sf

Children in the crossfire


A CRY report from Nandigram finds that children's experience of the violence there is intensely personal. Their vocabulary now includes words like shilpo, santrash and proshashon. Shoma Chatterji reports.




sf

China conducts first successful coronavirus vaccine test on monkeys





sf

48 CISF personnel test COVID-19 positive so far




sf

Quantification of the mixed-valence and intervalence charge transfer properties of a cofacial metal–organic framework via single crystal electronic absorption spectroscopy

Chem. Sci., 2020, Advance Article
DOI: 10.1039/D0SC01521K, Edge Article
Open Access
Patrick W. Doheny, Jack K. Clegg, Floriana Tuna, David Collison, Cameron J. Kepert, Deanna M. D'Alessandro
Gaining a fundamental understanding of charge transfer mechanisms in three-dimensional Metal–Organic Frameworks (MOFs) is crucial to the development of electroactive and conductive porous materials.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




sf

CISF officer dies of Covid-19 in Kolkata




sf

Tamil Nadu: Doctors perform successful surgery on toddler who swallowed areca nut




sf

USFDA authorises emergency use of antigen test to diagnose, treat Covid-19

According to Johns Hopkins University, the United States has over 1.3 million confirmed cases, with the death toll at 78,320




sf

Justice Muralidhar transferred to Punjab and Haryana HC




sf

Nanded returnees satisfied with arrangements made by Ludhiana district administration




sf

BioStruct-Africa: empowering Africa-based scientists through structural biology knowledge transfer and mentoring – recent advances and future perspectives

Being able to visualize biology at the molecular level is essential for our understanding of the world. A structural biology approach reveals the molecular basis of disease processes and can guide the design of new drugs as well as aid in the optimization of existing medicines. However, due to the lack of a synchrotron light source, adequate infrastructure, skilled persons and incentives for scientists in addition to limited financial support, the majority of countries across the African continent do not conduct structural biology research. Nevertheless, with technological advances such as robotic protein crystallization and remote data collection capabilities offered by many synchrotron light sources, X-ray crystallography is now potentially accessible to Africa-based scientists. This leap in technology led to the establishment in 2017 of BioStruct-Africa, a non-profit organization (Swedish corporate ID: 802509-6689) whose core aim is capacity building for African students and researchers in the field of structural biology with a focus on prevalent diseases in the African continent. The team is mainly composed of, but not limited to, a group of structural biologists from the African diaspora. The members of BioStruct-Africa have taken up the mantle to serve as a catalyst in order to facilitate the information and technology transfer to those with the greatest desire and need within Africa. BioStruct-Africa achieves this by organizing workshops onsite at our partner universities and institutions based in Africa, followed by post-hoc online mentoring of participants to ensure sustainable capacity building. The workshops provide a theoretical background on protein crystallography, hands-on practical experience in protein crystallization, crystal harvesting and cryo-cooling, live remote data collection on a synchrotron beamline, but most importantly the links to drive further collaboration through research. Capacity building for Africa-based researchers in structural biology is crucial to win the fight against the neglected tropical diseases, e.g. ascariasis, hookworm, trichuriasis, lymphatic filariasis, active trachoma, loiasis, yellow fever, leprosy, rabies, sleeping sickness, onchocerciasis, schistosomiasis, etc., that constitute significant health, social and economic burdens to the continent. BioStruct-Africa aims to build local and national expertise that will have direct benefits for healthcare within the continent.




sf

Transmission measurement at the Bernina branch of the Aramis Beamline of SwissFEL

The transmission of the optical components of the Bernina branch of the Aramis beamline at SwissFEL has been measured with an X-ray gas monitor from DESY and compared with a PSI gas detector upstream of the optical components. The transmission efficiencies of the Mo, Si and SiC mirror coatings of the Aramis beamline and the various other in-beam components were evaluated and compared with theoretical calculations, showing an agreement of 6% or better in all cases. The experiment has also shown the efficacy of the high-harmonic rejection mirrors at the Bernina branch of the Aramis beamline at SwissFEL, and characterized the transmission efficiency of the on-line spectrometer in the Aramis beamline. The theoretical transmission of the mirror coatings match the experimental data to within 7%. The accuracy of these measurements was checked against a radiative bolometer from a Japanese collaboration and found to agree to a level of 4% or better. Further comparisons with a diamond detector from a US-based inter-institute collaboration demonstrated a good agreement for the attenuator settings of the beamline.




