learning Will Machine Learning Engineers Exist in 10 Years? By feedproxy.google.com Published On :: Fri, 08 May 2020 16:00:45 +0000 As can be common in many technical fields, the landscape of specialized roles is evolving quickly. With more people learning at least a little machine learning, this could eventually become a common skill set for every software engineer. Full Article 2020 May Opinions Advice AutoML Career Machine Learning Engineer Trends
learning Top April Stories: Mathematics for Machine Learning: The Free eBook By feedproxy.google.com Published On :: Fri, 08 May 2020 20:36:00 +0000 Also: Introducing MIDAS: A New Baseline for Anomaly Detection in Graphs; The Super Duper NLP Repo: 100 Ready-to-Run Colab Notebooks; Five Cool Python Libraries for Data Science. Full Article 2020 May Top Stories Tweets Top stories
learning Learning Organizations By hbr.org Published On :: Thu, 28 Feb 2008 19:16:00 -0500 David Garvin and Amy Edmonson, Harvard Business School professors and coauthors of the HBR article "Is Yours a Learning Organization?" Full Article
learning Salman Khan on the Online Learning Revolution By hbr.org Published On :: Thu, 16 Jan 2014 18:22:29 -0500 The founder of the Khan Academy talks with HBR senior editor Alison Beard. Full Article
learning Learning What Wiser Workers Know By hbr.org Published On :: Tue, 25 Nov 2014 16:01:47 -0500 Dorothy Leonard, author of "Critical Knowledge Transfer" and Harvard Business School professor, on retaining organizational expertise. Full Article
learning Use Learning to Engage Your Team By hbr.org Published On :: Tue, 01 May 2018 10:47:12 -0500 Whitney Johnson, an executive coach, argues that on-the-job learning is the key to keeping people motivated. When managers understand that, and understand where the people they manage are on their individual learning curve — the low end, the sweet spot, or the high end — employees are engaged, productive, and innovative. Johnson is the author of the book “Build an A-Team: Play to Their Strengths and Lead Them Up the Learning Curve.” Full Article
learning Learning from GE’s Stumbles By hbr.org Published On :: Tue, 31 Jul 2018 15:30:39 -0500 Roger Martin, a professor at the University of Toronto’s Rotman School of Management, offers two main reasons General Electric has lost its competitiveness. GE’s stock has been removed from the Dow Jones Industrial Average. Martin blames pressures from activist investors as well as a short-sighted mergers and acquisitions strategy. He’s the author of “GE’s Fall Has Been Accelerated by Two Problems. Most Other Big Companies Face Them, Too.” Full Article
learning Accelerate Learning to Boost Your Career By hbr.org Published On :: Tue, 22 Oct 2019 10:43:46 -0500 Scott Young, who gained fame for teaching himself the four-year MIT computer science curriculum in just 12 months, says that the type of fast, focused learning he employed is possible for all of us -- whether we want to master coding, become fluent in a foreign language, or excel at public speaking. And, in a dynamic, fast-paced business environment that leaves so many of us strapped for time and struggling to keep up, he believes that the ability to quickly develop new knowledge and skills will be a tremendous asset. After researching best practices and experimenting on his own, he has developed a set of principles that any of us can follow to become "ultralearners." Young is the author of the book "Ultralearning: Master Hard Skills, Outsmart the Competition, and Accelerate Your Career." Full Article
learning NECA Launches NEW Educational Advancement Program With Institutions of Higher Learning By www.necanet.org Published On :: Mon, 13 Apr 2020 13:53:20 Z NECA is excited to announce the launch of the NECA Educational Advancement Resource Network (EARN), an initiative designed to facilitate relationships and learning between individuals in electrical construction firms and institutions of higher education. Full Article Professional Development Home Page Workforce Development Staff & Leadership Professional Development About Us
learning Video: How NetEase applied reinforcement learning to build game AI By www.gamasutra.com Published On :: Wed, 6 May 2020 14:25:00 -0400 In this GDC 2020 virtual talk NetEase's Renjie Li discusses the application of reinforcement learning in NetEase games, including problems encountered and how the solutions impacted the final product. ... Full Article
learning Should a small business invest in AI and machine learning software? By economictimes.indiatimes.com Published On :: 2019-05-25T10:37:16+05:30 Both AI and ML are touted to give businesses the edge they need, improve efficiencies, make sales and marketing better and even help in critical HR functions. Full Article
learning AI, machine learning can help achieve $5 trillion target: Piyush Goyal By economictimes.indiatimes.com Published On :: 2020-01-06T23:52:54+05:30 “Our government believes artificial intelligence, in different forms, can help us achieve the $5 trillion benchmark over the next five years, but also help us do it effectively and efficiently,” Goyal said while inaugurating the NSE Knowledge Hub here. The hub is an AI-powered learning ecosystem for the banking, financial services and insurance sector. Full Article
learning Laplace’s Demon: A Seminar Series about Bayesian Machine Learning at Scale By statmodeling.stat.columbia.edu Published On :: Thu, 07 May 2020 21:20:16 +0000 David Rohde points us to this new seminar series that has the following description: Machine learning is changing the world we live in at a break neck pace. From image recognition and generation, to the deployment of recommender systems, it seems to be breaking new ground constantly and influencing almost every aspect of our lives. […] Full Article Bayesian Statistics Statistical computing
