyl-1-oxo­butane­hydrazine and 4-nitro­benz­alde­hyde in ethanol. The product was derived from an initial reaction of 2(S)-amino-3-methyl-1-oxo­butane­hydrazine at its hydrazine group to provide a 4-nitro­benzyl­idene derivative, followed by a cyclization reaction with another mol­ecule of 4-nitro­benzaldehyde to form the chiral five-membered imidazolidin-4-one ring. The formation of the five-membered imidazolidin-4-one ring occurred with retention of the configuration at the 5-position, but with racemization at the 2-position. In the crystal, N—H⋯O(nitro) hydrogen bonds, weak C—H⋯O(carbon­yl) and C—H⋯O(nitro) hydrogen bonds, as well as C—H⋯π, N—H⋯π and π–π inter­actions, are present. These combine to generate a three-dimensional array. Hirshfeld surface analysis and PIXEL calculations are also reported.




mid

Crystal structure of a two-dimensional coordination polymer of formula [Zn(NDC)(DEF)] (H2NDC is naphthalene-2,6-di­carb­oxy­lic acid and DEF is N,N-di­ethyl­formamide)

A zinc metal–organic framework, namely poly[bis­(N,N-di­ethyl­formamide)(μ4-naphthalene-2,6-di­carboxyl­ato)(μ2-naphthalene-2,6-di­carboxyl­ato)dizinc(II)], [Zn(C12H6O4)(C15H11NO)]n, built from windmill-type secondary building units and forming zigzag shaped two-dimensional stacked layers, has been solvothermally synthesized from naphthalene-2,6-di­carb­oxy­lic acid and zinc(II) acetate as the metal source in N,N-di­ethyl­formamide containing small amounts of formic acid.




mid

Crystal structure and photoluminescence properties of catena-poly[[bis­(1-benzyl-1H-imidazole-κN3)cadmium(II)]-di-μ-azido-κ4N1:N3]

The new title one-dimensional CdII coordination polymer, [Cd(C10H10N2)2(μ1,3-N3)2]n, has been synthesized and structurally characterized by single-crystal X-ray diffraction. The asymmetric unit consists of a CdII ion, one azide and one 1-benzyl­imidazole (bzi) ligand. The CdII ion is located on an inversion centre and is surrounded in a distorted octa­hedral coordination sphere by six N atoms from four symmetry-related azide ligands and two symmetry-related bzi ligands. The CdII ions are linked by double azide bridging ligands within a μ1,3-N3 end-to-end (EE) coordination mode, leading to a one-dimensional linear structure extending parallel to [100]. The supra­molecular framework is stabilized by the presence of weak C—H⋯N inter­actions, π–π stacking [centroid-to-centroid distance of 3.832 (2) Å] and C—H⋯π inter­actions between neighbouring chains.




mid

Crystal structure of benzo[h]quinoline-3-carbox­amide

The title com­pound, C14H10N2O, crystallizes in the monoclinic space group P21/c with four mol­ecules in the unit cell. All 17 non-H atoms of one mol­ecule lie essentially in one plane. In the unit cell, two pairs of mol­ecules are exactly coplanar, while the angle between these two orientations is close to perfectly perpendicular at 87.64 (6)°. In the crystal, mol­ecules adopt a 50:50 crisscross arrangement, which is held together by two nonclassical and two classical inter­molecular hydrogen bonds. The hydrogen-bonding network together with off-centre π–π stacking inter­actions between the pyridine and outermost benzene rings, stack the mol­ecules along the b-axis direction.




mid

Crystal structure of 4,6-dimethyl-2-[(2,3,4,6-tetra-O-acetyl-β-d-galacto­pyranos­yl)sulfan­yl]pyrimidine




mid

Crystal structure and Hirshfeld surface analysis of poly[tris­(μ4-benzene-1,4-di­carboxyl­ato)tetra­kis­(di­methyl­formamide)­trinickel(II)]: a two-dimensional coordination network

The crystal structure of the title compound, [Ni3(C8H4O4)3(C3H7NO)4], is a two-dimensional coordination network formed by trinuclear linear Ni3(tp)3(DMF)4 units (tp = terephthalate = benzene-1,4-di­carboxyl­ate and DMF = di­methyl­formamide) displaying a characteristic coordination mode of acetate groups in polynuclear metal–organic compounds. Individual trinuclear units are connected through tp anions in a triangular network that forms layers. One of the DMF ligands points outwards and provides inter­actions with equivalent planes above and below, leaving the second ligand in a structural void much larger than the DMF mol­ecule, which shows positional disorder. Parallel planes are connected mainly through weak C—H⋯O, H⋯H and H⋯C inter­actions between DMF mol­ecules, as shown by Hirshfeld surface analysis.




mid

Crystal structure, Hirshfeld surface analysis and contact enrichment ratios of 1-(2,7-di­methyl­imidazo[1,2-a]pyridin-3-yl)-2-(1,3-di­thio­lan-2-yl­idene)ethanone monohydrate

