signal

[ Q.3055 (12/19) ] - Signalling protocol for heterogeneous Internet of things gateways

Signalling protocol for heterogeneous Internet of things gateways




signal

[ Q.3916 (12/19) ] - Signalling requirements and architecture for the Internet service quality monitoring system

Signalling requirements and architecture for the Internet service quality monitoring system




signal

[ Q.5002 (12/19) ] - Signalling requirements and architecture for media service entity attachment

Signalling requirements and architecture for media service entity attachment




signal

[ Q.3719 (12/19) ] - Signalling requirements for the separation of control plane and user plane in a virtualized broadband network gateway (vBNG)

Signalling requirements for the separation of control plane and user plane in a virtualized broadband network gateway (vBNG)




signal

[ Q.3057 (04/20) ] - Signalling requirements and architecture for interconnection between trustable network entities

Signalling requirements and architecture for interconnection between trustable network entities




signal

[ Q.5022 (04/20) ] - Signalling procedure of energy efficient device-to-device communication for IMT-2020 network

Signalling procedure of energy efficient device-to-device communication for IMT-2020 network




signal

[ V.34 (09/94) ] - a modem operating at data signalling rates of up to 28 800 bit/s for use on the general switched telephone network and on leased point-to-point 2-wire telephone-type circuits

a modem operating at data signalling rates of up to 28 800 bit/s for use on the general switched telephone network and on leased point-to-point 2-wire telephone-type circuits




signal

[ V.11/X.27 (03/93) ] - Electrical characteristics for balanced double-current interchange circuits operating at data signalling rates up to 10 Mbit/s

Electrical characteristics for balanced double-current interchange circuits operating at data signalling rates up to 10 Mbit/s




signal

[ V.32 (11/88) ] - A family of 2-wire, duplex modems operating at data signalling rates of up to 9600 bit/s for use on the general switched telephone network and on leased telephone-type circuits

A family of 2-wire, duplex modems operating at data signalling rates of up to 9600 bit/s for use on the general switched telephone network and on leased telephone-type circuits




signal

[ V.34 (10/96) ] - A modem operating at data signalling rates of up to 33 600 bit/s for use on the general switched telephone network and on leased point-to-point 2-wire telephone-type circuits

A modem operating at data signalling rates of up to 33 600 bit/s for use on the general switched telephone network and on leased point-to-point 2-wire telephone-type circuits




signal

[ V.152 (2005) Amendment 1 (03/09) ] - New Annex B - Use of data signal detection and silence insertion in voiceband data, and new Annex C on use of V.21 preamble for echo canceller control in a V.152 gateway

New Annex B - Use of data signal detection and silence insertion in voiceband data, and new Annex C on use of V.21 preamble for echo canceller control in a V.152 gateway




signal

Opensignal: Seoul comes first in APAC cities for 5G reliability and consistency, Singapore is 5th

Is deploying 5G in Singapore necessarily easier just because we’re smaller? Here, the big cities come out to play. #5g #connectivity




signal

From Thoughts To Words: How AI Deciphers Neural Signals To Help A Man With ALS speak

"Brain-computer interfaces are a groundbreaking technology that can help paralyzed people regain functions they’ve lost."




signal

TGF-β Signaling Methods and Protocols

Location: Electronic Resource- 




signal

Lipid Signaling Protocols

Location: Electronic Resource- 




signal

Signal and Image Processing in Medical Applications

Location: Electronic Resource- 




signal

Financial signal processing and machine learning

Location: Electronic Resource- 




signal

Real-time digital signal processing from MATLAB to C with the TMS320C6x DSPs

Location: Engineering Circulation Desk- TK5102.9.W44 2012




signal

Associate Analog Mixed Signal Integrated Circuit Design Engineer

Tukwila, WA United States - Job Description At Boeing, we innovate and collaborate to make the world a better place. From the seabed to outer space, you can contribute to work that matters with a company where diversity, equity and inclusion are shared values. We’re committed to fostering an en... View




signal

A New Approach Improves Signal Detection in Mass Cytometry

A team of researchers developed a technique, ACE, to improve the ability to study low-abundance proteins using mass cytometry.



  • News
  • News & Opinion

signal

Genetic Signals Linked to X Chromosome Loss Later in Life

Loss of the X chromosome increases with age and may have implications for health and disease risk.



  • News
  • News & Opinion

signal

Zoom и Google Meet теперь не нужны? Signal добавляет функцию видеозвонков и другие улучшения

Приложение для обмена сообщениями Signal, ориентированное на конфиденциальность, добавляет новые функции для видеозвонков, включая ссылки, реакции и вкладку звонков, чтобы стать альтернативой Zoom, Google Meet и Microsoft Teams.




signal

Six Insights on Preference Signals for AI Training

“Eagle Traffic Signals – 1970s” by RS 1990 is licensed via CC BY-NC-SA 2.0.. At the intersection of rapid advancements in generative AI and our ongoing strategy refresh, we’ve been deeply engaged in researching, analyzing, and fostering conversations about AI and value alignment. Our goal is to ensure that our legal and technical infrastructure remains…

The post Six Insights on Preference Signals for AI Training appeared first on Creative Commons.




signal

How Does Google+ Social Signals Effect Websites and Posting’s?