learning Learning To Manage A Complex Ecosystem: Adaptive Management and The Northwest Forest Plan By www.fs.fed.us Published On :: Mon, 16 Oct 2006 12:25:36 PST The Northwest Forest Plan (the Plan) identifies adaptive management as a central strategy for effective implementation. Despite this, there has been a lack of any systematic evaluation of its performance. Full Article
learning WGBH wins Excellence in Early Learning Digital Media Award for the app, 'Molly of Denali' By www.ala.org Published On :: Mon, 27 Jan 2020 15:14:59 +0000 PHILADELPHIA – WGBH is the 2020 recipient of the Excellence in Early Learning Digital Media Award for the app, Molly of Denali. The award was announced today by the Association for Library Service to Children (ALSC), a division of the American Library Association (ALA), during the ALA Midwinter Meeting & Exhibition held January 24 - 28, in Philadelphia. Full Article
learning Top 10 Toolkits and Libraries for Deep Learning in 2020 By feedproxy.google.com Published On :: Fri, 08 May 2020 13:49:13 +0000 Deep Learning is a branch of artificial intelligence and a subset of machine learning that focuses on networks capable of, usually, unsupervised learning from unstructured and other forms of data. It is also known as deep structured learning or differential programming. Architectures inspired by deep learning find use in a range of fields, such as... Full Article Essentials Learning Resources
learning Learning the Basics of Photo Editing By feedproxy.google.com Published On :: Sun, 29 Mar 2020 12:06:32 +0000 Whether you’re into photography, there are so many basic skills that you can learn when it comes to photo editing that can make a huge difference in your photos and selfies. Between brightening up a photo, changing the size, or cutting something out, there’s always a small thing you wish you could change. In order to do that, you should learn these basic photo editing tools so that you can adjust your photos in the simplest manner. Adobe photoshop If you were to use only one software for photo editing, then it should be none other than Adobe Photoshop. With The post Learning the Basics of Photo Editing appeared first on Photoshop Lady. Full Article Uncategorized
learning This trip solidified my conviction to learning photography. A... By feedproxy.google.com Published On :: Fri, 30 Dec 2016 12:01:57 -0500 This trip solidified my conviction to learning photography. A lot has happened since this shot was taken. Can you pinpoint the moment you decided to pursue photography? (at Toronto, Ontario) Full Article
learning Modeling nanoconfinement effects using active learning. (arXiv:2005.02587v2 [physics.app-ph] UPDATED) By arxiv.org Published On :: Predicting the spatial configuration of gas molecules in nanopores of shale formations is crucial for fluid flow forecasting and hydrocarbon reserves estimation. The key challenge in these tight formations is that the majority of the pore sizes are less than 50 nm. At this scale, the fluid properties are affected by nanoconfinement effects due to the increased fluid-solid interactions. For instance, gas adsorption to the pore walls could account for up to 85% of the total hydrocarbon volume in a tight reservoir. Although there are analytical solutions that describe this phenomenon for simple geometries, they are not suitable for describing realistic pores, where surface roughness and geometric anisotropy play important roles. To describe these, molecular dynamics (MD) simulations are used since they consider fluid-solid and fluid-fluid interactions at the molecular level. However, MD simulations are computationally expensive, and are not able to simulate scales larger than a few connected nanopores. We present a method for building and training physics-based deep learning surrogate models to carry out fast and accurate predictions of molecular configurations of gas inside nanopores. Since training deep learning models requires extensive databases that are computationally expensive to create, we employ active learning (AL). AL reduces the overhead of creating comprehensive sets of high-fidelity data by determining where the model uncertainty is greatest, and running simulations on the fly to minimize it. The proposed workflow enables nanoconfinement effects to be rigorously considered at the mesoscale where complex connected sets of nanopores control key applications such as hydrocarbon recovery and CO2 sequestration. Full Article
learning Temporal Event Segmentation using Attention-based Perceptual Prediction Model for Continual Learning. (arXiv:2005.02463v2 [cs.CV] UPDATED) By arxiv.org Published On :: Temporal event segmentation of a long video into coherent events requires a high level understanding of activities' temporal features. The event segmentation problem has been tackled by researchers in an offline training scheme, either by providing full, or weak, supervision through manually annotated labels or by self-supervised epoch based training. In this work, we present a continual learning perceptual prediction framework (influenced by cognitive psychology) capable of temporal event segmentation through understanding of the underlying representation of objects within individual frames. Our framework also outputs attention maps which effectively localize and track events-causing objects in each frame. The model is tested on a wildlife monitoring dataset in a continual training manner resulting in $80\%$ recall rate at $20\%$ false positive rate for frame level segmentation. Activity level testing has yielded $80\%$ activity recall rate for one false activity detection every 50 minutes. Full Article