sf

The indexing ambiguity in serial femtosecond crystallography (SFX) resolved using an expectation maximization algorithm

An expectation maximization algorithm is implemented to resolve the indexing ambiguity which arises when merging data from many crystals in protein crystallography, especially in cases where partial reflections are recorded in serial femtosecond crystallography (SFX) at XFELs.




sf

Structure of the 4-hydroxy-tetrahydrodipicolinate synthase from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV and the phylogeny of the aminotransferase pathway

The enzyme 4-hydroxy-tetrahydrodipicolinate synthase (DapA) is involved in the production of lysine and precursor molecules for peptidoglycan synthesis. In a multistep reaction, DapA converts pyruvate and l-aspartate-4-semialdehyde to 4-hydroxy-2,3,4,5-tetrahydrodipicolinic acid. In many organisms, lysine binds allosterically to DapA, causing negative feedback, thus making the enzyme an important regulatory component of the pathway. Here, the 2.1 Å resolution crystal structure of DapA from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV is reported. The enzyme crystallized as a contaminant of a protein preparation from native biomass. Genome analysis reveals that M. fumariolicum SolV utilizes the recently discovered aminotransferase pathway for lysine biosynthesis. Phylogenetic analyses of the genes involved in this pathway shed new light on the distribution of this pathway across the three domains of life.




sf

Crystal structures of two charge–transfer com­plexes of benzo[1,2-c:3,4-c':5,6-c'']tri­thio­phene (D3h-BTT)

Benzo[1,2-c:3,4-c':5,6-c'']tri­thio­phene (D3h-BTT) is an easily prepared electron donor that readily forms charge–transfer complexes with organic acceptors. We report here two crystal structures of its charge–transfer complexes with 7,7,8,8-tetra­cyano­quinodi­methane (TCNQ) and buckminsterfullerene (C60). The D3h-BTT·TCNQ complex, C12H6S3·C12H4N4, crystallizes with mixed layers of donors and acceptors, with an estimated degree of charge transfer at 0.09 e. In the D3h-BTT·C60·toluene complex, C12H6S3·C60·C7H8, the central ring of BTT is `squeezed' by the C60 mol­ecules from both faces. However, the degree of charge transfer is low. The C60 unit is disordered over two sites in a 0.766 (3):0.234 (3) ratio and was refined as a two-component inversion twin.




sf

Structural insights into conformational switching in latency-associated peptide between transforming growth factor β-1 bound and unbound states

Transforming growth factor β-1 (TGFβ-1) is a secreted signalling protein that directs many cellular processes and is an attractive target for the treatment of several diseases. The primary endogenous activity regulatory mechanism for TGFβ-1 is sequestration by its pro-peptide, latency-associated peptide (LAP), which sterically prohibits receptor binding by caging TGFβ-1. As such, recombinant LAP is promising as a protein-based therapeutic for modulating TGFβ-1 activity; however, the mechanism of binding is incompletely understood. Comparison of the crystal structure of unbound LAP (solved here to 3.5 Å resolution) with that of the bound complex shows that LAP is in a more open and extended conformation when unbound to TGFβ-1. Analysis suggests a mechanism of binding TGFβ-1 through a large-scale conformational change that includes contraction of the inter-monomer interface and caging by the `straight-jacket' domain that may occur in partnership through a loop-to-helix transition in the core jelly-roll fold. This conformational change does not appear to include a repositioning of the integrin-binding motif as previously proposed. X-ray scattering-based modelling supports this mechanism and reveals possible orientations and ensembles in solution. Although native LAP is heavily glycosylated, solution scattering experiments show that the overall folding and flexibility of unbound LAP are not influenced by glycan modification. The combination of crystallography, solution scattering and biochemical experiments reported here provide insight into the mechanism of LAP sequestration of TGFβ-1 that is of fundamental importance for therapeutic development.




sf

X-ray structure of the direct electron transfer-type FAD glucose dehydrogenase catalytic subunit complexed with a hitchhiker protein