In the title hydrated hybrid compound C14H14N2OS2·H2O, the planar imidazo[1,2-a]pyridine ring system is linked to the 1,3-di­thiol­ane moiety by an enone bridge. The atoms of the C—C bond in the 1,3-di­thiol­ane ring are disordered over two positions with occupancies of 0.579 (14) and 0.421 (14) and both disordered rings adopt a half-chair conformation. The oxygen atom of the enone bridge is involved in a weak intra­molecular C—H⋯O hydrogen bond, which generates an S(6) graph-set motif. In the crystal, the hybrid mol­ecules are associated in R22(14) dimeric units by weak C—H⋯O inter­actions. O—H⋯O hydrogen bonds link the water mol­ecules, forming infinite self-assembled chains along the b-axis direction to which the dimers are connected via O—H⋯N hydrogen bonding. Analysis of inter­molecular contacts using Hirshfeld surface analysis and contact enrichment ratio descriptors indicate that hydrogen bonds induced by water mol­ecules are the main driving force in the crystal packing formation.




mid

Crystal structures of three 6-aryl-2-(4-chloro­benz­yl)-5-[(1H-indol-3-yl)meth­yl]imidazo[2,1-b][1,3,4]thia­diazo­les

Three title compounds, namely, 2-(4-chloro­benz­yl)-5-[(1H-indol-3-yl)meth­yl]-6-phenyl­imidazo[2,1-b][1,3,4]thia­diazole, C26H19ClN4S, (I), 2-(4-chloro­benz­yl)-6-(4-fluoro­phen­yl)-5-[(1H-indol-3-yl)meth­yl]imidazo[2,1-b][1,3,4]thia­diazole, C26H18ClFN4S, (II), and 6-(4-bromo­phen­yl)-2-(4-chloro­benz­yl)-5-[(1H-indol-3-yl)meth­yl]imidazo[2,1-b][1,3,4]thia­diazole, C26H18BrClN4S, (III), have been prepared using a reductive condensation of indole with the corresponding 6-aryl-2-(4-chloro­benz­yl)imidazo[2,1-b][1,3,4]thia­diazole-5-carbaldehydes (aryl = phenyl, 4-fluoro­phenyl or 4-bromo­phen­yl), and their crystal structures have been determined. The asymmetric unit of compound (I) consists of two independent mol­ecules and one of the mol­ecules exhibits disorder of the 4-chloro­benzyl substituent with occupancies 0.6289 (17) and 0.3711 (17). Each type of mol­ecule forms a C(8) chain motif built from N—H⋯N hydrogen bonds, which for the fully ordered mol­ecule is reinforced by C—H⋯π inter­actions. In compound (II), the chloro­benzyl unit is again disordered, with occupancies 0.822 (6) and 0.178 (6), and the mol­ecules form C(8) chains similar to those in (I), reinforced by C—H⋯π inter­actions involving only the major disorder component. The chloro­benzyl unit in compound (III) is also disordered with occupancies of 0.839 (5) and 0.161 (5). The mol­ecules are linked by a combination of one N—H⋯N hydrogen bond and four C—H⋯π inter­actions, forming a three-dimensional framework.




mid

N,N'-Bis(pyridin-3-ylmeth­yl)ethanedi­amide monohydrate: crystal structure, Hirshfeld surface analysis and computational study

The mol­ecular structure of the title bis-pyridyl substituted di­amide hydrate, C14H14N4O2·H2O, features a central C2N2O2 residue (r.m.s. deviation = 0.0205 Å) linked at each end to 3-pyridyl rings through methyl­ene groups. The pyridyl rings lie to the same side of the plane, i.e. have a syn-periplanar relationship, and form dihedral angles of 59.71 (6) and 68.42 (6)° with the central plane. An almost orthogonal relationship between the pyridyl rings is indicated by the dihedral angle between them [87.86 (5)°]. Owing to an anti disposition between the carbonyl-O atoms in the core, two intra­molecular amide-N—H⋯O(carbon­yl) hydrogen bonds are formed, each closing an S(5) loop. Supra­molecular tapes are formed in the crystal via amide-N—H⋯O(carbon­yl) hydrogen bonds and ten-membered {⋯HNC2O}2 synthons. Two symmetry-related tapes are linked by a helical chain of hydrogen-bonded water mol­ecules via water-O—H⋯N(pyrid­yl) hydrogen bonds. The resulting aggregate is parallel to the b-axis direction. Links between these, via methyl­ene-C—H⋯O(water) and methyl­ene-C—H⋯π(pyrid­yl) inter­actions, give rise to a layer parallel to (10overline{1}); the layers stack without directional inter­actions between them. The analysis of the Hirshfeld surfaces point to the importance of the specified hydrogen-bonding inter­actions, and to the significant influence of the water mol­ecule of crystallization upon the mol­ecular packing. The analysis also indicates the contribution of methyl­ene-C—H⋯O(carbon­yl) and pyridyl-C—H⋯C(carbon­yl) contacts to the stability of the inter-layer region. The calculated inter­action energies are consistent with importance of significant electrostatic attractions in the crystal.




mid

An unusually short inter­molecular N—H⋯N hydrogen bond in crystals of the hemi-hydro­chloride salt of 1-exo-acetamido­pyrrolizidine