Okay, recently there has been some discussion surrounding the Google Authorship and Publisher topic. So I figured what a great time to cover another article for the topic since it has been part of an update being done for some websites I am working on. First off, there has been some more talk about the […]




signal

Naturally occurring hotspot cancer mutations in G{alpha}13 promote oncogenic signaling [Molecular Bases of Disease]

Heterotrimeric G-proteins are signaling switches broadly divided into four families based on the sequence and functional similarity of their Gα subunits: Gs, Gi/o, Gq/11, and G12/13. Artificial mutations that activate Gα subunits of each of these families have long been known to induce oncogenic transformation in experimental systems. With the advent of next-generation sequencing, activating hotspot mutations in Gs, Gi/o, or Gq/11 proteins have also been identified in patient tumor samples. In contrast, patient tumor-associated G12/13 mutations characterized to date lead to inactivation rather than activation. By using bioinformatic pathway analysis and signaling assays, here we identified cancer-associated hotspot mutations in Arg-200 of Gα13 (encoded by GNA13) as potent activators of oncogenic signaling. First, we found that components of a G12/13-dependent signaling cascade that culminates in activation of the Hippo pathway effectors YAP and TAZ is frequently altered in bladder cancer. Up-regulation of this signaling cascade correlates with increased YAP/TAZ activation transcriptional signatures in this cancer type. Among the G12/13 pathway alterations were mutations in Arg-200 of Gα13, which we validated to promote YAP/TAZ-dependent (TEAD) and MRTF-A/B-dependent (SRE.L) transcriptional activity. We further showed that this mechanism relies on the same RhoGEF-RhoGTPase cascade components that are up-regulated in bladder cancers. Moreover, Gα13 Arg-200 mutants induced oncogenic transformation in vitro as determined by focus formation assays. In summary, our findings on Gα13 mutants establish that naturally occurring hotspot mutations in Gα subunits of any of the four families of heterotrimeric G-proteins are putative cancer drivers.




signal

Hdac3 regulates bone modeling by suppressing osteoclast responsiveness to RANKL [Signal Transduction]

Hdac3 is a lysine deacetylase that removes acetyl groups from histones and additional proteins. Although Hdac3 functions within mesenchymal lineage skeletal cells are defined, little is known about Hdac3 activities in bone-resorbing osteoclasts. In this study we conditionally deleted Hdac3 within Ctsk-expressing cells and examined the effects on bone modeling and osteoclast differentiation in mice. Hdac3 deficiency reduced femur and tibia periosteal circumference and increased cortical periosteal osteoclast number. Trabecular bone was likewise reduced and was accompanied by increased osteoclast number per trabecular bone surface. We previously showed that Hdac3 deacetylates the p65 subunit of the NF-κB transcriptional complex to decrease DNA-binding and transcriptional activity. Hdac3-deficient osteoclasts demonstrate increased K310 NF-κB acetylation and NF-κB transcriptional activity. Hdac3-deficient osteoclast lineage cells were hyper-responsive to RANKL and showed elevated ex vivo osteoclast number and size and enhanced bone resorption in pit formation assays. Osteoclast-directed Hdac3 deficiency decreased cortical and trabecular bone mass parameters, suggesting that Hdac3 regulates coupling of bone resorption and bone formation. We surveyed a panel of osteoclast-derived coupling factors and found that Hdac3 suppression diminished sphingosine-1-phosphate production. Osteoclast-derived sphingosine-1-phosphate acts in paracrine to promote bone mineralization. Mineralization of WT bone marrow stromal cells cultured with conditioned medium from Hdac3-deficient osteoclasts was markedly reduced. Expression of alkaline phosphatase, type 1a1 collagen, and osteocalcin was also suppressed, but no change in Runx2 expression was observed. Our results demonstrate that Hdac3 controls bone modeling by suppressing osteoclast lineage cell responsiveness to RANKL and coupling to bone formation.




signal

Ligand bias in receptor tyrosine kinase signaling [Signal Transduction]

Ligand bias is the ability of ligands to differentially activate certain receptor signaling responses compared with others. It reflects differences in the responses of a receptor to specific ligands and has implications for the development of highly specific therapeutics. Whereas ligand bias has been studied primarily for G protein–coupled receptors (GPCRs), there are also reports of ligand bias for receptor tyrosine kinases (RTKs). However, the understanding of RTK ligand bias is lagging behind the knowledge of GPCR ligand bias. In this review, we highlight how protocols that were developed to study GPCR signaling can be used to identify and quantify RTK ligand bias. We also introduce an operational model that can provide insights into the biophysical basis of RTK activation and ligand bias. Finally, we discuss possible mechanisms underpinning RTK ligand bias. Thus, this review serves as a primer for researchers interested in investigating ligand bias in RTK signaling.




signal

FUS contributes to mTOR-dependent inhibition of translation [Signal Transduction]

The amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD)–linked RNA-binding protein called FUS (fused in sarcoma) has been implicated in several aspects of RNA regulation, including mRNA translation. The mechanism by which FUS affects the translation of polyribosomes has not been established. Here we show that FUS can associate with stalled polyribosomes and that this association is sensitive to mTOR (mammalian target of rapamycin) kinase activity. Specifically, we show that FUS association with polyribosomes is increased by Torin1 treatment or when cells are cultured in nutrient-deficient media, but not when cells are treated with rapamycin, the allosteric inhibitor of mTORC1. Moreover, we report that FUS is necessary for efficient stalling of translation because deficient cells are refractory to the inhibition of mTOR-dependent signaling by Torin1. We also show that ALS-linked FUS mutants R521G and P525L associate abundantly with polyribosomes and decrease global protein synthesis. Importantly, the inhibitory effect on translation by FUS is impaired by mutations that reduce its RNA-binding affinity. These findings demonstrate that FUS is an important RNA-binding protein that mediates translational repression through mTOR-dependent signaling and that ALS-linked FUS mutants can cause a toxic gain of function in the cytoplasm by repressing the translation of mRNA at polyribosomes.