The bacterial flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase complex derived from Burkholderia cepacia (BcGDH) is a representative molecule of direct electron transfer-type FAD-dependent dehydrogenase complexes. In this study, the X-ray structure of BcGDHγα, the catalytic subunit (α-subunit) of BcGDH complexed with a hitchhiker protein (γ-subunit), was determined. The most prominent feature of this enzyme is the presence of the 3Fe–4S cluster, which is located at the surface of the catalytic subunit and functions in intramolecular and intermolecular electron transfer from FAD to the electron-transfer subunit. The structure of the complex revealed that these two molecules are connected through disulfide bonds and hydrophobic interactions, and that the formation of disulfide bonds is required to stabilize the catalytic subunit. The structure of the complex revealed the putative position of the electron-transfer subunit. A comparison of the structures of BcGDHγα and membrane-bound fumarate reductases suggested that the whole BcGDH complex, which also includes the membrane-bound β-subunit containing three heme c moieties, may form a similar overall structure to fumarate reductases, thus accomplishing effective electron transfer.




sf

Pressure-induced transformation of CH3NH3PbI3: the role of the noble-gas pressure transmitting media

The photovoltaic perovskite, methyl­ammonium lead triiodide [CH3NH3PbI3 (MAPbI3)], is one of the most efficient materials for solar energy conversion. Various kinds of chemical and physical modifications have been applied to MAPbI3 towards better understanding of the relation between composition, structure, electronic properties and energy conversion efficiency of this material. Pressure is a particularly useful tool, as it can substantially reduce the interatomic spacing in this relatively soft material and cause significant modifications to the electronic structure. Application of high pressure induces changes in the crystal symmetry up to a threshold level above which it leads to amorphization. Here, a detailed structural study of MAPbI3 at high hydro­static pressures using Ne and Ar as pressure transmitting media is reported. Single-crystal X-ray diffraction experiments with synchrotron radiation at room temperature in the 0–20 GPa pressure range show that atoms of both gaseous media, Ne and Ar, are gradually incorporated into MAPbI3, thus leading to marked structural changes of the material. Specifically, Ne stabilizes the high-pressure phase of NexMAPbI3 and prevents amorphization up to 20 GPa. After releasing the pressure, the crystal has the composition of Ne0.97MAPbI3, which remains stable under ambient conditions. In contrast, above 2.4 GPa, Ar accelerates an irreversible amorphization. The distinct impacts of Ne and Ar are attributed to differences in their chemical reactivity under pressure inside the restricted space between the PbI6 octahedra.




sf

Structural elucidation of triclinic and monoclinic SFCA-III – killing two birds with one stone

A part of the system CaO-SiO2–Al2O3–Fe2O3–MgO which is of relevance to iron-ore sintering has been studied in detail. For a bulk composition corresponding to 10.45 wt% CaO, 5.49 wt% MgO, 69.15 wt% Fe2O3, 13.37 wt% Al2O3 and 1.55 wt% SiO2 synthesis runs have been performed in air in the range between 1100 and 1300°C. Products have been characterized using reflected-light microscopy, electron microprobe analysis and diffraction techniques. At 1250°C, an almost phase-pure material with composition Ca2.99Mg2.67Fe3+14.58Fe2+0.77Al4.56Si0.43O36 has been obtained. The compound corresponds to the first Si-containing representative of the M14+6nO20+8n polysomatic series of so-called SFCA phases (Silico-Ferrites of Calcium and Aluminum) with n = 2 and is denoted as SFCA-III. Single-crystal diffraction investigations using synchrotron radiation at the X06DA beamline of the Swiss Light Source revealed that the chemically homogenous sample contained both a triclinic and monoclinic polytype. Basic crystallographic data are as follows: triclinic form: a = 10.3279 (2) Å, b = 10.4340 (2) Å, c = 14.3794 (2) Å, α = 93.4888 (12)°, β = 107.3209 (14)° and γ = 109.6626 (14)°, V = 1370.49 (5) Å3, Z = 2, space group P{overline 1}; monoclinic form: a = 10.3277 (2) Å, b = 27.0134 (4) Å, c = 10.4344 (2) Å, β = 109.668 (2)°, V = 2741.22 (9) Å3, Z = 4, space group P21/n. Structure determination of both modifications was successful using diffraction data from the same allotwinned crystal. A description of the observed polytypism within the framework of OD-theory is presented. Triclinic and monoclinic SFCA-III actually correspond to the two possible maximum degree of order structures based on OD-layers containing three spinel (S) and one pyroxene (P) modules (〈S3P〉). The existence of SFCA-III in industrial iron-ore sinters has yet to be confirmed. Polytypism is likely to occur in other SFCA-members (SFCA, SFCA-I) relevant to sintering as well, but has so far been neglected in the characterization of industrial samples. Our results shed light on this phenomenon and may therefore be also helpful for better interpretation of the powder diffraction patterns that are used for phase analysis of iron-ore sinters.