The title compound [systematic name: (1R*, 8S)-2-acetamidoocta­hydro­pyrrol­izin-4-ium chloride–N-[(1R, 8S)-hexa­hydro-1H-pyrrolizin-2-yl)acetamide (1/1)], 2(C9H16N2O)·HCl or C9H17N2O+·Cl−·C9H16N2O, arose as an unexpected product when 1-exo-acetamido­pyrrolizidine (AcAP; C9H16N2O) was dissolved in CHCl3. Within the AcAP pyrrolizidine group, the unsubstituted five-membered ring is disordered over two orientations in a 0.897 (5):0.103 (5) ratio. Two AcAP mol­ecules related by a crystallographic twofold axis link to H+ and Cl− ions lying on the rotation axis, thereby forming N—H⋯N and N—H⋯Cl⋯H—N hydrogen bonds. The first of these has an unusually short N⋯N separation of 2.616 (2) Å: refinement of different models against the present data set could not distinguish between a symmetrical hydrogen bond (H atom lying on the twofold axis and equidistant from the N atoms) or static or dynamic disorder models (i.e. N—H⋯N + N⋯H—N). Computational studies suggest that the disorder model is slightly more stable, but the energy difference is very small.




mid

The 1:2 co-crystal formed between N,N'-bis(pyridin-4-ylmeth­yl)ethanedi­amide and benzoic acid: crystal structure, Hirshfeld surface analysis and computational study

The crystal and mol­ecular structures of the title 1:2 co-crystal, C14H14N4O2·2C7H6O2, are described. The oxalamide mol­ecule has a (+)-anti­periplanar conformation with the 4-pyridyl residues lying to either side of the central, almost planar C2N2O2 chromophore (r.m.s. deviation = 0.0555 Å). The benzoic acid mol­ecules have equivalent, close to planar conformations [C6/CO2 dihedral angle = 6.33 (14) and 3.43 (10)°]. The formation of hy­droxy-O—H⋯N(pyrid­yl) hydrogen bonds between the benzoic acid mol­ecules and the pyridyl residues of the di­amide leads to a three-mol­ecule aggregate. Centrosymmetrically related aggregates assemble into a six-mol­ecule aggregate via amide-N—H⋯O(amide) hydrogen bonds through a 10-membered {⋯HNC2O}2 synthon. These are linked into a supra­molecular tape via amide-N—H⋯O(carbon­yl) hydrogen bonds and 22-membered {⋯HOCO⋯NC4NH}2 synthons. The contacts between tapes to consolidate the three-dimensional architecture are of the type methyl­ene-C—H⋯O(amide) and pyridyl-C—H⋯O(carbon­yl). These inter­actions are largely electrostatic in nature. Additional non-covalent contacts are identified from an analysis of the calculated Hirshfeld surfaces.




mid

Synthesis, crystal structure and Hirshfeld analysis of a crystalline compound comprising a 1/1 mixture of 1-[(1R,4S)- and 1-[(1S,4R)-1,7,7-trimethyl-2-oxobi­cyclo[2.2.1]heptan-3-yl­idene]hydrazinecarbo­thio­amide

The equimolar reaction between a racemic mixture of (R)- and (S)-camphorquinone with thio­semicarbazide yielded the title compound, C11H17N3OS [common name: (R)- and (S)-camphor thio­semicarbazone], which maintains the chirality of the methyl­ated chiral carbon atoms and crystallizes in the centrosymmetric space group C2/c. There are two mol­ecules in general positions in the asymmetric unit, one of them being the (1R)-camphor thio­semicarbazone isomer and the second the (1S)- isomer. In the crystal, the mol­ecular units are linked by C—H⋯S, N—H⋯O and N—H⋯S inter­actions, building a tape-like structure parallel to the (overline{1}01) plane, generating R21(7) and R22(8) graph-set motifs for the H⋯S inter­actions. The Hirshfeld surface analysis indicates that the major contributions for crystal cohesion are from H⋯H (55.00%), H⋯S (22.00%), H⋯N (8.90%) and H⋯O (8.40%) inter­actions.




mid

The synthesis, crystal structure and Hirshfeld analysis of 4-(3,4-di­methyl­anilino)-N-(3,4-di­methyl­phen­yl)quinoline-3-carboxamide

The structure of the title quinoline carboxamide derivative, C26H25N3O, is described. The quinoline moiety is not planar as a result of a slight puckering of the pyridine ring. The secondary amine has a slightly pyramidal geometry, certainly not planar. Both intra- and inter­molecular hydrogen bonds are present. Hirshfeld surface analysis and lattice energies were used to investigate the inter­molecular inter­actions.




mid

Crystal structure of 4-methyl-N-(4-methyl­benz­yl)benzene­sulfonamide

The title compound, C15H17NO2S, was synthesized via a substitution reaction between 4-methyl­benzyl­amine and p-toluene­sulfonyl chloride. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules, forming ribbons running along the b-axis direction. One of the aromatic rings hosts two inter­molecular C—H⋯π inter­actions that link these hydrogen-bonded ribbons into a three-dimensional network.




mid

Crystal structure, Hirshfeld surface analysis and computational study of the 1:2 co-crystal formed between N,N'-bis­(pyridin-4-ylmeth­yl)ethane­diamide and 4-chloro­benzoic acid