signal

Tyrosine phosphorylation of the scaffold protein IQGAP1 in the MET pathway alters function [Signal Transduction]

IQGAP1 is a key scaffold protein that regulates numerous cellular processes and signaling pathways. Analogous to many other cellular proteins, IQGAP1 undergoes post-translational modifications, including phosphorylation. Nevertheless, very little is known about the specific sites of phosphorylation or the effects on IQGAP1 function. Here, using several approaches, including MS, site-directed mutagenesis, siRNA-mediated gene silencing, and chemical inhibitors, we identified the specific tyrosine residues that are phosphorylated on IQGAP1 and evaluated the effect on function. Tyr-172, Tyr-654, Tyr-855, and Tyr-1510 were phosphorylated on IQGAP1 when phosphotyrosine phosphatase activity was inhibited in cells. IQGAP1 was phosphorylated exclusively on Tyr-1510 under conditions with enhanced MET or c-Src signaling, including in human lung cancer cell lines. This phosphorylation was significantly reduced by chemical inhibitors of MET or c-Src or by siRNA-mediated knockdown of MET. To investigate the biological sequelae of phosphorylation, we generated a nonphosphorylatable IQGAP1 construct by replacing Tyr-1510 with alanine. The ability of hepatocyte growth factor, the ligand for MET, to promote AKT activation and cell migration was significantly greater when IQGAP1-null cells were reconstituted with IQGAP1 Y1510A than when cells were reconstituted with WT IQGAP1. Collectively, our data suggest that phosphorylation of Tyr-1510 of IQGAP1 alters cell function. Because increased MET signaling is implicated in the development and progression of several types of carcinoma, IQGAP1 may be a potential therapeutic target in selected malignancies.




signal

Time-resolved Mass Spectrometry of Tyrosine Phosphorylation Sites in the Epidermal Growth Factor Receptor Signaling Network Reveals Dynamic Modules

Yi Zhang
Sep 1, 2005; 4:1240-1250
Research




signal

Quantitative Phosphoproteomics of Early Elicitor Signaling in Arabidopsis

Joris J. Benschop
Jul 1, 2007; 6:1198-1214
Research




signal

Quantitative Phosphoproteomics Applied to the Yeast Pheromone Signaling Pathway

Albrecht Gruhler
Mar 1, 2005; 4:310-327
Research




signal

The break-up of Scholz’s coalition government signals the end of Germany’s old economic model

The break-up of Scholz’s coalition government signals the end of Germany’s old economic model Expert comment jon.wallace

The coalition could not agree how to fund new support for Ukraine and failed to fully implement the ‘Zeitenwende’. A new government must push through reform.

As Europeans were still processing Donald Trump’s victory in the 2024 US presidential election, an acrimonious break up occurred 4000 miles east of Washington DC.

Reports had been circulating for weeks about the fragile state of Germany’s ‘traffic light’ coalition government led by German Chancellor Olaf Scholz, consisting of the centre-left Social Democratic Party (SPD), the Green Party, and liberal Free Democratic Party (FDP).

The expectation had been that the coalition would hold on for a few more weeks and might even be given a new lease of life by Trump’s re-election. Instead, it collapsed on the day Trump’s win was confirmed. An unusually angry Scholtz announced in a live address that he had fired FDP Finance Minister Christian Lindner, effectively breaking up the coalition.

At the heart of the dispute was the so-called ‘debt brake’ – a constitutional mechanism which restricts Germany’s annual public deficit to 0.35 per cent of GDP. Lindner proposed a set of reforms which were unpalatable to the SPD and the Greens. 

In response, Scholz suggested declaring an emergency, which would have suspended the debt brake. That in turn was unacceptable to Lindner, leading to his sacking by the Chancellor.

Practically, this means the SPD and the Greens are now in a minority coalition, without agreement on the 2025 budget or the votes in parliament to pass it. They also still face the challenge of the debt brake.

A vote of confidence will take place in December, with elections to be held before the end of February 2025 latest.

The end of Germany’s economic model

At the root of Germany’s political crisis is the country’s economic model. For decades, Germany relied on a system that depended on cheap Russian gas, cheap imports of consumer goods from China, high-value exports – particularly in the automotive sector – and the US security umbrella.

With Russian energy no longer viable, the global economic landscape shifting, and Donald Trump on his way back to the White House, that model is no longer workable. And Germany’s economy is expected to contract by 0.2 per cent in 2024 – a contraction for the second year running.

Germany has struggled to turn around its economic woes, with the car industry particularly affected.

The ‘Zeitenwende’, announced by Scholz in the wake of Russia’s full-scale invasion of Ukraine, should have signalled a turnaround of both foreign and economic policy, given how much the two are interconnected. Yet on both fronts, too little changed.

Germany’s reliance on Russian gas did come to an abrupt end in 2022. And Germany is Ukraine’s second largest military aid donor after the US, while accepting the most Ukrainian refugees.

