ive

A comparative anatomy of protein crystals: lessons from the automatic processing of 56 000 samples

The fully automatic processing of crystals of macromolecules has presented a unique opportunity to gather information on the samples that is not usually recorded. This has proved invaluable in improving sample-location, characterization and data-collection algorithms. After operating for four years, MASSIF-1 has now processed over 56 000 samples, gathering information at each stage, from the volume of the crystal to the unit-cell dimensions, the space group, the quality of the data collected and the reasoning behind the decisions made in data collection. This provides an unprecedented opportunity to analyse these data together, providing a detailed landscape of macromolecular crystals, intimate details of their contents and, importantly, how the two are related. The data show that mosaic spread is unrelated to the size or shape of crystals and demonstrate experimentally that diffraction intensities scale in proportion to crystal volume and molecular weight. It is also shown that crystal volume scales inversely with molecular weight. The results set the scene for the development of X-ray crystallography in a changing environment for structural biology.




ive

Diversifying molecular and topological space via a supramolecular solid-state synthesis: a purely organic mok net sustained by hydrogen bonds

A three-dimensional hydrogen-bonded network based on a rare mok topology has been constructed using an organic molecule synthesized in the solid state. The molecule is obtained using a supramolecular protecting-group strategy that is applied to a solid-state [2+2] photodimerization. The photodimerization affords a novel head-to-head cyclo­butane product. The cyclo­butane possesses tetrahedrally disposed cis-hydrogen-bond donor (phenolic) and cis-hydrogen-bond acceptor (pyridyl) groups. The product self-assembles in the solid state to form a mok network that exhibits twofold interpenetration. The cyclo­butane adopts different conformations to provide combinations of hydrogen-bond donor and acceptor sites to conform to the structural requirements of the mok net.




ive

A comparative study of single-particle cryo-EM with liquid-nitrogen and liquid-helium cooling

Radiation damage is the most fundamental limitation for achieving high resolution in electron cryo-microscopy (cryo-EM) of biological samples. The effects of radiation damage are reduced by liquid-helium cooling, although the use of liquid helium is more challenging than that of liquid nitrogen. To date, the benefits of liquid-nitrogen and liquid-helium cooling for single-particle cryo-EM have not been compared quantitatively. With recent technical and computational advances in cryo-EM image recording and processing, such a comparison now seems timely. This study aims to evaluate the relative merits of liquid-helium cooling in present-day single-particle analysis, taking advantage of direct electron detectors. Two data sets for recombinant mouse heavy-chain apoferritin cooled with liquid-nitrogen or liquid-helium to 85 or 17 K were collected, processed and compared. No improvement in terms of resolution or Coulomb potential map quality was found for liquid-helium cooling. Interestingly, beam-induced motion was found to be significantly higher with liquid-helium cooling, especially within the most valuable first few frames of an exposure, thus counteracting any potential benefit of better cryoprotection that liquid-helium cooling may offer for single-particle cryo-EM.




ive

Crystal structure of the putative cyclase IdmH from the indanomycin nonribosomal peptide synthase/polyketide synthase

Indanomycin is biosynthesized by a hybrid nonribosomal peptide synthase/polyketide synthase (NRPS/PKS) followed by a number of `tailoring' steps to form the two ring systems that are present in the mature product. It had previously been hypothesized that the indane ring of indanomycin was formed by the action of IdmH using a Diels–Alder reaction. Here, the crystal structure of a selenomethionine-labelled truncated form of IdmH (IdmH-Δ99–107) was solved using single-wavelength anomalous dispersion (SAD) phasing. This truncated variant allows consistent and easy crystallization, but importantly the structure was used as a search model in molecular replacement, allowing the full-length IdmH structure to be determined to 2.7 Å resolution. IdmH is a homodimer, with the individual protomers consisting of an α+β barrel. Each protomer contains a deep hydrophobic pocket which is proposed to constitute the active site of the enzyme. To investigate the reaction catalysed by IdmH, 88% of the backbone NMR resonances were assigned, and using chemical shift perturbation of [15N]-labelled IdmH it was demonstrated that indanomycin binds in the active-site pocket. Finally, combined quantum mechanical/molecular mechanical (QM/MM) modelling of the IdmH reaction shows that the active site of the enzyme provides an appropriate environment to promote indane-ring formation, supporting the assignment of IdmH as the key Diels–Alderase catalysing the final step in the biosynthesis of indanomycin through a similar mechanism to other recently characterized Diels–Alderases involved in polyketide-tailoring reactions. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at https://proteopedia.org/w/Journal:IUCrJ:S2052252519012399.