The asymmetric unit of the title 1:2 co-crystal, C14H14N4O2·2C7H5ClO2, comprises two half mol­ecules of oxalamide (4LH2), as each is disposed about a centre of inversion, and two mol­ecules of 4-chloro­benzoic acid (CBA), each in general positions. Each 4LH2 mol­ecule has a (+)anti­periplanar conformation with the pyridin-4-yl residues lying to either side of the central, planar C2N2O2 chromophore with the dihedral angles between the respective central core and the pyridyl rings being 68.65 (3) and 86.25 (3)°, respectively, representing the major difference between the independent 4LH2 mol­ecules. The anti conformation of the carbonyl groups enables the formation of intra­molecular amide-N—H⋯O(amide) hydrogen bonds, each completing an S(5) loop. The two independent CBA mol­ecules are similar and exhibit C6/CO2 dihedral angles of 8.06 (10) and 17.24 (8)°, indicating twisted conformations. In the crystal, two independent, three-mol­ecule aggregates are formed via carb­oxy­lic acid-O—H⋯N(pyrid­yl) hydrogen bonding. These are connected into a supra­molecular tape propagating parallel to [100] through amide-N—H⋯O(amide) hydrogen bonding between the independent aggregates and ten-membered {⋯HNC2O}2 synthons. The tapes assemble into a three-dimensional architecture through pyridyl- and methyl­ene-C—H⋯O(carbon­yl) and CBA-C—H⋯O(amide) inter­actions. As revealed by a more detailed analysis of the mol­ecular packing by calculating the Hirshfeld surfaces and computational chemistry, are the presence of attractive and dispersive Cl⋯C=O inter­actions which provide inter­action energies approximately one-quarter of those provided by the amide-N—H⋯O(amide) hydrogen bonding sustaining the supra­molecular tape.




mid

Tetra­aqua­[3-oxo-1,3-bis­(pyridinium-2-yl)propan-1-olato]nickel(II) tribromide dihydrate

The crystal structure of the title compound, [Ni(C13H11N2O2)(H2O)4]Br3·2H2O, contains an octa­hedral NiII atom coordinated to the enol form of 1,3-di­pyridyl­propane-1,3-dione (dppo) and four water mol­ecules. Both pyridyl rings on the ligand are protonated, forming pyridinium rings and creating an overall ligand charge of +1. The protonated nitro­gen-containing rings are involved in hydrogen-bonding inter­actions with neighoring bromide anions. There are many additional hydrogen-bonding inter­actions involving coordinated water mol­ecules on the NiII atom, bromide anions and hydration water mol­ecules.




mid

Synthesis and crystal structure of (2S,4aR,8aR)-6-oxo-2,4a,6,8a-tetra­hydro­pyrano[3,2-b]pyran-2-carboxamide

The pyran­opyran amide (2S,4aR,8aR)-6-oxo-2,4a,6,8a-tetra­hydro­pyrano[3,2-b]pyran-2-carboxamide, C9H9NO4, 3, was prepared by a chemoselective hydration of the corresponding nitrile, 2, using a heterogeneous catalytic method based on copper(II) supported on mol­ecular sieves, in the presence of acetaldoxime. Compound 3 belongs to a new class of pyran­opyrans that possess anti­bacterial and phytotoxic activity. Crystallographic analysis of 3 shows a bent structure for the cis-fused bicyclic pyran­opyran, similar to nitrile 2. Evidence of an intra­molecular hydrogen bond involving the amide group and ring oxygen was not observed; however, two separate inter­molecular hydrogen-bonding inter­actions were observed between the amide hydrogen atoms and adjacent carbonyl oxygen atoms along the b- and a-axis directions. The latter inter­action may also be supported by an inter­molecular C—H⋯O hydrogen bond. The lattice is filled out by close-packed layers of this hydrogen-bonded network along the c-axis direction, related from one to the next by a 21 screw axis.




mid

Crystal structure of imidazo[1,5-a]pyridinium-based hybrid salt (C13H12N3)2[MnCl4]

A new organic–inorganic hybrid salt [L]2[MnCl4] (I) where L+ is the 2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridinium cation, is built of discrete organic cations and tetra­chlorido­manganate(II) anions. The L+ cation was formed in situ in the oxidative cyclo­condensation of 2-pyridine­carbaldehyde and CH3NH2·HCl in methanol. The structure was refined as a two-component twin using PLATON (Spek, 2020) to de-twin the data. The twin law (−1 0 0 0 − 1 0 0.5 0 1) was applied in the refinement where the twin component fraction refined to 0.155 (1). The compound crystallizes in the space group P21/c with two crystallographically non-equivalent cations in the asymmetric unit, which possess similar structural conformations. The fused pyridinium and imidazolium rings of the cations are virtually coplanar [dihedral angles are 0.89 (18) and 0.78 (17)°]; the pendant pyridyl rings are twisted by 36.83 (14) and 36.14 (13)° with respect to the planes of the remaining atoms of the cations. The tetra­hedral MnCl42– anion is slightly distorted with the Mn—Cl distances falling in the range 2.3469 (10)–2.3941 (9) Å. The distortion value of 0.044 relative to the ideal tetra­hedron was obtained by continuous shape measurement (CShM) analysis. In the crystal, the cations and anions form separate stacks propagating along the a-axis direction. The organic cations display weak π–π stacking. The anions, which are stacked identically one above the other, demonstrate loose packing; the minimum Mn⋯Mn separation in the cation stack is approximately 7.49 Å. The investigation of the fluorescent properties of a powdered sample of (I) showed no emission. X-band EPR data for (I) at 293 and 77 K revealed broad fine structure signals, indicating moderate zero-field splitting.