But the ‘Zeitenwende’ turnaround ended there. Scholz’s coalition government failed to prepare for long-term investment in defence at the levels required by creating an off-budget defence spending fund which would have run out in 2027. The draft budget for 2025 showed defence spending would have been cut, as would support for Ukraine.

Germany has also struggled to turn around its economic woes, with the car industry particularly affected. Cheap Chinese EVs and new energy technologies are competing with Germany’s most powerful companies. Volkswagen, the country’s largest car manufacturer, has announced plant closures and layoffs due to shrinking profit margins.  

To the west, Trump’s threat to impose 10 to 20 per cent tariffs on all EU imports meant share prices of Volkswagen, BMW, Mercedez-Benz and Porsche all dropped between 4 to 7 per cent following news of his re-election.

To the east, trade tensions between the EU and China are intensifying. Yet rather than choosing to diversify, German companies have doubled down on their bets in China, with German investment in the country rising from €6.5bn for the whole of 2023 to €7.3bn in the first half of 2024 alone – only exposing carmakers further.

Germany’s support for Ukraine

Like French President Emmanuel Macron, Scholz had already been weakened by the results of the European Parliamentary elections in June. With the collapse of his traffic light coalition, the EU’s Franco-German ‘engine’ is now well and truly stalled – until new leadership can be found. This weakness comes at a perilous moment when clear, united European leadership, and much increased funding, is needed to shore up support for Ukraine.




signal

Genetic evidence for partial redundancy between the arginine methyltransferases CARM1 and PRMT6 [Signal Transduction]

CARM1 is a protein arginine methyltransferase (PRMT) that acts as a coactivator in a number of transcriptional programs. CARM1 orchestrates this coactivator activity in part by depositing the H3R17me2a histone mark in the vicinity of gene promoters that it regulates. However, the gross levels of H3R17me2a in CARM1 KO mice did not significantly decrease, indicating that other PRMT(s) may compensate for this loss. We thus performed a screen of type I PRMTs, which revealed that PRMT6 can also deposit the H3R17me2a mark in vitro. CARM1 knockout mice are perinatally lethal and display a reduced fetal size, whereas PRMT6 null mice are viable, which permits the generation of double knockouts. Embryos that are null for both CARM1 and PRMT6 are noticeably smaller than CARM1 null embryos, providing in vivo evidence of redundancy. Mouse embryonic fibroblasts (MEFs) from the double knockout embryos display an absence of the H3R17me2a mark during mitosis and increased signs of DNA damage. Moreover, using the combination of CARM1 and PRMT6 inhibitors suppresses the cell proliferation of WT MEFs, suggesting a synergistic effect between CARM1 and PRMT6 inhibitions. These studies provide direct evidence that PRMT6 also deposits the H3R17me2a mark and acts redundantly with CARM1.




signal

Hepatocyte nuclear factor 1{beta} suppresses canonical Wnt signaling through transcriptional repression of lymphoid enhancer-binding factor 1 [Molecular Bases of Disease]

Hepatocyte nuclear factor-1β (HNF-1β) is a tissue-specific transcription factor that is required for normal kidney development and renal epithelial differentiation. Mutations of HNF-1β produce congenital kidney abnormalities and inherited renal tubulopathies. Here, we show that ablation of HNF-1β in mIMCD3 renal epithelial cells results in activation of β-catenin and increased expression of lymphoid enhancer–binding factor 1 (LEF1), a downstream effector in the canonical Wnt signaling pathway. Increased expression and nuclear localization of LEF1 are also observed in cystic kidneys from Hnf1b mutant mice. Expression of dominant-negative mutant HNF-1β in mIMCD3 cells produces hyperresponsiveness to exogenous Wnt ligands, which is inhibited by siRNA-mediated knockdown of Lef1. WT HNF-1β binds to two evolutionarily conserved sites located 94 and 30 kb from the mouse Lef1 promoter. Ablation of HNF-1β decreases H3K27 trimethylation repressive marks and increases β-catenin occupancy at a site 4 kb upstream to Lef1. Mechanistically, WT HNF-1β recruits the polycomb-repressive complex 2 that catalyzes H3K27 trimethylation. Deletion of the β-catenin–binding domain of LEF1 in HNF-1β–deficient cells abolishes the increase in Lef1 transcription and decreases the expression of downstream Wnt target genes. The canonical Wnt target gene, Axin2, is also a direct transcriptional target of HNF-1β through binding to negative regulatory elements in the gene promoter. These findings demonstrate that HNF-1β regulates canonical Wnt target genes through long-range effects on histone methylation at Wnt enhancers and reveal a new mode of active transcriptional repression by HNF-1β.




signal

Coupled intra- and interdomain dynamics support domain cross-talk in Pin1 [Signal Transduction]

The functional mechanisms of multidomain proteins often exploit interdomain interactions, or “cross-talk.” An example is human Pin1, an essential mitotic regulator consisting of a Trp–Trp (WW) domain flexibly tethered to a peptidyl-prolyl isomerase (PPIase) domain, resulting in interdomain interactions important for Pin1 function. Substrate binding to the WW domain alters its transient contacts with the PPIase domain via means that are only partially understood. Accordingly, we have investigated Pin1 interdomain interactions using NMR paramagnetic relaxation enhancement (PRE) and molecular dynamics (MD) simulations. The PREs show that apo-Pin1 samples interdomain contacts beyond the range suggested by previous structural studies. They further show that substrate binding to the WW domain simultaneously alters interdomain separation and the internal conformation of the WW domain. A 4.5-μs all-atom MD simulation of apo-Pin1 suggests that the fluctuations of interdomain distances are correlated with fluctuations of WW domain interresidue contacts involved in substrate binding. Thus, the interdomain/WW domain conformations sampled by apo-Pin1 may already include a range of conformations appropriate for binding Pin1's numerous substrates. The proposed coupling between intra-/interdomain conformational fluctuations is a consequence of the dynamic modular architecture of Pin1. Such modular architecture is common among cell-cycle proteins; thus, the WW–PPIase domain cross-talk mechanisms of Pin1 may be relevant for their mechanisms as well.




