mid

Amarinder Singh urges Rajnath to permit retired Defence personnel to return to Punjab amid lockdown




mid

Truck ferrying 40 labourers amid lockdown impounded in Punjab




mid

Policeman dragged on bonnet in Punjab amid lockdown




mid

Man drags policeman on car's bonnet in Jalandhar, amid COVID lockdown




mid

Amritsar doctor, cops celebrate SHO's birthday amid lockdown




mid

Moga farmers fail to sell wheat as jute mills pull shutters amid lockdown




mid

8.3 lakh migrants in Punjab register to return to their states amid lockdown




mid

Punjab procures 100 lakh metric tonne wheat amid pandemic




mid

Punjab promotes Class 10 students amid Covid crisis




mid

Amid labour shortage, Punjab advances paddy sowing date




mid

Man murdered in Gummidipoondi over alcohol

Munusamy, 26, was reportedly murdered in Gummidipoondi on Friday, by his neighbour Sanjay after a fight broke out between them, since the former refus




mid

6-Amino-2-iminiumyl-4-oxo-1,2,3,4-tetra­hydro­pyrimidin-5-aminium sulfate monohydrate

The title compound, C4H9N5O2+·SO42−·H2O, is the monohydrate of the commercially available compound `C4H7N5O·H2SO4·xH2O'. It is obtained by reprecipitation of C4H7N5O·H2SO4·xH2O from dilute sodium hydroxide solution with dilute sulfuric acid. The crystal structure of anhydrous 2,4,5-tri­amino-1,6-di­hydro­pyrimidin-6-one sulfate is known, although called by the authors 5-amminium-6-amino-isocytosinium sulfate [Bieri et al. (1993). Private communication (refcode HACDEU). CCDC, Cambridge, England]. In the structure, the sulfate group is deprotonated, whereas one of the amino groups is protonated (R2C—NH3+) and one is rearranged to a protonated imine group (R2C=NH2+). This arrangement is very similar to the known crystal structure of the anhydrate. Several tautomeric forms of the investigated mol­ecule are possible, which leads to questionable proton attributions. The measured data allowed the location of all hydrogen atoms from the residual electron density. In the crystal, ions and water mol­ecules are linked into a three-dimensional network by N—H⋯O and O—H⋯O hydrogen bonds.




mid

Crystal structure of bis­(1-ethyl-1H-imidazole-κN3)(meso-tetra­mesitylporphyrinato-κ4N,N',N'',N''')iron(III) perchlorate chloro­benzene sesquisolvate

In the complex cation of title compound, [Fe(C56H52N4)(C5H8N2)2]ClO4·1.5C6H5Cl, the ironIII atom is coordinated in a distorted octa­hedral manner by four pyrrole N atoms of the porphyrin ring system in the equatorial plane, and by two N atoms of the 1-ethyl­imidazole ligands in the axial sites. A disordered perchlorate anion and one and a half chloro­benzene solvent mol­ecules are also present. The cationic complex exhibits a highly ruffled porphyrin core. The average Fe—Np (Np is a porphyrin N atom) bond length is 1.988 (5), and the axial Fe—NIm (NIm is an imidazole N atom) bond lengths are 1.962 (3) and 1.976 (3) Å. The two 1-ethyl­imidazole ligands are inclined to each other by a dihedral angle of 68.62 (16)°. The dihedral angles between the 1-ethyl­imidazole planes and the planes of the closest Fe—Np vector are 28.52 (18) and 43.57 (13)°. Inter­molecular C—H⋯Cl inter­actions are observed.




mid

Di­bromido­[N-(1-di­ethyl­amino-1-oxo-3-phenyl­propan-2-yl)-N'-(pyridin-2-yl)imidazol-2-yl­idene]palladium(II) di­chloro­methane monosolvate

In the mol­ecule of the title N,N'-disubstituted imidazol-2-yl­idene palladium(II) complex, [PdBr2(C21H24N4O)]·CH2Cl2, the palladium(II) atom adopts a slightly distorted square-planar coordination (r.m.s. deviation = 0.0145 Å), and the five-membered chelate ring is almost planar [maximum displacement = 0.015 (8) Å]. The mol­ecular conformation is enforced by intra­molecular C—H⋯Br hydrogen bonds. In the crystal, complex mol­ecules and di­chloro­methane mol­ecules are linked into a three-dimensional network by C—H⋯O and C—H⋯Br hydrogen bonds.