mid

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 1-(1,3-benzo­thia­zol-2-yl)-3-(2-hy­droxy­eth­yl)imidazolidin-2-one

In the title mol­ecule, C12H13N3O2S, the benzo­thia­zine moiety is slightly non-planar, with the imidazolidine portion twisted only a few degrees out of the mean plane of the former. In the crystal, a layer structure parallel to the bc plane is formed by a combination of O—HHydethy⋯NThz hydrogen bonds and weak C—HImdz⋯OImdz and C—HBnz⋯OImdz (Hydethy = hy­droxy­ethyl, Thz = thia­zole, Imdz = imidazolidine and Bnz = benzene) inter­actions, together with C—HImdz⋯π(ring) and head-to-tail slipped π-stacking [centroid-to-centroid distances = 3.6507 (7) and 3.6866 (7) Å] inter­actions between thia­zole rings. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (47.0%), H⋯O/O⋯H (16.9%), H⋯C/C⋯H (8.0%) and H⋯S/S⋯H (7.6%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, C—H⋯N and C—H⋯O hydrogen-bond energies are 68.5 (for O—HHydethy⋯NThz), 60.1 (for C—HBnz⋯OImdz) and 41.8 kJ mol−1 (for C—HImdz⋯OImdz). Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state.




mid

Conversion of di­aryl­chalcones into 4,5-di­hydro­pyrazole-1-carbo­thio­amides: mol­ecular and supra­molecular structures of two precursors and three products

Chalcones of type 4-XC6H4C(O)CH=CHC6H4(OCH2CCH)-4, where X = Cl, Br or MeO, have been converted to the corresponding 4,5-di­hydro­pyrazole-1-carbo­thio­amides using a cyclo­condensation reaction with thio­semicarbazide. The chalcones 1-(4-chloro­phen­yl)-3-[4-(prop-2-yn­yloxy)phen­yl]prop-2-en-1-one, C18H13ClO2, (I), and 1-(4-bromo­phen­yl)-3-[4-(prop-2-yn­yloxy)phen­yl]prop-2-en-1-one, C18H13BrO2, (II), are isomorphous, and their mol­ecules are linked into sheets by two independent C—H⋯π(arene) inter­actions, both involving the same aryl ring with one C—H donor approaching each face. In each of the products (RS)-3-(4-chloro­phen­yl)-5-[4-(prop-2-yn­yloxy)phen­yl]-4,5-di­hydro­pyrazole-1-carbo­thio­amide, C19H16ClN3OS, (IV), (RS)-3-(4-bromo­phen­yl)-5-[4-(prop-2-yn­yloxy)phen­yl]-4,5-di­hydro­pyrazole-1-carbo­thio­amide, C19H16BrN3OS, (V), and (RS)-3-(4-meth­oxy­phen­yl)-5-[4-(prop-2-yn­yloxy)phen­yl]-4,5-di­hydro­pyrazole-1-carbo­thio­amide, C20H19N3O2S, (VI), the reduced pyrazole ring adopts an envelope conformation with the C atom bearing the 4-prop-2-yn­yloxy)phenyl substituent, which occupies the axial site, displaced from the plane of the four ring atoms. Compounds (IV) and (V) are isomorphous and their mol­ecules are linked into chains of edge-fused rings by a combination of N—H⋯S and C—H⋯S hydrogen bonds. The mol­ecules of (VI) are linked into sheets by a combination of N—H⋯S, N—H⋯N and C—H⋯π(arene) hydrogen bonds. Comparisons are made with the structures of some related compounds.




mid

Syntheses and crystal structures of a new pyrazine dicarboxamide ligand, N2,N3-bis­(quinolin-8-yl)pyrazine-2,3-dicarboxamide, and of a copper perchlorate binuclear complex

The title pyrazine dicarboxamide ligand, N2,N3-bis­(quinolin-8-yl)pyrazine-2,3-dicarboxamide (H2L1), C24H16N6O2, has a twisted conformation with the outer quinoline groups being inclined to the central pyrazine ring by 9.00 (6) and 78.67 (5)°, and by 79.94 (4)° to each other. In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming layers parallel to the (10overline{1}) plane, which are in turn linked by offset π–π inter­actions [inter­centroid distances 3.4779 (9) and 3.6526 (8) Å], forming a supra­molecular three-dimensional structure. Reaction of the ligand H2L1 with Cu(ClO4)2 in aceto­nitrile leads to the formation of the binuclear complex, [μ-(3-{hy­droxy[(quinolin-8-yl)imino]­meth­yl}pyrazin-2-yl)[(quinolin-8-yl)imino]­methano­lato]bis­[diaceto­nitrile­copper(II)] tris­(per­chlor­ate) aceto­nitrile disolvate, [Cu2(C24H15N6O2)(CH3CN)4](ClO4)3·2CH3CN or [Cu2(HL1−)(CH3CN)4](ClO4)3·2CH3CN (I). In the cation of complex I, the ligand coordinates to the copper(II) atoms in a bis-tridentate fashion. A resonance-assisted O—H⋯O hydrogen bond is present in the ligand; the position of this H atom was located in a difference-Fourier map. Both copper(II) atoms are fivefold coordinate, being ligated by three N atoms of the ligand and by the N atoms of two aceto­nitrile mol­ecules. The first copper atom has a perfect square-pyramidal geometry while the second copper atom has a distorted shape. In the crystal, the cation and perchlorate anions are linked by a number of C—H⋯O hydrogen bonds, forming a supra­molecular three-dimensional structure.