sf

Successful sample preparation for serial crystallography experiments

Serial crystallography, at both synchrotron and X-ray free-electron laser light sources, is becoming increasingly popular. However, the tools in the majority of crystallization laboratories are focused on producing large single crystals by vapour diffusion that fit the cryo-cooled paradigm of modern synchrotron crystallography. This paper presents several case studies and some ideas and strategies on how to perform the conversion from a single crystal grown by vapour diffusion to the many thousands of micro-crystals required for modern serial crystallography grown by batch crystallization. These case studies aim to show (i) how vapour diffusion conditions can be converted into batch by optimizing the length of time crystals take to appear; (ii) how an understanding of the crystallization phase diagram can act as a guide when designing batch crystallization protocols; and (iii) an accessible methodology when attempting to scale batch conditions to larger volumes. These methods are needed to minimize the sample preparation gap between standard rotation crystallography and dedicated serial laboratories, ultimately making serial crystallography more accessible to all crystallographers.




sf

Dark-field electron holography as a recording of crystal diffraction in real space: a comparative study with high-resolution X-ray diffraction for strain analysis of MOSFETs

A detailed theoretical and experimental comparison of dark-field electron holography (DFEH) and high-resolution X-ray diffraction (HRXRD) is performed. Both techniques are being applied to measure elastic strain in an array of transistors and the role of the geometric phase is emphasized.




sf

The mechanism of solvent-mediated desolvation transformation of lenvatinib mesylate from dimethyl sulfoxide solvate to form D

In this work, the mechanism of solvent-mediated desolvation transformation of lenvatinib mesylate (LM) was investigated. Two new solid forms of LM, a dimethyl sulfoxide (DMSO) solvate and an unsolvated form defined as form D, were discovered and characterized using powder X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, polarized light microscopy and Raman spectroscopy. To investigate the thermodynamic mechanism of solvent-mediated desolvation transformation (SMDT) from LM DMSO solvate to form D, solubilities of LM DMSO solvate and form D in binary solvent mixtures of DMSO and water at different water volume fractions and temperatures (293.15–323.15 K) were measured and correlated by non-random two liquids model. The solubility data were used to evaluate the thermodynamic driving force of the SMDT process from DMSO solvate to form D and the effect of the activities of water and DMSO on the transformation process. Raman spectroscopy was used to monitor in situ the solid phase compositions during the SMDT process from LM DMSO solvate to form D while the solution concentration was measured by the gravimetric method. The overall desolvation transformation experiments demonstrated that the SMDT process was controlled by the nucleation and growth of form D. Moreover, effects of operating factors on the SMDT process were studied and the results illustrated that water activity in solution was the paramount parameter in the SMDT process. Finally, a new SMDT mechanism was suggested and discussed.




sf

The mechanism of solvent-mediated desolvation transformation of lenvatinib mesylate from di­methyl sulfoxide solvate to form D

The solvent-mediated desolvation process of newly discovered lenvatinib DMSO solvate to form II at different water volume fractions and temperatures was investigated. It is confirmed that the activity of water is the most important factor affecting the desolvation process: the desolvation process only occurs when the activity of water is greater than the activity of DMSO, and one new mechanism of solvent-mediated desolvation process was proposed.




sf

Structure of the 4-hydroxy-tetrahydrodipicolinate synthase from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV and the phylogeny of the aminotransferase pathway

Insights were obtained into the structure of the 4-hydroxy-tetrahydrodipicolinate synthase from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV and the phylogeny of the aminotransferase pathway for the biosynthesis of lysine.




sf

Structure of the dihydrolipoamide succinyltransferase catalytic domain from Escherichia coli in a novel crystal form: a tale of a common protein crystallization contaminant

The crystallization of amidase, the ultimate enzyme in the Trp-dependent auxin-biosynthesis pathway, from Arabidopsis thaliana was attempted using protein samples with at least 95% purity. Cube-shaped crystals that were assumed to be amidase crystals that belonged to space group I4 (unit-cell parameters a = b = 128.6, c = 249.7 Å) were obtained and diffracted to 3.0 Å resolution. Molecular replacement using structures from the PDB containing the amidase signature fold as search models was unsuccessful in yielding a convincing solution. Using the Sequence-Independent Molecular replacement Based on Available Databases (SIMBAD) program, it was discovered that the structure corresponded to dihydrolipoamide succinyltransferase from Escherichia coli (PDB entry 1c4t), which is considered to be a common crystallization contaminant protein. The structure was refined to an Rwork of 23.0% and an Rfree of 27.2% at 3.0 Å resolution. The structure was compared with others of the same protein deposited in the PDB. This is the first report of the structure of dihydrolipo­amide succinyltransferase isolated without an expression tag and in this novel crystal form.