mid

n-Decyl­tri­methyl­ammonium bromide

The title compound, C13H30N+·Br− (systematic name: N,N,N-trimethyl-1-deca­naminium bromide), forms crystals having a bilayer structure, comprised of layers of tri­methyl­ammonium cations and bromide anions separated by the inter-digitated n-decyl groups of the cation; close ammonium-methyl-C—H⋯Br contacts connect the ions. The n-decyl chain adopts a slightly distorted all-trans conformation. The n-decyl chain exhibits positional disorder with all atoms at half occupancy. The sample was a racemic twin.




mid

N-Ethyl-N'-(3-methyl­benzo­yl)-S,S-di­phenyl­sulfo­diimide

The asymmetric unit of the title sulfodi­imide, C22H22N2OS, consists of two crystallographically independent mol­ecules with similar conformations The environment around each sulfur atom is a slightly distorted tetra­hedron with two S=N bonds and two S—C bonds. The S= N(m-methyl­benzo­yl) and S=N(NEt) bond lengths are 1.584 (3) and 1.528 (2) Å, respectively, for one mol­ecule, and 1.575 (2) and 1.529 (3) Å, respectively, for the other. The dihedral angles between the two phenyl rings in the mol­ecules are 86.76 (8) and 82.49 (8)°. The N—S—N—C(m-methyl­benzo­yl) and N—S—N—C(eth­yl) torsion angles are −60.5 (2) and −50.28 (19)°, respectively, for one mol­ecule, and 62.9 (2) and 44.2 (3)°, respectively, for the other. In the crystal, each independent mol­ecule is linked to its inversion-related mol­ecule via a pair of C—H⋯O hydrogen bonds, forming a dimer.




mid

Ethyl 4-(4-chloro-3-fluoro­phen­yl)-6-methyl-2-sulfanyl­idene-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

In the title compound, C14H14ClFN2O2S, the di­hydro­pyrimidine ring adopts a shallow-boat conformation and subtends a dihedral angle of 81.91 (17)° with the phenyl ring. In the crystal, N—H⋯O, N—H⋯S and C—H⋯F hydrogen bonds and C—H⋯π inter­actions are found.




mid

N-[(Pyridin-2-yl)meth­yl]thio­phene-2-carboxamide

In the title compound, C11H10N2OS, the dihedral angle between the thio­phene and pyridine rings is 77.79 (8)°. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate R22(10) loops. The dimers are reinforced by pairs of C—H⋯N inter­actions and C—H⋯O inter­actions link the dimers into [010] chains.




mid

Di-μ-acetato-bis­{[3-benzyl-1-(2,4,6-tri­methyl­phen­yl)imidazol-2-ylidene]silver(I)}

The title compound, [Ag2(C2H3O2)2(C19H20N2)2] (2), was readily synthesized by treatment of 3-benzyl-1-(2,4,6-tri­methyl­phen­yl)imidazolium chloride with silver acetate. The solution structure of the complex was analyzed by NMR spectroscopy, while the solid-state structure was confirmed by single-crystal X-ray diffraction studies. Compound 2 crystallizes in the triclinic space group Poverline{1}, with a silver-to-carbene bond length (Ag—CNHC) of 2.084 (3) Å. The mol­ecule resides on an inversion center, so that only half of the mol­ecule is crystallographically unique. The planes defined by the two imidazole rings are parallel to each other, but not coplanar [inter­planar distance is 0.662 (19) Å]. The dihedral angles between the imidazole ring and the benzyl and mesityl rings are 77.87 (12) and 72.86 (11)°, respectively. The crystal structure features π–π stacking inter­actions between the benzylic groups of inversion-related (−x + 1, −y + 1, −z + 1) mol­ecules and C—H⋯π inter­actions.




mid

(Pyridine-2,6-di­carboxyl­ato-κ3O,N,O')(2,2':6',2''- terpyridine-κ3N,N',N'')nickel(II) di­methyl­formamide monosolvate monohydrate

In the title complex, [Ni(C7H3NO4)(C15H11N3)]·C3H7NO·H2O, the NiII ion is six-coordinated within an octa­hedral geometry defined by three N atoms of the 2,2':6',2''-terpyridine ligand, and two O atoms and the N atom of the pyridine-2,6-di­carboxyl­ate di-anion. In the crystal, the complex mol­ecules are stacked in columns parallel to the a axis being connected by π–π stacking [closest inter-centroid separation between pyridyl rings = 3.669 (3) Å]. The connections between columns and solvent mol­ecules to sustain a three-dimensional architecture are of the type water-O—H⋯O(carbon­yl) and pyridyl-, methyl-C—H⋯O(carbon­yl).