mid

Crystal structure and Hirshfeld surface analysis of (E)-3-(benzyl­idene­amino)-5-phenyl­thia­zolidin-2-iminium bromide

The central thia­zolidine ring of the title salt, C16H16N3S+·Br−, adopts an envelope conformation, with the C atom bearing the phenyl ring as the flap atom. In the crystal, the cations and anions are linked by N—H⋯Br hydrogen bonds, forming chains parallel to the b-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (46.4%), C⋯H/H⋯C (18.6%) and H⋯Br/Br⋯H (17.5%) inter­actions.




mid

Crystal structure and Hirshfeld surface analysis of 3,6-bis­(pyrimidin-2-yl)-1,4-di­hydro-1,2,4,5-tetra­zine dihydrate

In the title compound, C10H8N8·2H2O or H2bmtz·2H2O [bmtz = 3,6-bis­(2'-pyrimid­yl)-1,2,4,5-tetra­zine], the asymmetric unit consists of one-half mol­ecule of H2bmtz and one water mol­ecule, the whole H2bmtz mol­ecule being generated by a crystallographic twofold rotation axis passing through the middle point of the 1,4-di­hydro-1,2,4,5-tetra­zine moiety. In the crystal, N—H⋯O, N—H⋯N, O—H⋯O hydrogen bonds and aromatic π–π stacking inter­actions link the components into a three-dimensional supra­molecular network. Hirshfeld surface analysis was used to further investigate the inter­molecular inter­actions in the crystal structure.




mid

Crystal structure, Hirshfeld surface analysis and computational study of 2-chloro-N-[4-(methyl­sulfan­yl)phen­yl]acetamide

In the title compound, C9H10ClNOS, the amide functional group –C(=O)NH– adopts a trans conformation with the four atoms nearly coplanar. This conformation promotes the formation of a C(4) hydrogen-bonded chain propagating along the [010] direction. The central part of the mol­ecule, including the six-membered ring, the S and N atoms, is fairly planar (r.m.s. deviation of 0.014). The terminal methyl group and the C(=O)CH2 group are slightly deviating out-of-plane while the terminal Cl atom is almost in-plane. Hirshfeld surface analysis of the title compound suggests that the most significant contacts in the crystal are H⋯H, H⋯Cl/Cl⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯S/S⋯H. π–π inter­actions between inversion-related mol­ecules also contribute to the crystal packing. DFT calculations have been performed to optimize the structure of the title compound using the CAM-B3LYP functional and the 6–311 G(d,p) basis set. The theoretical absorption spectrum of the title compound was calculated using the TD–DFT method. The analysis of frontier orbitals revealed that the π–π* electronic transition was the major contributor to the absorption peak in the electronic spectrum.




mid

Synthesis and crystal structures of two 1,3-di(alk­yloxy)-2-(methyl­sulfan­yl)imidazolium tetra­fluorido­borates

Two salts were prepared by methyl­ation of the respective imidazoline-2-thione at the sulfur atom, using Meerwein's salt (tri­methyl­oxonium tetra­fluorido­borate) in CH2Cl2. 1,3-Dimeth­oxy-2-(methyl­sulfan­yl)imidazolium tetra­fluorido­borate (1), C6H11N2O2S+·BF4−, displays a syn conformation of its two meth­oxy groups relative to each other whereas the two benz­yloxy groups present in 1,3-dibenz­yloxy-2-(methyl­sulfan­yl)imidazolium tetra­fluorido­borate (2), C18H19N2O2S+·BF4−, adopt an anti conformation. In the mol­ecules of 1 and 2, the methyl­sulfanyl group is rotated out of the plane of the respective heterocyclic ring. In both crystal structures, inter­molecular inter­actions are dominated by C—H⋯F—B contacts, leading to three-dimensional networks. The tetra­fluorido­borate counter-ion of 2 is disordered over three orientations (occupancy ratio 0.42:0.34:0.24), which are related by rotation about one of the B—F bonds.




mid

Crystal structures of (η4-cyclo­octa-1,5-diene)bis(1,3-di­methyl­imidazol-2-yl­idene)iridium(I) iodide and (η4-cyclo­octa-1,5-diene)bis­(1,3-di­ethyl­imidazol-2-yl­idene)iridium(I) iodide