signal

Novel fluorescent GPCR biosensor detects retinal equilibrium binding to opsin and active G protein and arrestin signaling conformations [Molecular Biophysics]

Rhodopsin is a canonical class A photosensitive G protein–coupled receptor (GPCR), yet relatively few pharmaceutical agents targeting this visual receptor have been identified, in part due to the unique characteristics of its light-sensitive, covalently bound retinal ligands. Rhodopsin becomes activated when light isomerizes 11-cis-retinal into an agonist, all-trans-retinal (ATR), which enables the receptor to activate its G protein. We have previously demonstrated that, despite being covalently bound, ATR can display properties of equilibrium binding, yet how this is accomplished is unknown. Here, we describe a new approach for both identifying compounds that can activate and attenuate rhodopsin and testing the hypothesis that opsin binds retinal in equilibrium. Our method uses opsin-based fluorescent sensors, which directly report the formation of active receptor conformations by detecting the binding of G protein or arrestin fragments that have been fused onto the receptor's C terminus. We show that these biosensors can be used to monitor equilibrium binding of the agonist, ATR, as well as the noncovalent binding of β-ionone, an antagonist for G protein activation. Finally, we use these novel biosensors to observe ATR release from an activated, unlabeled receptor and its subsequent transfer to the sensor in real time. Taken together, these data support the retinal equilibrium binding hypothesis. The approach we describe should prove directly translatable to other GPCRs, providing a new tool for ligand discovery and mutant characterization.




signal

Quantitative phosphoproteomic analysis reveals involvement of PD-1 in multiple T cell functions [Signal Transduction]

Programmed cell death protein 1 (PD-1) is a critical inhibitory receptor that limits excessive T cell responses. Cancer cells have evolved to evade these immunoregulatory mechanisms by upregulating PD-1 ligands and preventing T cell–mediated anti-tumor responses. Consequently, therapeutic blockade of PD-1 enhances T cell–mediated anti-tumor immunity, but many patients do not respond and a significant proportion develop inflammatory toxicities. To improve anti-cancer therapy, it is critical to reveal the mechanisms by which PD-1 regulates T cell responses. We performed global quantitative phosphoproteomic interrogation of PD-1 signaling in T cells. By complementing our analysis with functional validation assays, we show that PD-1 targets tyrosine phosphosites that mediate proximal T cell receptor signaling, cytoskeletal organization, and immune synapse formation. PD-1 ligation also led to differential phosphorylation of serine and threonine sites within proteins regulating T cell activation, gene expression, and protein translation. In silico predictions revealed that kinase/substrate relationships engaged downstream of PD-1 ligation. These insights uncover the phosphoproteomic landscape of PD-1–triggered pathways and reveal novel PD-1 substrates that modulate diverse T cell functions and may serve as future therapeutic targets. These data are a useful resource in the design of future PD-1–targeting therapeutic approaches.




signal

CDKN2A/p16INK4a suppresses hepatic fatty acid oxidation through the AMPK{alpha}2-SIRT1-PPAR{alpha} signaling pathway [Metabolism]

In addition to their well-known role in the control of cellular proliferation and cancer, cell cycle regulators are increasingly identified as important metabolic modulators. Several GWAS have identified SNPs near CDKN2A, the locus encoding for p16INK4a (p16), associated with elevated risk for cardiovascular diseases and type-2 diabetes development, two pathologies associated with impaired hepatic lipid metabolism. Although p16 was recently shown to control hepatic glucose homeostasis, it is unknown whether p16 also controls hepatic lipid metabolism. Using a combination of in vivo and in vitro approaches, we found that p16 modulates fasting-induced hepatic fatty acid oxidation (FAO) and lipid droplet accumulation. In primary hepatocytes, p16-deficiency was associated with elevated expression of genes involved in fatty acid catabolism. These transcriptional changes led to increased FAO and were associated with enhanced activation of PPARα through a mechanism requiring the catalytic AMPKα2 subunit and SIRT1, two known activators of PPARα. By contrast, p16 overexpression was associated with triglyceride accumulation and increased lipid droplet numbers in vitro, and decreased ketogenesis and hepatic mitochondrial activity in vivo. Finally, gene expression analysis of liver samples from obese patients revealed a negative correlation between CDKN2A expression and PPARA and its target genes. Our findings demonstrate that p16 represses hepatic lipid catabolism during fasting and may thus participate in the preservation of metabolic flexibility.




signal

Secretory galectin-3 induced by glucocorticoid stress triggers stemness exhaustion of hepatic progenitor cells [Signal Transduction]