mid

N-[3-(Prop-1-yn-1-yl)phen­yl]benzene­sulfonamide

In the title sulfanilamide derivative, C15H13NO2S, which shows significant activity against Staphylococcus aureus and Escherichia coli, the dihedral angle between the planes of the aromatic rings is 62.15 (19)° and the four-coordinate S atom adopts an almost ideal tetra­hedral geometry. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.




mid

Bis(quinolinium) tetra­bromido­manganate(II)

The title compound, (C9H8N)2[MnBr4], consists of two quinolinium cations and a [MnBr4]2− anion. The manganese(II) atom, which lies on a twofold rotation axis, is coordinated by four bromide ligands and exhibits a tetra­hedral coordination geometry. The [MnBr4]2− anion and the quinolinium cations are linked by N—H⋯Br hydrogen bonds. π–π stacking inter­actions are observed between the quinolinium cations.




mid

1,1',3,3'-Tetra­mesitylquinobis(imidazole)-2,2'-di­thione

The solid-state structural analysis of the title compound [systematic name: 5,11-disulfanylidene-4,6,10,12-tetrakis(2,4,6-trimethylphenyl)-4,6,10,12-tetraazatricyclo[7.3.0.03,7]dodeca-1(9),3(7)-diene-2,8-dione], C44H44N4O2S2 [+solvent], reveals that the mol­ecule crystallizes in a highly symmetric cubic space group so that one quarter of the mol­ecule is crystallographically unique, the mol­ecule lying on special positions (two mirror planes, two twofold axes and a center of inversion). The crystal structure exhibits large cavities of 193 Å3 accounting for 7.3% of the total unit-cell volume. These cavities contain residual density peaks but it was not possible to unambiguously identify the solvent therein. The contribution of the disordered solvent mol­ecules to the scattering was removed using a solvent mask and is not included in the reported mol­ecular weight. No classical hydrogen bonds are observed between the main mol­ecules.




mid

1-Isobutyl-8,9-dimeth­oxy-3-phenyl-5,6-dihidro­imidazo[5,1-a]isoquinolin-2-ium chloride

The molecular salt, C23H26N2O2+·Cl−, was obtained from 1-isobutyl-8,9-dimeth­oxy-3-phenyl-5,6-di­hydro­imidazo[5,1-a]iso­quinoline, which was synthesized by cyclo­condensation of α-benzoyl­amino-γ-methyl-N-[2-(3,4-di­meth­oxy­phen­yl)eth­yl]valeramide in the presence of phosphoryl chloride. The tetra­hydro­pyridine ring adopts a twist–boat conformation. In the crystal structure, centrosymmetric dimers are formed by N—H⋯Cl and C—H⋯Cl hydrogen bonds.




mid

N-(tert-But­yl)-2-(2-nitro­phen­yl)imidazo[1,2-a]pyridin-3-amine

In the title compound, C17H18N4O2, the dihedral angle between the pyridine and benzene rings is 55.68 (11)°. In the crystal, N—H⋯N hydrogen bonds link the mol­ecules into [010] chains.




mid

2-[1-(1,3-Dioxo-1,3-di­hydro-2H-inden-2-yl­idene)eth­yl]hydrazinecarbo­thio­amide

The title compound, C12H11N3O2S, was synthesized by a condensation reaction of 2-acetyl­indan-1,3-dione and thio­semicarbazide in ethanol in the presence of glacial acetic acid. The mol­ecule adopts a thio­ketone form. The dihedral angle between the mean planes of 1H-inden-1,3(2H)-dione and hydrazinecarbo­thio­amide units is 86.32 (7)°. Weak intra­molecular N—H⋯O and C—H⋯O hydrogen bonds are observed. In the crystal, mol­ecules are linked via pairs of weak inter­molecular N—H⋯O hydrogen bonds, forming inversion dimers. The dimers are further linked into a three-dimensional network through N—H⋯S and N—H⋯O hydrogen bonds, and π–π inter­actions [centroid–centroid distances = 3.5619 (10)–3.9712 (9) Å].




mid

Poly[1-ethyl-3-methyl­imidazolium [tri-μ-iso­thio­cyanato-manganate(II)]]

The title compound, {(C9H11N2)[Mn(NCS)3]}n, has been obtained as a side product of the salt metathesis reaction of 1-ethyl-3-methyl­imidazolium bromide, (EMIm)Br, and K2[Mn(NCS)4]. The structure consists of discrete 1-ethyl-3-methyl­imidazolium cations and an anionic two-dimensional network of manganese(II)-based complex anions, inter­connected by thio­cyanate ions. Every Mn2+ ion is coordinated by three S atoms of three NCS− ions and three N atoms of further three NCS− ions in a meridional octa­hedral fashion.