The title complexes, (η4-cyclo­octa-1,5-diene)bis­(1,3-di­methyl­imidazol-2-yl­idene)iridium(I) iodide, [Ir(C5H8N2)2(C8H12)]I, (1) and (η4-cyclo­octa-1,5-di­ene)bis­(1,3-di­ethyl­imidazol-2-yl­idene)iridium(I) iodide, [Ir(C7H12N2)2(C8H12)]I, (2), were prepared using a modified literature method. After carrying out the oxidative addition of the amino acid l-proline to [Ir(COD)(IMe)2]I in water and slowly cooling the reaction to room temperature, a suitable crystal of 1 was obtained and analyzed by single-crystal X-ray diffraction at 100 K. Although this crystal structure has previously been reported in the Pbam space group, it was highly disordered and precise atomic coordinates were not calculated. A single crystal of 2 was also obtained by heating the complex in water and letting it slowly cool to room temperature. Complex 1 was found to crystallize in the monoclinic space group C2/m, while 2 crystallizes in the ortho­rhom­bic space group Pccn, both with Z = 4.




mid

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 2-(2,3-di­hydro-1H-perimidin-2-yl)-6-meth­oxy­phenol

The title compound, C18H16N2O2, consists of perimidine and meth­oxy­phenol units, where the tricyclic perimidine unit contains a naphthalene ring system and a non-planar C4N2 ring adopting an envelope conformation with the NCN group hinged by 47.44 (7)° with respect to the best plane of the other five atoms. In the crystal, O—HPhnl⋯NPrmdn and N—HPrmdn⋯OPhnl (Phnl = phenol and Prmdn = perimidine) hydrogen bonds link the mol­ecules into infinite chains along the b-axis direction. Weak C—H⋯π inter­actions may further stabilize the crystal structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (49.0%), H⋯C/C⋯H (35.8%) and H⋯O/O⋯H (12.0%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, the O—HPhnl⋯NPrmdn and N—HPrmdn⋯OPhnl hydrogen-bond energies are 58.4 and 38.0 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




mid

Crystal structure of trans-di­chlorido­(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N)chromium(III) bis­(form­amide-κO)(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N)chromium(III) bis­[tetra­ch

The structure of the title compound, [CrCl2(C10H24N4)][Cr(HCONH2)2(C10H24N4)][ZnCl4]2 (C10H24N4 = 1,4,8,11-tetra­aza­cyclo­tetra­decane, cyclam; HCONH2 = formamide, fa), has been determined from synchrotron X-ray data. The asymmetric unit contains two independent halves of the [CrCl2(cyclam)]+ and [Cr(fa)(cyclam)]3+ cations, and one tetra­chlorido­zincate anion. In each complex cation, the CrIII ion is coordinated by the four N atoms of the cyclam ligand in the equatorial plane and two Cl ligands or two O-bonded formamide mol­ecules in a trans axial arrangement, displaying a distorted octa­hedral geometry with crystallographic inversion symmetry. The Cr—N(cyclam) bond lengths are in the range 2.061 (2) to 2.074 (2) Å, while the Cr—Cl and Cr—O(fa) bond distances are 2.3194 (7) and 1.9953 (19) Å, respectively. The macrocyclic cyclam moieties adopt the centrosymmetric trans-III conformation with six- and five-membered chelate rings in chair and gauche conformations. The crystal structure is stabilized by inter­molecular hydrogen bonds involving the NH or CH groups of cyclam and the NH2 group of coordinated formamide as donors, and Cl atoms of the ZnCl42− anion as acceptors.




mid

Crystal structure of bis­(1-mesityl-1H-imidazole-κN3)di­phenyl­boron tri­fluoro­methane­sulfonate

The solid-state structure of bis­(1-mesityl-1H-imidazole-κN3)di­phenyl­boron tri­fluoro­methane­sulfonate, C36H38BN4+·CF3SO3− or (Ph2B(MesIm)2OTf), is reported. Bis(1-mesityl-1H-imidazole-κN3)di­phenyl­boron (Ph2B(MesIm)2+) is a bulky ligand that crystallizes in the ortho­rhom­bic space group Pbcn. The asymmetric unit contains one Ph2B(MesIm)2+ cationic ligand and one tri­fluoro­methane­sulfonate anion that balances the positive charge of the ligand. The tetra­hedral geometry around the boron center is distorted as a result of the steric bulk of the phenyl groups. Weak inter­actions, such as π–π stacking are present in the crystal structure.




mid

Crystal structure, Hirshfeld surface analysis and DFT studies of 6-bromo-3-(12-bromo­dodec­yl)-2-(4-nitro­phen­yl)-4H-imidazo[4,5-b]pyridine

The title compound, C24H30Br2N4O2, consists of a 2-(4-nitro­phen­yl)-4H-imidazo[4,5-b]pyridine entity with a 12-bromo­dodecyl substituent attached to the pyridine N atom. The middle eight-carbon portion of the side chain is planar to within 0.09 (1) Å and makes a dihedral angle of 21.9 (8)° with the mean plane of the imidazolo­pyridine moiety, giving the mol­ecule a V-shape. In the crystal, the imidazolo­pyridine units are associated through slipped π–π stacking inter­actions together with weak C—HPyr⋯ONtr and C—HBrmdc­yl⋯ONtr (Pyr = pyridine, Ntr = nitro and Brmdcyl = bromo­dodec­yl) hydrogen bonds. The 12-bromo­dodecyl chains overlap with each other between the stacks. The terminal –CH2Br group of the side chain shows disorder over two resolved sites in a 0.902 (3):0.098 (3) ratio. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (48.1%), H⋯Br/Br⋯H (15.0%) and H⋯O/O⋯H (12.8%) inter­actions. The optimized mol­ecular structure, using density functional theory at the B3LYP/ 6–311 G(d,p) level, is compared with the experimentally determined structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




mid

Crystal structure and Hirshfeld surface analysis of 2-phenyl-1H-phenanthro[9,10-d]imidazol-3-ium benzoate