ive

The predictive power of data-processing statistics

This study describes a method to estimate the likelihood of success in determining a macromolecular structure by X-ray crystallography and experimental single-wavelength anomalous dispersion (SAD) or multiple-wavelength anomalous dispersion (MAD) phasing based on initial data-processing statistics and sample crystal properties. Such a predictive tool can rapidly assess the usefulness of data and guide the collection of an optimal data set. The increase in data rates from modern macromolecular crystallography beamlines, together with a demand from users for real-time feedback, has led to pressure on computational resources and a need for smarter data handling. Statistical and machine-learning methods have been applied to construct a classifier that displays 95% accuracy for training and testing data sets compiled from 440 solved structures. Applying this classifier to new data achieved 79% accuracy. These scores already provide clear guidance as to the effective use of computing resources and offer a starting point for a personalized data-collection assistant.




ive

On the mechanism of solid-state phase transitions in molecular crystals – the role of cooperative motion in (quasi)racemic linear amino acids

During single-crystal-to-single-crystal (SCSC) phase transitions, a polymorph of a compound can transform to a more stable form while remaining in the solid state. By understanding the mechanism of these transitions, strategies can be developed to control this phenomenon. This is particularly important in the pharmaceutical industry, but also relevant for other industries such as the food and agrochemical industries. Although extensive literature exists on SCSC phase transitions in inorganic crystals, it is unclear whether their classications and mechanisms translate to molecular crystals, with weaker interactions and more steric hindrance. A comparitive study of SCSC phase transitions in aliphatic linear-chain amino acid crystals, both racemates and quasi-racemates, is presented. A total of 34 transitions are considered and most are classified according to their structural change during the transition. Transitions without torsional changes show very different characteristics, such as transition temperature, enthalpy and free energy, compared with transitions that involve torsional changes. These differences can be rationalized using classical nucleation theory and in terms of a difference in mechanism; torsional changes occur in a molecule-by-molecule fashion, whereas transitions without torsional changes involve cooperative motion with multiple molecules at the same time.




ive

Plasmodium vivax and human hexokinases share similar active sites but display distinct quaternary architectures

Malaria is a devastating disease caused by a protozoan parasite. It affects over 300 million individuals and results in over 400 000 deaths annually, most of whom are young children under the age of five. Hexokinase, the first enzyme in glucose metabolism, plays an important role in the infection process and represents a promising target for therapeutic intervention. Here, cryo-EM structures of two conformational states of Plasmodium vivax hexokinase (PvHK) are reported at resolutions of ∼3 Å. It is shown that unlike other known hexokinase structures, PvHK displays a unique tetrameric organization (∼220 kDa) that can exist in either open or closed quaternary conformational states. Despite the resemblance of the active site of PvHK to its mammalian counterparts, this tetrameric organization is distinct from that of human hexokinases, providing a foundation for the structure-guided design of parasite-selective antimalarial drugs.




ive

Expression and interactions of stereochemically active lone pairs and their relation to structural distortions and thermal conductivity

In chemistry, stereochemically active lone pairs are typically described as an important non-bonding effect, and recent interest has centred on understanding the derived effect of lone pair expression on physical properties such as thermal conductivity. To manipulate such properties, it is essential to understand the conditions that lead to lone pair expression and provide a quantitative chemical description of their identity to allow comparison between systems. Here, density functional theory calculations are used first to establish the presence of stereochemically active lone pairs on antimony in the archetypical chalcogenide MnSb2O4. The lone pairs are formed through a similar mechanism to those in binary post-transition metal compounds in an oxidation state of two less than their main group number [e.g. Pb(II) and Sb(III)], where the degree of orbital interaction (covalency) determines the expression of the lone pair. In MnSb2O4 the Sb lone pairs interact through a void space in the crystal structure, and their their mutual repulsion is minimized by introducing a deflection angle. This angle increases significantly with decreasing Sb—Sb distance introduced by simulating high pressure, thus showing the highly destabilizing nature of the lone pair interactions. Analysis of the chemical bonding in MnSb2O4 shows that it is dominated by polar covalent interactions with significant contributions both from charge accumulation in the bonding regions and from charge transfer. A database search of related ternary chalcogenide structures shows that, for structures with a lone pair (SbX3 units), the degree of lone pair expression is largely determined by whether the antimony–chalcogen units are connected or not, suggesting a cooperative effect. Isolated SbX3 units have larger X—Sb—X bond angles and therefore weaker lone pair expression than connected units. Since increased lone pair expression is equivalent to an increased orbital interaction (covalent bonding), which typically leads to increased heat conduction, this can explain the previously established correlation between larger bond angles and lower thermal conductivity. Thus, it appears that for these chalcogenides, lone pair expression and thermal conductivity may be related through the degree of covalency of the system.