sf

Crystal structure of an oxidized mutant of human mitochondrial branched-chain aminotransferase

This study presents the crystal structure of a thiol variant of the human mitochondrial branched-chain aminotransferase protein. Human branched-chain aminotransferase (hBCAT) catalyzes the transamination of the branched-chain amino acids leucine, valine and isoleucine and α-ketoglutarate to their respective α-keto acids and glutamate. hBCAT activity is regulated by a CXXC center located approximately 10 Å from the active site. This redox-active center facilitates recycling between the reduced and oxidized states, representing hBCAT in its active and inactive forms, respectively. Site-directed mutagenesis of the redox sensor (Cys315) results in a significant loss of activity, with no loss of activity reported on the mutation of the resolving cysteine (Cys318), which allows the reversible formation of a disulfide bond between Cys315 and Cys318. The crystal structure of the oxidized form of the C318A variant was used to better understand the contributions of the individual cysteines and their oxidation states. The structure reveals the modified CXXC center in a conformation similar to that in the oxidized wild type, supporting the notion that its regulatory mechanism depends on switching the Cys315 side chain between active and inactive conformations. Moreover, the structure reveals conformational differences in the N-terminal and inter-domain region that may correlate with the inactivated state of the CXXC center.




sf

National Zoo scientists successfully grow two species of anemones in aquarium tanks

The anemones—both of which are commonly called Tealia red anemones under the species of Urticina—spawned in late April and early May, just days apart. Henley collected the eggs and sperm from the more than 2,000-gallon tank and put them together in smaller tanks to increase the chances of fertilization. After fertilization, the larvae settled and metamorphosed into a polyp.

The post National Zoo scientists successfully grow two species of anemones in aquarium tanks appeared first on Smithsonian Insider.




sf

Small migratory birds age faster in stressful places, study reveals

Small migratory male birds that winter in a stressful environment age faster than those that winter in a high-quality habitat, according to research stemming from […]

The post Small migratory birds age faster in stressful places, study reveals appeared first on Smithsonian Insider.




sf

Gold nanotechnology and lasers used to successfully freeze fish embryos

For more than 60 years, researchers have tried to successfully cryopreserve (or freeze) the embryo of zebrafish, a species that is an important medical model […]

The post Gold nanotechnology and lasers used to successfully freeze fish embryos appeared first on Smithsonian Insider.




sf

Black hole blasts may transform “Mini-Neptunes” into rocky worlds

A team of astrophysicists and planetary scientists has predicted that Neptune-like planets located near the center of the Milky Way galaxy have been transformed into […]

The post Black hole blasts may transform “Mini-Neptunes” into rocky worlds appeared first on Smithsonian Insider.




sf

The transformation matrices (distortion, orientation, correspondence), their continuous forms and their variants. Corrigenda

Appendices B4 and B5 of Cayron [Acta Cryst. (2019), A75, 411–437] contain equations involving the point group and the metric tensor in which the equality symbol should be substituted by the inclusion symbol.




sf

How To Quickly Transfer Contacts From Outlook Express




sf

sfc /scannow for Windows 8





sf

Transfer Files From iPod to PC




sf

National Park Service natural history collections transferred to care of the Smithsonian

The National Park Service and the Smithsonian Institution have announced a new partnership to share responsibility for selected National Park Service natural history collections, making them more readily available to researchers through the Smithsonian.