mid

2-[4,5-Bis(4-bromo­phen­yl)-1-(4-tert-but­ylphen­yl)-1H-imidazol-2-yl]-4,6-di­chloro­phenol

In the title compound, C31H24Br2Cl2N2O, the dihedral angles subtended by the tert-butyl-phenyl, 4,6-di­chloro­phenol and 4-bromo­phenyl (×2) rings are 70.7 (3), 8.1 (3), 28.1 (3) and 84.2 (3)°, respectively. The orientations of the pendant rings may be related to intra­molecular O—H⋯N and C—H⋯π inter­actions. One of the tert-butyl methyl groups is disordered over two sets of sites in a 0.54 (3):0.46 (3) ratio. In the crystal, a weak C—H⋯π inter­action generates inversion dimers.




mid

4-Chloro-2-[1-(4-ethyl­phen­yl)-4,5-diphenyl-1H-imidazol-2-yl]phenol

In the title compound, C29H23ClN2O, the 5-chloro­phenol ring and the imidazole ring are nearly coplanar, with a dihedral angle of 15.76 (9)° between them. The ethyl­phenyl ring and the two phenyl rings subtend angles of 71.09 (7), 43.95 (5) and 36.53 (9)°, respectively, with the imidazole plane. An intra­molecular O—H⋯N hydrogen bond supports the mol­ecular conformation, and an inter­molecular C—H⋯O inter­action, originating from an ortho-phenyl H atom, stabilizes the packing arrangement. In addition, a weak C—H⋯π inter­action, also involving an ortho-phenyl H atom, is observed.




mid

Di­chlorido­bis­[2-(pyridin-2-yl-κN)-1H-benzimidazole-κN3]nickel(II) monohydrate

In the title complex, [NiCl2(C12H9N3)2]·H2O, a divalent nickel atom is coordinated by two 2-(pyridin-2-yl)-1H-benzimidazole ligands in a slightly distorted octa­hedral environment defined by four N donors of two N,N'-chelating ligands, along with two cis-oriented anionic chloride donors. The title complex crystallized with a water mol­ecule disordered over two positions. In the crystal, a combination of O—H⋯Cl, O—H.·O and N—H⋯Cl hydrogen bonds, together with C—H⋯O, C—H⋯Cl and C—H⋯π inter­actions, links the complex mol­ecules and the water mol­ecules to form a supra­molecular three-dimensional framework. The title complex is isostructural with the cobalt(II) dichloride complex reported previously [Das et al. (2011). Org. Biomol. Chem. 9, 7097–7107].




mid

Diethyl 4-(1H-imidazol-2-yl)-2,6-dimethyl-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate

In the title compound, C16H21N3O4, the 1,4-di­hydro­pyridine ring adopts a flattened boat conformation, with the imidazole substituent in an axial orientation [dihedral angle between ring planes = 82.9 (6)°]. In the crystal structure, pairs of N—H⋯O and N—H⋯N hydrogen bonds with graph-set notation R22(14) connect the mol­ecules into chains running along the c-axis direction.




mid

[4-(4-Meth­oxy­phen­yl)-8-oxo-3-(phenyl­selan­yl)spiro­[4.5]deca-3,6,9-trien-2-yl]methyl­cyanamide

The title compound, C25H22N2O2Se, crystallizes in the space group P21/c with one mol­ecule in the asymmetric unit. The compound was synthesized by the addition of phenyl­selenyl bromide to a cyanamide. The phenyl­selenyl portion and the cyano group, as well as the ketone functional group in the cyclo­hexa-2,5-dien-1-one portion of the structure, are disordered, with occupancy factors of 0.555 (14) and 0.445 (14).




mid

Hydro­nium bis­(tri­fluoro­methane­sulfon­yl)amide–18-crown-6 (1/1)

The structure of the title compound, H3O+·C2F6NO4S2−·C12H24O6 or [H3O+·C12H24O6][N(SO2CF3)2−], which is an ionic liquid with a melting point of 341–343 K, has been determined at 113 K. The asymmetric unit consists of two crystallographically independent 18-crown-6 mol­ecules, two hydro­nium ions and two bis­(tri­fluoro­methane­sulfon­yl)amide anions; each 18-crown-6 mol­ecule complexes with a hydro­nium ion. In one 18-crown-6 mol­ecule, a part of the ring exhibits conformational disorder over two sets of sites with an occupancy ratio of 0.533 (13):0.467 (13). One hydro­nium ion is complexed with the ordered 18-crown-6 mol­ecule via O—H⋯O hydrogen bonds with H2OH⋯OC distances of 1.90 (6)–2.19 (7) Å, and the other hydro­nium ion with the disordered crown mol­ecule with distances of 1.85 (6)–2.36 (6) Å. The hydro­nium ions are also linked to the anions via O—H⋯F hydrogen bonds. The crystal studied was found to be a racemic twin with a component ratio of 0.55 (13):0.45 (13).