ive

The active form of quinol-dependent nitric oxide reductase from Neisseria meningitidis is a dimer

Neisseria meningitidis is carried by nearly a billion humans, causing developmental impairment and over 100 000 deaths a year. A quinol-dependent nitric oxide reductase (qNOR) plays a critical role in the survival of the bacterium in the human host. X-ray crystallographic analyses of qNOR, including that from N. meningitidis (NmqNOR) reported here at 3.15 Å resolution, show monomeric assemblies, despite the more active dimeric sample being used for crystallization. Cryo-electron microscopic analysis of the same chromatographic fraction of NmqNOR, however, revealed a dimeric assembly at 3.06 Å resolution. It is shown that zinc (which is used in crystallization) binding near the dimer-stabilizing TMII region contributes to the disruption of the dimer. A similar destabilization is observed in the monomeric (∼85 kDa) cryo-EM structure of a mutant (Glu494Ala) qNOR from the opportunistic pathogen Alcaligenes (Achromobacter) xylosoxidans, which primarily migrates as a monomer. The monomer–dimer transition of qNORs seen in the cryo-EM and crystallographic structures has wider implications for structural studies of multimeric membrane proteins. X-ray crystallographic and cryo-EM structural analyses have been performed on the same chromatographic fraction of NmqNOR to high resolution. This represents one of the first examples in which the two approaches have been used to reveal a monomeric assembly in crystallo and a dimeric assembly in vitrified cryo-EM grids. A number of factors have been identified that may trigger the destabilization of helices that are necessary to preserve the integrity of the dimer. These include zinc binding near the entry of the putative proton-transfer channel and the preservation of the conformational integrity of the active site. The mutation near the active site results in disruption of the active site, causing an additional destabilization of helices (TMIX and TMX) that flank the proton-transfer channel helices, creating an inert monomeric enzyme.




ive

A structural study of TatD from Staphylococcus aureus elucidates a putative DNA-binding mode of a Mg2+-dependent nuclease

TatD has been thoroughly investigated as a DNA-repair enzyme and an apoptotic nuclease, and still-unknown TatD-related DNases are considered to play crucial cellular roles. However, studies of TatD from Gram-positive bacteria have been hindered by an absence of atomic detail and the resulting inability to determine function from structure. In this study, an X-ray crystal structure of SAV0491, which is the TatD enzyme from the Gram-positive bacterium Staphylococcus aureus (SaTatD), is reported at a high resolution of 1.85 Å with a detailed atomic description. Although SaTatD has the common TIM-barrel fold shared by most TatD-related homologs, and PDB entry 2gzx shares 100% sequence identity with SAV0491, the crystal structure of SaTatD revealed a unique binding mode of two phosphates interacting with two Ni2+ ions. Through a functional study, it was verified that SaTatD has Mg2+-dependent nuclease activity as a DNase and an RNase. In addition, structural comparison with TatD homologs and the identification of key residues contributing to the binding mode of Ni2+ ions and phosphates allowed mutational studies to be performed that revealed the catalytic mechanism of SaTatD. Among the key residues composing the active site, the acidic residues Glu92 and Glu202 had a critical impact on catalysis by SaTatD. Furthermore, based on the binding mode of the two phosphates and structural insights, a putative DNA-binding mode of SaTatD was proposed using in silico docking. Overall, these findings may serve as a good basis for understanding the relationship between the structure and function of TatD proteins from Gram-positive bacteria and may provide critical insights into the DNA-binding mode of SaTatD.