In the title compound, C21H15N2+·C7H5O2−, 2-phenyl-1H-phenanthro[9,10-d]imidazole and benzoic acid form an ion pair complex. The system is consolidated by hydrogen bonds along with π–π inter­actions and N—H⋯π inter­actions between the constituent units. For a better understanding of the crystal structure and inter­molecular inter­actions, a Hirshfeld surface analysis was performed.




mid

Crystal structure and Hirshfeld surface analysis of 4-{[(anthracen-9-yl)meth­yl]amino}­benzoic acid di­methyl­formamide monosolvate

The title compound, C22H17NO2·C3H7NO, was synthesized by condensation of an aromatic aldehyde with a secondary amine and subsequent reduction. It was crystallized from a di­methyl­formamide solution as a monosolvate, C22H17NO2·C3H7NO. The aromatic mol­ecule is non-planar with a dihedral angle between the mean planes of the aniline moiety and the methyl anthracene moiety of 81.36 (8)°. The torsion angle of the Car­yl—CH2—NH—Car­yl backbone is 175.9 (2)°. The crystal structure exhibits a three-dimensional supra­molecular network, resulting from hydrogen-bonding inter­actions between the carb­oxy­lic OH group and the solvent O atom as well as between the amine functionality and the O atom of the carb­oxy­lic group and additional C—H⋯π inter­actions. Hirshfeld surface analysis was performed to qu­antify the inter­molecular inter­actions.




mid

Synthesis and crystal structure of a penta­copper(II) 12-metallacrown-4: cis-di­aqua­tetra­kis­(di­methyl­formamide-κO)manganese(II) tetra­kis­(μ3-N,2-dioxido­benzene-1-carboximidate)penta­copper(II)

The title compound, [Mn(C3H7NO)4(H2O)2][Cu5(C7H4NO3)4]·C3H7NO or cis-[Mn(H2O)2(DMF)4]{Cu[12-MCCu(II)N(shi)-4]}·DMF, where MC is metallacrown, shi3− is salicyl­hydroximate, and DMF is N,N-di­methyl­formamide, crystallizes in the monoclinic space group P21/n. Two crystallographically independent metallacrown anions are present in the structure, and both anions exhibit minor main mol­ecule disorder by an approximate (non-crystallographic) 180° rotation with occupancy ratios of 0.9010 (9) to 0.0990 (9) for one anion and 0.9497 (8) to 0.0503 (8) for the other. Each penta­copper(II) metallacrown contains four CuII ions in the MC ring and a CuII ion captured in the central cavity. Each CuII ion is four-coordinate with a square-planar geometry. The anionic {Cu[12-MCCu(II)N(shi)-4]}2− is charged-balanced by the presence of a cis-[Mn(H2O)2(DMF)4]2+ cation located in the lattice. In addition, the octa­hedral MnII counter-cation is hydrogen bonded to both MC anions via the coordinated water mol­ecules of the MnII ion. The water mol­ecules form hydrogen bonds with the phenolate and carbonyl oxygen atoms of the shi3− ligands of the MCs.




mid

Synthesis, crystal structure and Hirshfeld surface analysis of N-(4-chloro­phen­yl)-5-cyclo­propyl-1-(4-meth­oxy­phen­yl)-1H-1,2,3-triazole-4-carboxamide

The title compound, C19H17ClN4O2, was obtained via a two-step synthesis involving the enol-mediated click Dimroth reaction of 4-azido­anisole with methyl 3-cyclo­propyl-3-oxo­propano­ate leading to the 5-cyclo­propyl-1-(4-meth­oxy­phen­yl)-1H-1,2,3-triazole-4-carb­oxy­lic acid and subsequent acid amidation with 4-chloro­aniline by 1,1'-carbonyl­diimidazole (CDI). It crystallizes in space group P21/n, with one mol­ecule in the asymmetric unit. In the extended structure, two mol­ecules arranged in a near coplanar fashion relative to the triazole ring planes are inter­connected by N—H⋯N and C—H⋯N hydrogen bonds into a homodimer. The formation of dimers is a consequence of the above inter­action and the edge-to-face stacking of aromatic rings, which are turned by 58.0 (3)° relative to each other. The dimers are linked by C—H⋯O inter­actions into ribbons. DFT calculations demonstrate that the frontier mol­ecular orbitals are well separated in energy and the HOMO is largely localized on the 4-chloro­phenyl amide motif while the LUMO is associated with aryl­triazole grouping. A Hirshfeld surface analysis was performed to further analyse the inter­molecular inter­actions.