mid

Bis(N-adamantyl-N'-ethyl­imidazolium) tetra­bromido­manganate(II)

The title compound, (C15H23N2)2[MnBr4], comprises two N-adamantyl-N'-ethyl­imidazolium cations and one tetra­hedral [MnBr4]2− anion. Next to Coulombic inter­actions, weak hydrogen bonds of the type C—H⋯Br consolidate the crystal packing, building up a three-dimensional network.




mid

Tris(1H-benzimidazol-2-ylmeth­yl)amine methanol tris­olvate

The structure of the tertiary amine tris­(1H-benzimidazol-2-ylmeth­yl)amine (C24H21N7, abbreviated ntb) has been previously reported twice as solvates, namely the monohydrate and the aceto­nitrile–methanol–water (1/0.5/1.5) solvate, both with the tripodal conformation formed via multiple hydrogen bonds. Now, we report the tri­methanol adduct, ntb·3CH3OH, where the amine has the stair conformation featuring one benzimidazole group oriented in the opposite direction from the other two. The asymmetric unit contains one-half amine, completed through the mirror plane m in space group Pmn21 to form the ntb mol­ecule, with the H atom for each imidazole moiety equally disordered between both N sites available in the imidazole ring. The asymmetric unit also contains one and a half methanol mol­ecules, one being placed in general position with the hy­droxy H atom disordered over two sites with occupancy ratio 1:1, while the other lies on the m mirror plane, and has thus its hy­droxy H atom disordered by symmetry. As in the previously reported solvates, all imine and amine groups of the ntb mol­ecules and the methanol mol­ecules are involved in N—H⋯O and O—H⋯N hydrogen bonds. In the title compound, however, the involved H atom is systematically a disordered H atom provided by an imidazole group or a methanol mol­ecule.




mid

Bis(3-methyl-1-propyl-1H-imidazol-3-ium) bis­(4,6-disulfanidyl-4,6-disulfanyl­idene-1,2,3,5,4,6-tetra­thia­diphosphinane-κ3S2,S4,S6)nickel

The title salt, (PMIM)2[Ni(P2S8)2] (PMIM = 3-methyl-1-propyl-1H-imidazol-3-ium, C7H13N2+), consists of a nickel–thio­phosphate anion charge-balanced by a pair of crystallographically independent PMIM cations. It crystallizes in the monoclinic space group P21/n. The structure exhibits the known [Ni(P2S8)2]2− anion with two unique imidazolium cations in the asymmetric unit. Whereas one PMIM cation is well ordered, the other is disordered over two orientations with refined occupancies of 0.798 (2) and 0.202 (2). The salt was prepared directly from the elements in the ionic liquid [PMIM]CF3SO3. Whereas one of the PMIM cations is well behaved (it does not exhibit disorder even in the propyl side chain), the other is found in two overlapping positions. The refined occupancies for the two orientations are roughly 80:20. Here, too, there appears to be little disorder in the propyl arm.




mid

7-Chloro-3-(4-methyl­benzene­sulfon­yl)pyrrolo[1,2-c]pyrimidine

In the title compound, C14H11ClN2O2S, the dihedral angle between the pyrrolo­[1,2-c]pyrimidine ring system (r.m.s. deviation = 0.008 Å) and the benzene ring is 80.2 (9)°. In the crystal, inversion dimers linked by pairs of C—H⋯O inter­actions generate R22(16) loops. Several aromatic π–π stacking inter­actions between the pyrrolo­[1,2-c]pyrimidine rings, as well as separately between the pyrrolo and pyrimidine groups [shortest centroid–centroid separation = 3.5758 (14) Å], help to consolidate the packing.




mid

4-Amino-6-(piperidin-1-yl)pyrimidine-5-carbo­nitrile

In the title compound, C10H13N5, the piperidine ring adopts a chair conformation with the exocyclic N—C bond in an axial orientation, and the dihedral angle between the mean planes of piperidine and pyrimidine rings is 49.57 (11)°. A short intra­molecular C—H⋯N contact generates an S(7) ring. In the crystal, N—H⋯N hydrogen bonds link the mol­ecules into (100) sheets and a weak aromatic π-π stacking inter­action is observed [centroid–centroid separation = 3.5559 (11) Å] between inversion-related pyrimidine rings.