ive

Biochemical and structural explorations of α-hydroxyacid oxidases reveal a four-electron oxidative decarboxylation reaction

p-Hydroxymandelate oxidase (Hmo) is a flavin mononucleotide (FMN)-dependent enzyme that oxidizes mandelate to benzoylformate. How the FMN-dependent oxidation is executed by Hmo remains unclear at the molecular level. A continuum of snapshots from crystal structures of Hmo and its mutants in complex with physiological/nonphysiological substrates, products and inhibitors provides a rationale for its substrate enantioselectivity/promiscuity, its active-site geometry/reactivity and its direct hydride-transfer mechanism. A single mutant, Y128F, that extends the two-electron oxidation reaction to a four-electron oxidative decarboxylation reaction was unexpectedly observed. Biochemical and structural approaches, including biochemistry, kinetics, stable isotope labeling and X-ray crystallo­graphy, were exploited to reach these conclusions and provide additional insights.




ive

Shack–Hartmann wavefront sensors based on 2D refractive lens arrays and super-resolution multi-contrast X-ray imaging

Different approaches of 2D lens arrays as Shack–Hartmann sensors for hard X-rays are compared. For the first time, a combination of Shack–Hartmann sensors for hard X-rays (SHSX) with a super-resolution imaging approach to perform multi-contrast imaging is demonstrated. A diamond lens is employed as a well known test object. The interleaving approach has great potential to overcome the 2D lens array limitation given by the two-photon polymerization lithography. Finally, the radiation damage induced by continuous exposure of an SHSX prototype with a white beam was studied showing a good performance of several hours. The shape modification and influence in the final image quality are presented.




ive

Quantitative three-dimensional nondestructive imaging of whole anaerobic ammonium-oxidizing bacteria

Anaerobic ammonium-oxidizing (anammox) bacteria play a key role in the global nitrogen cycle and in nitrogenous wastewater treatment. The anammox bacteria ultrastructure is unique and distinctly different from that of other prokaryotic cells. The morphological structure of an organism is related to its function; however, research on the ultrastructure of intact anammox bacteria is lacking. In this study, in situ three-dimensional nondestructive ultrastructure imaging of a whole anammox cell was performed using synchrotron soft X-ray tomography (SXT) and the total variation-based simultaneous algebraic reconstruction technique (TV-SART). Statistical and quantitative analyses of the intact anammox bacteria were performed. High soft X-ray absorption composition inside anammoxosome was detected and verified to be relevant to iron-binding protein. On this basis, the shape adaptation of the anammox bacteria response to iron was explored.




ive

Comparative study of the around-Fermi electronic structure of 5d metals and metal-oxides by means of high-resolution X-ray emission and absorption spectroscopies

The composition of occupied and unoccupied electronic states in the vicinity of Fermi energies is vital for all materials and relates to their physical, chemical and mechanical properties. This work demonstrates how the combination of resonant and non-resonant X-ray emission spectroscopies supplemented with theoretical modelling allows for quantitative analysis of electronic states in 5d transition metal and metal-oxide materials. Application of X-rays provides element selectivity that, in combination with the penetrating properties of hard X-rays, allows determination of the composition of electronic states under working conditions, i.e. non-vacuum environment. Tungsten metal and tungsten oxide are evaluated to show the capability to simultaneously assess composition of around-band-gap electronic states as well as the character and magnitude of the crystal field splitting.




ive

Focusing with saw-tooth refractive lenses at a high-energy X-ray beamline

The Advanced Photon Source 1-ID beamline, operating in the 40–140 keV X-ray energy range, has successfully employed continuously tunable saw-tooth refractive lenses to routinely deliver beams focused in both one and two dimensions to experiments for over 15 years. The practical experience of implementing such lenses, made of silicon and aluminium, is presented, including their properties, control, alignment, and diagnostic methods, achieving ∼1 µm focusing (vertically). Ongoing development and prospects towards submicrometre focusing at these high energies are also mentioned.




ive

Comprehensive characterization of TSV etching performance with phase-contrast X-ray microtomography