Adult progenitor cell populations typically exist in a quiescent state within a controlled niche environment. However, various stresses or forms of damage can disrupt this state, which often leads to dysfunction and aging. We built a glucocorticoid (GC)-induced liver damage model of mice, found that GC stress induced liver damage, leading to consequences for progenitor cells expansion. However, the mechanisms by which niche factors cause progenitor cells proliferation are largely unknown. We demonstrate that, within the liver progenitor cells niche, Galectin-3 (Gal-3) is responsible for driving a subset of progenitor cells to break quiescence. We show that GC stress causes aging of the niche, which induces the up-regulation of Gal-3. The increased Gal-3 population increasingly interacts with the progenitor cell marker CD133, which triggers focal adhesion kinase (FAK)/AMP-activated kinase (AMPK) signaling. This results in the loss of quiescence and leads to the eventual stemness exhaustion of progenitor cells. Conversely, blocking Gal-3 with the inhibitor TD139 prevents the loss of stemness and improves liver function. These experiments identify a stress-dependent change in progenitor cell niche that directly influence liver progenitor cell quiescence and function.




signal

VBP1 modulates Wnt/{beta}-catenin signaling by mediating the stability of the transcription factors TCF/LEFs [Signal Transduction]

The Wnt/β-catenin pathway is one of the major pathways that regulates embryonic development, adult homeostasis, and stem cell self-renewal. In this pathway, transcription factors T-cell factor and lymphoid enhancer factor (TCF/LEF) serve as a key switch to repress or activate Wnt target gene transcription by recruiting repressor molecules or interacting with the β-catenin effector, respectively. It has become evident that the protein stability of the TCF/LEF family members may play a critical role in controlling the activity of the Wnt/β-catenin signaling pathway. However, factors that regulate the stability of TCF/LEFs remain largely unknown. Here, we report that pVHL binding protein 1 (VBP1) regulates the Wnt/β-catenin signaling pathway by controlling the stability of TCF/LEFs. Surprisingly, we found that either overexpression or knockdown of VBP1 decreased Wnt/β-catenin signaling activity in both cultured cells and zebrafish embryos. Mechanistically, VBP1 directly binds to all four TCF/LEF family members and von Hippel-Lindau tumor-suppressor protein (pVHL). Either overexpression or knockdown of VBP1 increases the association between TCF/LEFs and pVHL and then decreases the protein levels of TCF/LEFs via proteasomal degradation. Together, our results provide mechanistic insights into the roles of VBP1 in controlling TCF/LEFs protein stability and regulating Wnt/β-catenin signaling pathway activity.




signal

Agonist-activated glucagon receptors are deubiquitinated at early endosomes by two distinct deubiquitinases to facilitate Rab4a-dependent recycling [Signal Transduction]

The glucagon receptor (GCGR) activated by the peptide hormone glucagon is a seven-transmembrane G protein–coupled receptor (GPCR) that regulates blood glucose levels. Ubiquitination influences trafficking and signaling of many GPCRs, but its characterization for the GCGR is lacking. Using endocytic colocalization and ubiquitination assays, we have identified a correlation between the ubiquitination profile and recycling of the GCGR. Our experiments revealed that GCGRs are constitutively ubiquitinated at the cell surface. Glucagon stimulation not only promoted GCGR endocytic trafficking through Rab5a early endosomes and Rab4a recycling endosomes, but also induced rapid deubiquitination of GCGRs. Inhibiting GCGR internalization or disrupting endocytic trafficking prevented agonist-induced deubiquitination of the GCGR. Furthermore, a Rab4a dominant negative (DN) that blocks trafficking at recycling endosomes enabled GCGR deubiquitination, whereas a Rab5a DN that blocks trafficking at early endosomes eliminated agonist-induced GCGR deubiquitination. By down-regulating candidate deubiquitinases that are either linked with GPCR trafficking or localized on endosomes, we identified signal-transducing adaptor molecule–binding protein (STAMBP) and ubiquitin-specific protease 33 (USP33) as cognate deubiquitinases for the GCGR. Our data suggest that USP33 constitutively deubiquitinates the GCGR, whereas both STAMBP and USP33 deubiquitinate agonist-activated GCGRs at early endosomes. A mutant GCGR with all five intracellular lysines altered to arginines remains deubiquitinated and shows augmented trafficking to Rab4a recycling endosomes compared with the WT, thus affirming the role of deubiquitination in GCGR recycling. We conclude that the GCGRs are rapidly deubiquitinated after agonist-activation to facilitate Rab4a-dependent recycling and that USP33 and STAMBP activities are critical for the endocytic recycling of the GCGR.




signal

Integrin and autocrine IGF2 pathways control fasting insulin secretion in {beta}-cells [Signal Transduction]

Elevated levels of fasting insulin release and insufficient glucose-stimulated insulin secretion (GSIS) are hallmarks of diabetes. Studies have established cross-talk between integrin signaling and insulin activity, but more details of how integrin-dependent signaling impacts the pathophysiology of diabetes are needed. Here, we dissected integrin-dependent signaling pathways involved in the regulation of insulin secretion in β-cells and studied their link to the still debated autocrine regulation of insulin secretion by insulin/insulin-like growth factor (IGF) 2–AKT signaling. We observed for the first time a cooperation between different AKT isoforms and focal adhesion kinase (FAK)–dependent adhesion signaling, which either controlled GSIS or prevented insulin secretion under fasting conditions. Indeed, β-cells form integrin-containing adhesions, which provide anchorage to the pancreatic extracellular matrix and are the origin of intracellular signaling via FAK and paxillin. Under low-glucose conditions, β-cells adopt a starved adhesion phenotype consisting of actin stress fibers and large peripheral focal adhesion. In contrast, glucose stimulation induces cell spreading, actin remodeling, and point-like adhesions that contain phospho-FAK and phosphopaxillin, located in small protrusions. Rat primary β-cells and mouse insulinomas showed an adhesion remodeling during GSIS resulting from autocrine insulin/IGF2 and AKT1 signaling. However, under starving conditions, the maintenance of stress fibers and the large adhesion phenotype required autocrine IGF2-IGF1 receptor signaling mediated by AKT2 and elevated FAK-kinase activity and ROCK-RhoA levels but low levels of paxillin phosphorylation. This starved adhesion phenotype prevented excessive insulin granule release to maintain low insulin secretion during fasting. Thus, deregulation of the IGF2 and adhesion-mediated signaling may explain dysfunctions observed in diabetes.