mid

Crystal structure and Hirshfeld surface analysis of 4-[4-(1H-benzo[d]imidazol-2-yl)phen­oxy]phthalo­nitrile dimethyl sulfoxide monosolvate

This work presents the synthesis and structural characterization of [4-(1H-benzo[d]imidazol-2-yl)phen­oxy]phthalo­nitrile, a phthalo­nitrile derivative carrying a benzimidazole moiety. The compound crystallizes as its dimethyl sulfoxide monosolvate, C21H12N4O·(CH3)2SO. The dihedral angle between the two fused rings in the heterocyclic ring system is 2.11 (1)°, while the phenyl ring attached to the imidazole moiety is inclined by 20.7 (1)° to the latter. In the crystal structure, adjacent mol­ecules are connected by pairs of weak inter­molecular C—H⋯N hydrogen bonds into inversion dimers. N—H⋯O and C—H⋯O hydrogen bonds with R21(7) graph-set motifs are also formed between the organic mol­ecule and the disordered dimethyl sulfoxide solvent [occupancy ratio of 0.623 (5):0.377 (5) for the two sites of the sulfur atom]. Hirshfeld surface analysis and fingerprint plots were used to investigate the inter­molecular inter­actions in the crystalline state.




mid

Crystal structure and Hirshfeld surface analysis of new polymorph of racemic 2-phenyl­butyramide

A new polymorph of the title compound, C10H13NO, was obtained by recrystallization of the commercial product from a water/ethanol mixture (1:1 v/v). Crystals of the previously reported racemic and homochiral forms of 2-phenyl­butyramide were grown from water–aceto­nitrile solution in 1:1 volume ratio [Khrustalev et al. (2014). Cryst. Growth Des. 14, 3360–3369]. While the previously reported racemic and enanti­opure forms of the title compound adopt very similar supra­molecular structures (hydrogen-bonded ribbons), the new racemic polymorph is stabilized by a single N—H⋯O hydrogen bond that links mol­ecules into chains along the c-axis direction with an anti­parallel (centrosymmetric) packing in the crystal. Hirshfeld mol­ecular surface analysis was employed to compare the inter­molecular inter­actions in the polymorphs of the title compound.




mid

Hirshfeld surface analysis and crystal structure of N-(2-meth­oxy­phen­yl)acetamide

The title compound, C9H11NO2, was obtained as unexpected product from the reaction of (4-{2-benz­yloxy-5-[(E)-(3-chloro-4-methyl­phen­yl)diazen­yl]benzyl­idene}-2-phenyl­oxazol-5(4H)-one) with 2-meth­oxy­aniline in the presence of acetic acid as solvent. The amide group is not coplanar with the benzene ring, as shown by the C—N—C—O and C—N—C—C torsion angles of −2.5 (3) and 176.54 (19)°, respectively. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (53.9%), C⋯H/H⋯C (21.4%), O⋯H/H⋯O (21.4%) and N⋯H/H⋯N (1.7%) inter­actions.




mid

Crystal structure of N-(di­phenyl­phosphor­yl)-2-meth­oxy­benzamide

In the title compound, C20H18NO3P, the C=O and P=O groups of the carbacyl­amido­phosphate (CAPh) fragments are located in a synclinal position relative to each other and are pre-organized for bidentate chelate coordination of metal ions. The N—H group is involved in the formation of an intra­molecular hydrogen bond. In the crystal, mol­ecules do not form strong inter­molecular inter­actions but the mol­ecules are linked via weak C—H⋯π inter­actions, forming chains along [001].




mid

Crystal structure of N,N'-bis­[3-(methyl­sulfan­yl)prop­yl]-1,8:4,5-naphthalene­tetra­carb­oxy­lic di­imide

The title compound, C22H22N2O4S2, was synthesized by the reaction of 1,4,5,8-naphthalene­tetra­carb­oxy­lic dianhydride with 3-(methyl­sulfan­yl)propyl­amine. The whole mol­ecule is generated by an inversion operation of the asymmetric unit. This mol­ecule has an anti form with the terminal methyl­thio­propyl groups above and below the aromatic di­imide plane, where four intra­molecular C—H⋯O and C—H⋯S hydrogen bonds are present and the O⋯H⋯S angle is 100.8°. DFT calculations revealed slight differences between the solid state and gas phase structures. In the crystal, C—H⋯O and C—H⋯S hydrogen bonds link the mol­ecules into chains along the [2overline20] direction. adjacent chains are inter­connected by π–π inter­actions, forming a two-dimensional network parallel to the (001) plane. Each two-dimensional layer is further packed in an ABAB sequence along the c-axis direction. Hirshfeld surface analysis shows that van der Waals inter­actions make important contributions to the inter­molecular contacts. The most important contacts found in the Hirshfeld surface analysis are H⋯H (44.2%), H⋯O/O⋯H (18.2%), H⋯C/C⋯H (14.4%), and H⋯S/S⋯H (10.2%).