A complete method of comprehensive and quantitative evaluation of through-silicon via reliability using a highly sensitive phase-contrast X-ray microtomography was established. Quantitative characterizations include 3D local morphology and overall consistency of statistics.




ive

GIDVis: a comprehensive software tool for geometry-independent grazing-incidence X-ray diffraction data analysis and pole-figure calculations

GIDVis is a software package based on MATLAB specialized for, but not limited to, the visualization and analysis of grazing-incidence thin-film X-ray diffraction data obtained during sample rotation around the surface normal. GIDVis allows the user to perform detector calibration, data stitching, intensity corrections, standard data evaluation (e.g. cuts and integrations along specific reciprocal-space directions), crystal phase analysis etc. To take full advantage of the measured data in the case of sample rotation, pole figures can easily be calculated from the experimental data for any value of the scattering angle covered. As an example, GIDVis is applied to phase analysis and the evaluation of the epitaxial alignment of pentacene­quinone crystallites on a single-crystalline Au(111) surface.




ive

Correlative vibrational spectroscopy and 2D X-ray diffraction to probe the mineralization of bone in phosphate-deficient mice

Bone crystallite chemistry and structure change during bone maturation. However, these properties of bone can also be affected by limited uptake of the chemical constituents of the mineral by the animal. This makes probing the effect of bone-mineralization-related diseases a complicated task. Here it is shown that the combination of vibrational spectroscopy with two-dimensional X-ray diffraction can provide unparalleled information on the changes in bone chemistry and structure associated with different bone pathologies (phosphate deficiency) and/or health conditions (pregnancy, lactation). Using a synergistic analytical approach, it was possible to trace the effect that changes in the remodelling regime have on the bone mineral chemistry and structure in normal and mineral-deficient (hypophosphatemic) mice. The results indicate that hypophosphatemic mice have increased bone remodelling, increased carbonate content and decreased crystallinity of the bone mineral, as well as increased misalignment of crystallites within the bone tissue. Pregnant and lactating mice that are normal and hypophosphatemic showed changes in the chemistry and misalignment of the apatite crystals that can be related to changes in remodelling rates associated with different calcium demand during pregnancy and lactation.




ive

The nondestructive measurement of strain distributions in air plasma sprayed thermal barrier coatings as a function of depth from entire Debye–Scherrer rings

The residual strain distribution has been measured as a function of depth in both top coat and bond coat in as-received and heat-treated air plasma sprayed thermal barrier coating samples. High-energy synchrotron X-ray beams were used in transmission to produce full Debye–Scherrer rings whose non-circular aspect ratio gave the in-plane and out-of-plane strains far more efficiently than the sin2ψ method. The residual strain in the bond coat is found to be tensile and the strain in the β phase of the as-received sample was measured. The residual strains observed in the top coat were generally compressive (increasing towards the interface), with two kinds of nonlinear trend. These was a `jump' feature near the interface, and in some cases there was another `jump' feature near the surface. It is shown how these trend differences can be correlated to cracks in the coating.




ive

Application of a high-throughput microcrystal delivery system to serial femtosecond crystallography

Microcrystal delivery methods are pivotal in the use of serial femtosecond crystallography (SFX) to resolve the macromolecular structures of proteins. Here, the development of a novel technique and instruments for efficiently delivering microcrystals for SFX are presented. The new method, which relies on a one-dimensional fixed-target system that includes a microcrystal container, consumes an extremely low amount of sample compared with conventional two-dimensional fixed-target techniques at ambient temperature. This novel system can deliver soluble microcrystals without highly viscous carrier media and, moreover, can be used as a microcrystal growth device for SFX. Diffraction data collection utilizing this advanced technique along with a real-time visual servo scan system has been successfully demonstrated for the structure determination of proteinase K microcrystals at 1.85 Å resolution.




ive

The Philosophy of Science – A Companion. Edited by Anouk Baberousse, Denis Bonnay and Mikael Cozic. Oxford University Press, 2018. Pp. 768. Price GBP 64.00. ISBN-13 9780190690649.

Book review




ive

Unit-cell response of tetragonal hen egg white lysozyme upon controlled relative humidity variation

The effects of relative humidity on a tetragonal crystal form of hen egg white lysozyme are studied via in situ laboratory X-ray powder diffraction.




ive

Handbook of Industrial Crystallization. Third edition. Edited by Allan S. Myerson, Deniz Erdemir and Alfred Y. Lee. Cambridge University Press, 2019. Pp. 538. Price GBP 145 (hardcover). ISBN 9780521196185.