signal

G{alpha}s directly drives PDZ-RhoGEF signaling to Cdc42 [Cell Biology]

Gα proteins promote dynamic adjustments of cell shape directed by actin-cytoskeleton reorganization via their respective RhoGEF effectors. For example, Gα13 binding to the RGS-homology (RH) domains of several RH-RhoGEFs allosterically activates these proteins, causing them to expose their catalytic Dbl-homology (DH)/pleckstrin-homology (PH) regions, which triggers downstream signals. However, whether additional Gα proteins might directly regulate the RH-RhoGEFs was not known. To explore this question, we first examined the morphological effects of expressing shortened RH-RhoGEF DH/PH constructs of p115RhoGEF/ARHGEF1, PDZ-RhoGEF (PRG)/ARHGEF11, and LARG/ARHGEF12. As expected, the three constructs promoted cell contraction and activated RhoA, known to be downstream of Gα13. Intriguingly, PRG DH/PH also induced filopodia-like cell protrusions and activated Cdc42. This pathway was stimulated by constitutively active Gαs (GαsQ227L), which enabled endogenous PRG to gain affinity for Cdc42. A chemogenetic approach revealed that signaling by Gs-coupled receptors, but not by those coupled to Gi or Gq, enabled PRG to bind Cdc42. This receptor-dependent effect, as well as CREB phosphorylation, was blocked by a construct derived from the PRG:Gαs-binding region, PRG-linker. Active Gαs interacted with isolated PRG DH and PH domains and their linker. In addition, this construct interfered with GαsQ227L's ability to guide PRG's interaction with Cdc42. Endogenous Gs-coupled prostaglandin receptors stimulated PRG binding to membrane fractions and activated signaling to PKA, and this canonical endogenous pathway was attenuated by PRG-linker. Altogether, our results demonstrate that active Gαs can recognize PRG as a novel effector directing its DH/PH catalytic module to gain affinity for Cdc42.




signal

Interrogation of kinase genetic interactions provides a global view of PAK1-mediated signal transduction pathways [Gene Regulation]

Kinases are critical components of intracellular signaling pathways and have been extensively investigated with regard to their roles in cancer. p21-activated kinase-1 (PAK1) is a serine/threonine kinase that has been previously implicated in numerous biological processes, such as cell migration, cell cycle progression, cell motility, invasion, and angiogenesis, in glioma and other cancers. However, the signaling network linked to PAK1 is not fully defined. We previously reported a large-scale yeast genetic interaction screen using toxicity as a readout to identify candidate PAK1 genetic interactions. En masse transformation of the PAK1 gene into 4,653 homozygous diploid Saccharomyces cerevisiae yeast deletion mutants identified ∼400 candidates that suppressed yeast toxicity. Here we selected 19 candidate PAK1 genetic interactions that had human orthologs and were expressed in glioma for further examination in mammalian cells, brain slice cultures, and orthotopic glioma models. RNAi and pharmacological inhibition of potential PAK1 interactors confirmed that DPP4, KIF11, mTOR, PKM2, SGPP1, TTK, and YWHAE regulate PAK1-induced cell migration and revealed the importance of genes related to the mitotic spindle, proteolysis, autophagy, and metabolism in PAK1-mediated glioma cell migration, drug resistance, and proliferation. AKT1 was further identified as a downstream mediator of the PAK1-TTK genetic interaction. Taken together, these data provide a global view of PAK1-mediated signal transduction pathways and point to potential new drug targets for glioma therapy.




signal

PTPN2 regulates the activation of KRAS and plays a critical role in proliferation and survival of KRAS-driven cancer cells [Signal Transduction]

RAS genes are the most commonly mutated in human cancers and play critical roles in tumor initiation, progression, and drug resistance. Identification of targets that block RAS signaling is pivotal to develop therapies for RAS-related cancer. As RAS translocation to the plasma membrane (PM) is essential for its effective signal transduction, we devised a high-content screening assay to search for genes regulating KRAS membrane association. We found that the tyrosine phosphatase PTPN2 regulates the plasma membrane localization of KRAS. Knockdown of PTPN2 reduced the proliferation and promoted apoptosis in KRAS-dependent cancer cells, but not in KRAS-independent cells. Mechanistically, PTPN2 negatively regulates tyrosine phosphorylation of KRAS, which, in turn, affects the activation KRAS and its downstream signaling. Consistently, analysis of the TCGA database demonstrates that high expression of PTPN2 is significantly associated with poor prognosis of patients with KRAS-mutant pancreatic adenocarcinoma. These results indicate that PTPN2 is a key regulator of KRAS and may serve as a new target for therapy of KRAS-driven cancer.