mid

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 5,5-diphenyl-1,3-bis­(prop-2-yn-1-yl)imidazolidine-2,4-dione

The title compound, C21H16N2O2, consists of an imidazolidine unit linked to two phenyl rings and two prop-2-yn-1-yl moieties. The imidazolidine ring is oriented at dihedral angles of 79.10 (5) and 82.61 (5)° with respect to the phenyl rings, while the dihedral angle between the two phenyl rings is 62.06 (5)°. In the crystal, inter­molecular C—HProp⋯OImdzln (Prop = prop-2-yn-1-yl and Imdzln = imidazolidine) hydrogen bonds link the mol­ecules into infinite chains along the b-axis direction. Two weak C—HPhen⋯π inter­actions are also observed. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (43.3%), H⋯C/C⋯H (37.8%) and H⋯O/O⋯H (18.0%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that the C—HProp⋯OImdzln hydrogen-bond energy in the crystal is −40.7 kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




mid

Crystal structure and Hirshfeld surface analysis of N-(2-chloro­phenyl­carbamo­thio­yl)-4-fluoro­benzamide and N-(4-bromo­phenyl­carbamo­thio­yl)-4-fluoro­benzamide

The title compounds, C14H10ClFN2OS (1) and C14H10BrFN2OS (2), were synthesized by two-step reactions. The dihedral angles between the aromatic rings are 31.99 (3) and 9.17 (5)° for 1 and 2, respectively. Compound 1 features an intra­molecular bifurcated N—H⋯(O,Cl) link due to the presence of the ortho-Cl atom on the benzene ring, whereas 2 features an intra­molecular N—H⋯O hydrogen bond. In the crystal of 1, inversion dimers linked by pairs of N—H⋯S hydrogen bonds generate R22(8) loops. The extended structure of 2 features the same motif but an additional weak C—H⋯S inter­action links the inversion dimers into [100] double columns. Hirshfeld surface analyses indicate that the most important contributors towards the crystal packing are H⋯H (26.6%), S⋯H/H.·S (13.8%) and Cl⋯H/H⋯Cl (9.5%) contacts for 1 and H⋯H (19.7%), C⋯H/H⋯C (14.8%) and Br⋯H/H⋯Br (12.4%) contacts for 2.




mid

Crystal structure of hexa-μ-chlorido-μ4-oxido-tetra­kis­{[1-(2-hy­droxy­eth­yl)-2-methyl-5-nitro-1H-imidazole-κN3]copper(II)} containing short NO2⋯NO2 contacts

The title tetra­nuclear copper complex, [Cu4Cl6O(C6H9N3O3)4] or [Cu4Cl6O­(MET)4] [MET is 1-(2-hy­droxy­eth­yl)-2-methyl-5-nitro-1H-imidazole or metronidazole], contains a tetra­hedral arrangement of copper(II) ions. Each copper atom is also linked to the other three copper atoms in the tetra­hedron via bridging chloride ions. A fifth coordination position on each metal atom is occupied by a nitro­gen atom of the monodentate MET ligand. The result is a distorted CuCl3NO trigonal–bipyramidal coordination polyhedron with the axial positions occupied by oxygen and nitro­gen atoms. The extended structure displays O—H⋯O hydrogen bonding, as well as unusual short O⋯N inter­actions [2.775 (4) Å] between the nitro groups of adjacent clusters that are oriented perpendicular to each other. The scattering contribution of disordered water and methanol solvent mol­ecules was removed using the SQUEEZE procedure [Spek (2015). Acta Cryst. C71, 9–16] in PLATON [Spek (2009). Acta Cryst. D65, 148–155].




mid

Mol­ecular and crystal structure of 5,9-dimethyl-5H-pyrano[3,2-c:5,6-c']bis­[2,1-benzo­thia­zin]-7(9H)-one 6,6,8,8-tetroxide di­methyl­formamide monosolvate