Book review




ive

EDDIDAT: a graphical user interface for the analysis of energy-dispersive diffraction data

EDDIDAT is a program that provides a graphical user interface (GUI) for the evaluation of energy-dispersive X-ray diffraction data with the focus on the depth-resolved residual stress analysis.




ive

Dark-field electron holography as a recording of crystal diffraction in real space: a comparative study with high-resolution X-ray diffraction for strain analysis of MOSFETs

A detailed theoretical and experimental comparison of dark-field electron holography (DFEH) and high-resolution X-ray diffraction (HRXRD) is performed. Both techniques are being applied to measure elastic strain in an array of transistors and the role of the geometric phase is emphasized.




ive

Synthesis, crystal structure, polymorphism and microscopic luminescence properties of anthracene derivative compounds

Crystal structure and microscopic optical properties of anthracene derivative compounds have been investigated by single-crystal synchrotron X-ray diffraction, laser confocal microscopy and fluorescence lifetime imaging microscopy.




ive

Structure of GTP cyclohydrolase I from Listeria monocytogenes, a potential anti-infective drug target

A putative open reading frame encoding GTP cyclohydrolase I from Listeria monocytogenes was expressed in a recombinant Escherichia coli strain. The recombinant protein was purified and was confirmed to convert GTP to dihydroneopterin triphosphate (Km = 53 µM; vmax = 180 nmol mg−1 min−1). The protein was crystallized from 1.3 M sodium citrate pH 7.3 and the crystal structure was solved at a resolution of 2.4 Å (Rfree = 0.226) by molecular replacement using human GTP cyclohydrolase I as a template. The protein is a D5-symmetric decamer with ten topologically equivalent active sites. Screening a small library of about 9000 compounds afforded several inhibitors with IC50 values in the low-micromolar range. Several inhibitors had significant selectivity with regard to human GTP cyclohydrolase I. Hence, GTP cyclohydrolase I may be a potential target for novel drugs directed at microbial infections, including listeriosis, a rare disease with high mortality.




ive

The thermodynamic profile and molecular interactions of a C(9)-cytisine derivative-binding acetylcholine-binding protein from Aplysia californica

Cytisine, a natural product with high affinity for clinically relevant nicotinic acetylcholine receptors (nAChRs), is used as a smoking-cessation agent. The compound displays an excellent clinical profile and hence there is an interest in derivatives that may be further improved or find use in the treatment of other conditions. Here, the binding of a cytisine derivative modified by the addition of a 3-(hydroxypropyl) moiety (ligand 4) to Aplysia californica acetylcholine-binding protein (AcAChBP), a surrogate for nAChR orthosteric binding sites, was investigated. Isothermal titration calorimetry revealed that the favorable binding of cytisine and its derivative to AcAChBP is driven by the enthalpic contribution, which dominates an unfavorable entropic component. Although ligand 4 had a less unfavorable entropic contribution compared with cytisine, the affinity for AcAChBP was significantly diminished owing to the magnitude of the reduction in the enthalpic component. The high-resolution crystal structure of the AcAChBP–4 complex indicated close similarities in the protein–ligand interactions involving the parts of 4 common to cytisine. The point of difference, the 3-(hydroxypropyl) substituent, appears to influence the conformation of the Met133 side chain and helps to form an ordered solvent structure at the edge of the orthosteric binding site.




ive

Study aims to give endangered Shenandoah salamander better odds at survival

Each year thousands of vacationers enjoy the scenery along Virginia’s Skyline Drive, little knowing that for a few brief moments they are passing through the territory of an endangered […]

The post Study aims to give endangered Shenandoah salamander better odds at survival appeared first on Smithsonian Insider.




ive

Research collection of pollen grains given to Smithsonian Tropical Research Institute

The Smithsonian Tropical Research Institute in Panama was recently given a collection of more than 25,000 different pollen grains and spores, each mounted on a microscope slide and labeled according to the plant that produced it. “The collection is worldwide in coverage with an emphasis on plants of the Americas,” explains collection donor Alan Graham, professor emeritus at Kent State University and curator at the Missouri Botanical Garden.