signal

BMP-9 and LDL crosstalk regulates ALK-1 endocytosis and LDL transcytosis in endothelial cells [Signal Transduction]

Bone morphogenetic protein-9 (BMP-9) is a circulating cytokine that is known to play an essential role in the endothelial homeostasis and the binding of BMP-9 to the receptor activin-like kinase 1 (ALK-1) promotes endothelial cell quiescence. Previously, using an unbiased screen, we identified ALK-1 as a high-capacity receptor for low-density lipoprotein (LDL) in endothelial cells that mediates its transcytosis in a nondegradative manner. Here we examine the crosstalk between BMP-9 and LDL and how it influences their interactions with ALK-1. Treatment of endothelial cells with BMP-9 triggers the extensive endocytosis of ALK-1, and it is mediated by caveolin-1 (CAV-1) and dynamin-2 (DNM2) but not clathrin heavy chain. Knockdown of CAV-1 reduces BMP-9–mediated internalization of ALK-1, BMP-9–dependent signaling and gene expression. Similarly, treatment of endothelial cells with LDL reduces BMP-9–induced SMAD1/5 phosphorylation and gene expression and silencing of CAV-1 and DNM2 diminishes LDL-mediated ALK-1 internalization. Interestingly, BMP-9–mediated ALK-1 internalization strongly re-duces LDL transcytosis to levels seen with ALK-1 deficiency. Thus, BMP-9 levels can control cell surface levels of ALK-1, via CAV-1, to regulate both BMP-9 signaling and LDL transcytosis.




signal

Signaling roles of phosphoinositides in the retina [Thematic Reviews]

The field of phosphoinositide signaling has expanded significantly in recent years. Phosphoinositides (PIs) are universal signaling molecules that directly interact with membrane proteins or with cytosolic proteins containing domains that directly bind phosphoinositides and are recruited to cell membranes. Through the activities of PI kinases and PI phosphatases, seven distinct phosphoinositide lipid molecules are formed from the parent molecule phosphatidylinositol. PI signals regulate a wide range of cellular functions, including cytoskeletal assembly, membrane binding and fusion, ciliogenesis, vesicular transport, and signal transduction. Given the many excellent reviews on phosphoinositide kinases, phosphoinositide phosphatases, and PIs in general, in this review, we discuss recent studies and advances in PI lipid signaling in the retina. We specifically focus on PI lipids from vertebrate (e.g. bovine, rat, mice, toad, and zebrafish) and invertebrate (e.g. drosophila, horseshoe crab, and squid) retinas. We also discuss the importance of PIs revealed from animal models and human diseases, and methods to study PI levels both in vitro and in vivo. We propose that future studies should investigate the function and mechanism of activation of PI-modifying enzymes/phosphatases and further unravel PI regulation and function in the different cell types of the retina.




signal

Docosanoid signaling modulates corneal nerve regeneration: effect on tear secretion, wound healing, and neuropathic pain [Thematic Reviews]

The cornea is densely innervated, mainly by sensory nerves of the ophthalmic branch of the trigeminal ganglia (TG). These nerves  are important to maintain corneal homeostasis, and nerve damage can lead to a decrease in wound healing, an increase in corneal ulceration and dry eye disease (DED), and neuropathic pain. Pathologies, such as diabetes, aging, viral and bacterial infection, as well as  prolonged use of contact lenses and surgeries to correct vision can produce nerve damage. There are no effective therapies to alleviate DED (a multifunctional disease) and several clinical trials using -3 supplementation show unclear and sometimes negative results. Using animal models of corneal nerve damage, we show that treating corneas with pigment epithelium-derived factor (PEDF) plus docosahexaenoic acid (DHA) increases nerve regeneration, wound healing, and tear secretion. The mechanism involves the activation of a calcium-independent phospholipase A2 (iPLA2) that releases the incorporated DHA from phospholipids and enhances the synthesis of docosanoids neuroprotectin D1 (NPD1) and a new resolvin stereoisomer  RvD6i. NPD1 stimulates the synthesis of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and of semaphorin 7A (Sema7A).  RvD6i treatment of injured corneas modulates gene expression in the TG resulting in enhanced neurogenesis; decreased neuropathic pain and increased sensitivity. Taken together, these results represent a promising therapeutic option to re-establish the homeostasis of the cornea.




signal

Site-specific deacylation by ABHD17a controls BK channel splice variant activity [Signal Transduction]

S-Acylation, the reversible post-translational lipid modification of proteins, is an important mechanism to control the properties and function of ion channels and other polytopic transmembrane proteins. However, although increasing evidence reveals the role of diverse acyl protein transferases (zDHHC) in controlling ion channel S-acylation, the acyl protein thioesterases that control ion channel deacylation are very poorly defined. Here we show that ABHD17a (α/β-hydrolase domain-containing protein 17a) deacylates the stress-regulated exon domain of large conductance voltage- and calcium-activated potassium (BK) channels inhibiting channel activity independently of effects on channel surface expression. Importantly, ABHD17a deacylates BK channels in a site-specific manner because it has no effect on the S-acylated S0–S1 domain conserved in all BK channels that controls membrane trafficking and is deacylated by the acyl protein thioesterase Lypla1. Thus, distinct S-acylated domains in the same polytopic transmembrane protein can be regulated by different acyl protein thioesterases revealing mechanisms for generating both specificity and diversity for these important enzymes to control the properties and functions of ion channels.