The title mol­ecule crystallizes as a di­methyl­formamide monosolvate, C19H14N2O6S2·C3H7NO. The mol­ecule was expected to adopt mirror symmetry but slightly different conformational characteristics of the condensed benzo­thia­zine ring lead to point group symmetry 1. In the crystal, mol­ecules form two types of stacking dimers with distances of 3.464 (2) Å and 3.528 (2) Å between π-systems. As a result, columns extending parallel to [100] are formed, which are connected to inter­mediate di­methyl­formamide solvent mol­ecules by C—H⋯O inter­actions.




mid

Crystal structure of (E)-N-cyclo­hexyl-2-(2-hy­droxy-3-methyl­benzyl­idene)hydrazine-1-carbo­thio­amide

The asymmetric unit of the title compound, C15H21N3OS, comprises of two crystallographically independent mol­ecules (A and B). Each mol­ecule consists of a cyclo­hexane ring and a 2-hy­droxy-3-methyl­benzyl­idene ring bridged by a hydrazinecarbo­thio­amine unit. Both mol­ecules exhibit an E configuration with respect to the azomethine C=N bond. There is an intra­molecular O—H⋯N hydrogen bond in each mol­ecule forming an S(6) ring motif. The cyclo­hexane ring in each mol­ecule has a chair conformation. The benzene ring is inclined to the mean plane of the cyclo­hexane ring by 47.75 (9)° in mol­ecule A and 66.99 (9)° in mol­ecule B. The mean plane of the cyclo­hexane ring is inclined to the mean plane of the thio­urea moiety [N—C(=S)—N] by 55.69 (9) and 58.50 (8)° in mol­ecules A and B, respectively. In the crystal, the A and B mol­ecules are linked by N—H⋯S hydrogen bonds, forming `dimers'. The A mol­ecules are further linked by a C—H⋯π inter­action, hence linking the A–B units to form ribbons propagating along the b-axis direction. The conformation of a number of related cyclo­hexa­nehydrazinecarbo­thio­amides are compared to that of the title compound.




mid

N,N'-Bis(pyridin-4-ylmeth­yl)oxalamide benzene monosolvate: crystal structure, Hirshfeld surface analysis and computational study

The asymmetric unit of the title 1:1 solvate, C14H14N4O2·C6H6 [systematic name of the oxalamide mol­ecule: N,N'-bis­(pyridin-4-ylmeth­yl)ethanedi­amide], comprises a half mol­ecule of each constituent as each is disposed about a centre of inversion. In the oxalamide mol­ecule, the central C2N2O2 atoms are planar (r.m.s. deviation = 0.0006 Å). An intra­molecular amide-N—H⋯O(amide) hydrogen bond is evident, which gives rise to an S(5) loop. Overall, the mol­ecule adopts an anti­periplanar disposition of the pyridyl rings, and an orthogonal relationship is evident between the central plane and each terminal pyridyl ring [dihedral angle = 86.89 (3)°]. In the crystal, supra­molecular layers parallel to (10overline{2}) are generated owing the formation of amide-N—H⋯N(pyrid­yl) hydrogen bonds. The layers stack encompassing benzene mol­ecules which provide the links between layers via methyl­ene-C—H⋯π(benzene) and benzene-C—H⋯π(pyrid­yl) inter­actions. The specified contacts are indicated in an analysis of the calculated Hirshfeld surfaces. The energy of stabilization provided by the conventional hydrogen bonding (approximately 40 kJ mol−1; electrostatic forces) is just over double that by the C—H⋯π contacts (dispersion forces).




mid

Crystal structure and Hirshfeld surface analysis of (E)-3-[(4-chloro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide

The title salt, C16H15ClN3S+·Br−, is isotypic with (E)-3-[(4-fluoro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide [Khalilov et al. (2019). Acta Cryst. E75, 662–666]. In the cation of the title salt, the atoms of the phenyl ring attached to the central thia­zolidine ring and the atom joining the thia­zolidine ring to the benzene ring are disordered over two sets of sites with occupancies of 0.570 (3) and 0.430 (3). The major and minor components of the disordered thia­zolidine ring adopt slightly distorted envelope conformations, with the C atom bearing the phenyl ring as the flap atom. In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br contacts into chains parallel to the a axis. Furthermore, not existing in the earlier report of (E)-3-[(4-fluoro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide, C—H⋯π inter­actions and π–π stacking inter­actions [centroid-to-centroid distance = 3.897 (2) Å] between the major components of the disordered phenyl ring contribute to the stabilization of the mol­ecular packing. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions for the crystal packing are from H⋯H (30.5%), Br⋯H/H⋯Br (21.2%), C⋯H/H⋯C (19.2%), Cl⋯H/H⋯Cl (13.0%) and S⋯H/H⋯S (5.0%) inter­actions.