The post Research collection of pollen grains given to Smithsonian Tropical Research Institute appeared first on Smithsonian Insider.




ive

Scientists Determine Geese Involved in Hudson River Plane Crash Were Migratory

Scientists at the Smithsonian Institution examined the feather remains from the Jan. 15, 2009, US Airways Flight 1549 bird strike to determine not only the species, but also that the Canada geese involved were from a migratory, rather than resident, population. This knowledge is essential for wildlife professionals to develop policies and techniques that will reduce the risk of future collisions. The team’s findings were published in the journal “Frontiers in Ecology and the Environment” in June.

The post Scientists Determine Geese Involved in Hudson River Plane Crash Were Migratory appeared first on Smithsonian Insider.




ive

Golden years at the Zoo: Veterinarians work to help animals live longer, stay healthy

Successes in animal health care presents many new challenges for veterinarians. Longer life spans in captivity mean zoo animals are now experiencing age-related health problems that their zoo predecessors never lived long enough to develop—like diabetes in cheetahs, arthritis in big cats and dental issues for coatis.

The post Golden years at the Zoo: Veterinarians work to help animals live longer, stay healthy appeared first on Smithsonian Insider.




ive

Smithsonian receives giant squid caught in the Gulf of Mexico

The giant squid was collected during a 60-day scientific study in which NOAA scientists were studying the availability and diversity of sperm whale prey. The squid was caught in a trawl net pulled behind a research vessel at a depth of more than 1,500 feet.

The post Smithsonian receives giant squid caught in the Gulf of Mexico appeared first on Smithsonian Insider.




ive

Native bees prove resilient in competition with invasive African honey bees

The spread of Africanized honey bees across Central America has had a much smaller impact on native tropical bee species than scientists previously predicted...

The post Native bees prove resilient in competition with invasive African honey bees appeared first on Smithsonian Insider.




ive

In face of crisis, National Zoo to start captive population of Virginia big-eared bats

The National Zoo has been awarded a grant from the U.S. Fish and Wildlife Service to establish a captive population of the Virginia big-eared bat at the National Zoo’s Conservation & Research Center near Front Royal, Va. Only 15,000 Virginia big-eared bats remain living in caves in West Virginia, Virginia, Kentucky and North Carolina, and these are threatened by the white-nose syndrome.

The post In face of crisis, National Zoo to start captive population of Virginia big-eared bats appeared first on Smithsonian Insider.




ive

Radio telescopes give astronomers rare glimpse at a young protostar’s formation

The way that massive stars form remains mysterious, in part, because massive stars are rare and tend to spend their youth shrouded by dust and gas and hidden from view.

The post Radio telescopes give astronomers rare glimpse at a young protostar’s formation appeared first on Smithsonian Insider.




ive

New Acquisition: Corrective instruments from the Hubble Space Telescope

The Smithsonian’s National Air and Space Museum recently obtained two monumental instruments on loan from NASA’s Goddard Space Flight Center.

The post New Acquisition: Corrective instruments from the Hubble Space Telescope appeared first on Smithsonian Insider.




ive

Distant, dying star gives astronomers preview of the fate of our Sun

Chi Cygni pulses once every 408 days. At its smallest diameter of 300 million miles, it becomes mottled with brilliant spots as massive plumes of hot plasma roil its surface. As it expands, Chi Cygni cools and dims, growing to a diameter of 480 million miles—large enough to engulf and cook our solar system out to the asteroid belt.

The post Distant, dying star gives astronomers preview of the fate of our Sun appeared first on Smithsonian Insider.




ive

Smithsonian scientists give giant pandas a helping hand at reproduction

Timing was critical because female giant pandas ovulate only once a year. A short period of two to three days around ovulation is the only time she is able to conceive. Gestation typically lasts from 90 to 185 days.

The post Smithsonian scientists give giant pandas a helping hand at reproduction appeared first on Smithsonian Insider.




ive

Captive colony of Virginia big-eared bats providing valuable lessons in battle against deadly white-nose syndrome

Eleven bats remain in the National Zoo’s colony. The initial challenge the team faced was how to feed the animals. Virginia big-eared bats, which are a subspecies of the Townsend’s big-eared bat (Corynorhinuss townsendii), eat while flying.