The post National Park Service natural history collections transferred to care of the Smithsonian appeared first on Smithsonian Insider.




sf

Model-independent extraction of the shapes and Fourier transforms from patterns of partially overlapped peaks with extended tails

This work presents a technique for extracting the detailed shape of peaks with extended, overlapping tails in an X-ray powder diffraction pattern. The application discussed here concerns crystallite size broadening, though the technique can be applied to spectra of any origin and without regard to how the profiles are to be subsequently analyzed. Historically, the extraction of profile shapes has been difficult due to the complexity of determining the background under the peak, resulting in an offset of the low-frequency components of the Fourier transform of the peak known as the `hook' problem. The use of a carefully considered statistical weighting function in a non-linear least-squares fit, followed by summing the residuals from such a fit with the fit itself, allows one to extract the full shape of an isolated peak, without contributions from either the background or adjacent peaks. The extracted shape, consisting of the fit function recombined with the residuals, is not dependent on any specific shape model. The application of this to analysis of microstructure is performed independently of global parametric models, which would reduce the number of refined parameters; therefore the technique requires high-quality data to produce results of interest. The effectiveness of the technique is demonstrated by extraction of Fourier transforms of peaks from two sets of size-broadened materials with two differing pieces of equipment.




sf

Polymorphism and phase transformation in the dimethyl sulfoxide solvate of 2,3,5,6-tetra­fluoro-1,4-di­iodo­benzene

A new polymorph (form II) is reported for the 1:1 dimethyl sulfoxide solvate of 2,3,5,6-tetra­fluoro-1,4-di­iodo­benzene (TFDIB·DMSO or C6F4I2·C2H6SO). The structure is similar to that of a previously reported polymorph (form I) [Britton (2003). Acta Cryst. E59, o1332–o1333], containing layers of TFDIB mol­ecules with DMSO mol­ecules between, accepting I⋯O halogen bonds from two TFDIB mol­ecules. Re-examination of form I over the temperature range 300–120 K shows that it undergoes a phase transformation around 220 K, where the DMSO mol­ecules undergo re-orientation and become ordered. The unit cell expands by ca 0.5 Å along the c axis and contracts by ca 1.0 Å along the a axis, and the space-group symmetry is reduced from Pnma to P212121. Refinement of form I against data collected at 220 K captures the (average) structure of the crystal prior to the phase transformation, with the DMSO mol­ecules showing four distinct disorder com­ponents, corresponding to an overlay of the 297 and 120 K structures. Assessment of the inter­molecular inter­action energies using the PIXEL method indicates that the various orientations of the DMSO mol­ecules have very similar total inter­action energies with the molecules of the TFDIB framework. The phase transformation is driven by inter­actions between DMSO mol­ecules, whereby re-orientation at lower temperature yields significantly closer and more stabilizing inter­actions between neighbouring DMSO mol­ecules, which lock in an ordered arrangement along the shortened a axis.




sf

transferring a text from mobile phone to laptop




sf

Transfering iPhone DCIM and dropping out




sf

Azimo offers fee-free money transfers to Nigeria

Global money transfer service Azimo has announced waiving fees for transfers to Nigeria as the...




sf

Payment provider ASF secures over GBP 14 mln investment

UK-based automotive payment provider Auto Service Finance has secured a debt and...




sf

Transfering from WinXP to Win10 - 32 or 64 bit ?




sf

dsfsdf




sf

Health Care Reform and Increased Patient Needs Require Transformation of Nursing Profession

Nurses roles, responsibilities, and education should change significantly to meet the increased demand for care that will be created by health care reform and to advance improvements in Americas increasingly complex health system, says a new report from the Institute of Medicine.




sf

IOM Report Calls for Cultural Transformation of Attitudes Toward Pain and Its Prevention and Management

Every year, approximately 100 million* adult Americans experience chronic pain, a condition that costs the nation between $560 billion and $635 billion annually, says a new report from the Institute of Medicine.




sf

Transferable Knowledge and Skills Key to Success in Education and Work - Report Calls for Efforts to Incorporate Deeper Learning Into Curriculum

Educational and business leaders want todays students both to master school subjects and to excel in areas such as problem solving, critical thinking, and communication




sf

Transformation of Health System Needed to Improve Care and Reduce Costs

Americas health care system has become too complex and costly to continue business as usual, says a new report from the Institute of Medicine




sf

New Report Calls for NSF to Develop Strategic Plan Specifying Social, Behavioral, and Economic Sciences Research Priorities

The social, behavioral, and economic (SBE) sciences make significant contributions to the National Science Foundation’s mission to advance health, prosperity and welfare, national defense, and progress in science, says a new report from the National Academies of Sciences, Engineering, and Medicine.




sf

A Number of Proactive Policing Practices Are Successful at Reducing Crime - Insufficient Evidence on Role of Racial Bias

A number of strategies used by the police to proactively prevent crimes have proved to be successful at crime reduction, at least in the short term, and most strategies do not harm communities’ attitudes toward police, finds a new report by the National Academies of Sciences, Engineering, and Medicine.