The post Captive colony of Virginia big-eared bats providing valuable lessons in battle against deadly white-nose syndrome appeared first on Smithsonian Insider.




ive

Clay vessels by Native American potter Jeri Redcorn added to Smithsonian collections

The Caddo people of Arkansas, Louisiana, Texas and Oklahoma have maintained many of their traditional ways and actively work to preserve their unique tribal cultural today. One example is the pottery of Jeri Redcorn.

The post Clay vessels by Native American potter Jeri Redcorn added to Smithsonian collections appeared first on Smithsonian Insider.




ive

NASA’s new eye on the sun delivers stunning images

The Smithsonian Astrophysical Observatory is a major partner in the Atmospheric Imaging Assembly, which is a group of four telescopes on NASA's Solar Dynamics Observatory that photograph the sun in 10 different wavelength bands, or colors, once every 10 seconds.

The post NASA’s new eye on the sun delivers stunning images appeared first on Smithsonian Insider.




ive

Super sensitive telescope will detect “killer” asteroids and comets on collision course with Earth

This innovative facility will be at the front line of Earth defense by searching for "killer" asteroids and comets. It will map large portions of the sky nightly, making it an efficient sleuth for not just asteroids but also supernovae and other variable objects.

The post Super sensitive telescope will detect “killer” asteroids and comets on collision course with Earth appeared first on Smithsonian Insider.




ive

Japanese giant salamanders given to the National Zoo by Asa Zoological Park in Hiroshima

The Smithsonian’s National Zoo recently acquired Japanese giant salamanders given to the Zoo by the City of Hiroshima Asa Zoological Park. This donation will be the foundation of a new long-term breeding program in the United States and may play an important role in saving amphibians around the globe.

The post Japanese giant salamanders given to the National Zoo by Asa Zoological Park in Hiroshima appeared first on Smithsonian Insider.




ive

NSRC to receive $25 million Investing in Innovation grant from U.S. Department of Education

The funding will allow the National Science Resources Center to validate its LASER (Leadership Assistance for Science Education Reform) Model. LASER, a systemic approach to reform, is a set of processes and strategies designed to help state, district and school leadership teams effectively implement and sustain
high-quality science education for elementary, middle and secondary school students.

The post NSRC to receive $25 million Investing in Innovation grant from U.S. Department of Education appeared first on Smithsonian Insider.




ive

Newly discovered massive galaxy cluster wins heavyweight title

"This galaxy cluster wins the heavyweight title. It's among the most massive clusters ever found at this distance," said Mark Brodwin, a Smithsonian astronomer at the Harvard-Smithsonian Center for Astrophysics.

The post Newly discovered massive galaxy cluster wins heavyweight title appeared first on Smithsonian Insider.




ive

Lemelson Center receives $2.6 million grant for informal science education

“Places of Invention,” a planned 3,500-square-foot exhibition at the National Museum of American History scheduled to open in 2014, will feature a selection of “hot spots” of invention and innovation—places where a critical mass of inventive people, networks, institutions, funding and other resources come together and creativity flourishes.

The post Lemelson Center receives $2.6 million grant for informal science education appeared first on Smithsonian Insider.




ive

Discovery triples number of stars in universe

The team discovered that there are about 20 times more red dwarfs in elliptical galaxies than in the Milky Way, said Charlie Conroy of the Harvard-Smithsonian Center for Astrophysics.

The post Discovery triples number of stars in universe appeared first on Smithsonian Insider.




ive

Invasive oriental shrimp found in Chesapeake Bay by Smithsonian scientists

Twenty years ago scientists at the Marine Invasions Lab of the Smithsonian Environmental Research Center in Edgewater, Md., began studying the interactions between native grass […]

The post Invasive oriental shrimp found in Chesapeake Bay by Smithsonian scientists appeared first on Smithsonian Insider.




ive

Rising ocean temperatures and acidity may deliver deadly one-two punch to the world’s corals

A recent experiment by scientists at the Smithsonian Tropical Research Institute in Panama has revealed just how rising atmospheric carbon dioxide will deliver a one-two […]

The post Rising ocean temperatures and acidity may deliver deadly one-two punch to the world’s corals appeared first on Smithsonian Insider.