learning Differential Machine Learning. (arXiv:2005.02347v2 [q-fin.CP] UPDATED) By arxiv.org Published On :: Differential machine learning (ML) extends supervised learning, with models trained on examples of not only inputs and labels, but also differentials of labels to inputs. Differential ML is applicable in all situations where high quality first order derivatives wrt training inputs are available. In the context of financial Derivatives risk management, pathwise differentials are efficiently computed with automatic adjoint differentiation (AAD). Differential ML, combined with AAD, provides extremely effective pricing and risk approximations. We can produce fast pricing analytics in models too complex for closed form solutions, extract the risk factors of complex transactions and trading books, and effectively compute risk management metrics like reports across a large number of scenarios, backtesting and simulation of hedge strategies, or capital regulations. The article focuses on differential deep learning (DL), arguably the strongest application. Standard DL trains neural networks (NN) on punctual examples, whereas differential DL teaches them the shape of the target function, resulting in vastly improved performance, illustrated with a number of numerical examples, both idealized and real world. In the online appendices, we apply differential learning to other ML models, like classic regression or principal component analysis (PCA), with equally remarkable results. This paper is meant to be read in conjunction with its companion GitHub repo https://github.com/differential-machine-learning, where we posted a TensorFlow implementation, tested on Google Colab, along with examples from the article and additional ones. We also posted appendices covering many practical implementation details not covered in the paper, mathematical proofs, application to ML models besides neural networks and extensions necessary for a reliable implementation in production. Full Article
learning On-board Deep-learning-based Unmanned Aerial Vehicle Fault Cause Detection and Identification. (arXiv:2005.00336v2 [eess.SP] UPDATED) By arxiv.org Published On :: With the increase in use of Unmanned Aerial Vehicles (UAVs)/drones, it is important to detect and identify causes of failure in real time for proper recovery from a potential crash-like scenario or post incident forensics analysis. The cause of crash could be either a fault in the sensor/actuator system, a physical damage/attack, or a cyber attack on the drone's software. In this paper, we propose novel architectures based on deep Convolutional and Long Short-Term Memory Neural Networks (CNNs and LSTMs) to detect (via Autoencoder) and classify drone mis-operations based on sensor data. The proposed architectures are able to learn high-level features automatically from the raw sensor data and learn the spatial and temporal dynamics in the sensor data. We validate the proposed deep-learning architectures via simulations and experiments on a real drone. Empirical results show that our solution is able to detect with over 90% accuracy and classify various types of drone mis-operations (with about 99% accuracy (simulation data) and upto 88% accuracy (experimental data)). Full Article
learning SPECTER: Document-level Representation Learning using Citation-informed Transformers. (arXiv:2004.07180v3 [cs.CL] UPDATED) By arxiv.org Published On :: Representation learning is a critical ingredient for natural language processing systems. Recent Transformer language models like BERT learn powerful textual representations, but these models are targeted towards token- and sentence-level training objectives and do not leverage information on inter-document relatedness, which limits their document-level representation power. For applications on scientific documents, such as classification and recommendation, the embeddings power strong performance on end tasks. We propose SPECTER, a new method to generate document-level embedding of scientific documents based on pretraining a Transformer language model on a powerful signal of document-level relatedness: the citation graph. Unlike existing pretrained language models, SPECTER can be easily applied to downstream applications without task-specific fine-tuning. Additionally, to encourage further research on document-level models, we introduce SciDocs, a new evaluation benchmark consisting of seven document-level tasks ranging from citation prediction, to document classification and recommendation. We show that SPECTER outperforms a variety of competitive baselines on the benchmark. Full Article
learning Transfer Learning for EEG-Based Brain-Computer Interfaces: A Review of Progress Made Since 2016. (arXiv:2004.06286v3 [cs.HC] UPDATED) By arxiv.org Published On :: A brain-computer interface (BCI) enables a user to communicate with a computer directly using brain signals. Electroencephalograms (EEGs) used in BCIs are weak, easily contaminated by interference and noise, non-stationary for the same subject, and varying across different subjects and sessions. Therefore, it is difficult to build a generic pattern recognition model in an EEG-based BCI system that is optimal for different subjects, during different sessions, for different devices and tasks. Usually, a calibration session is needed to collect some training data for a new subject, which is time consuming and user unfriendly. Transfer learning (TL), which utilizes data or knowledge from similar or relevant subjects/sessions/devices/tasks to facilitate learning for a new subject/session/device/task, is frequently used to reduce the amount of calibration effort. This paper reviews journal publications on TL approaches in EEG-based BCIs in the last few years, i.e., since 2016. Six paradigms and applications -- motor imagery, event-related potentials, steady-state visual evoked potentials, affective BCIs, regression problems, and adversarial attacks -- are considered. For each paradigm/application, we group the TL approaches into cross-subject/session, cross-device, and cross-task settings and review them separately. Observations and conclusions are made at the end of the paper, which may point to future research directions. Full Article
learning Watching the World Go By: Representation Learning from Unlabeled Videos. (arXiv:2003.07990v2 [cs.CV] UPDATED) By arxiv.org Published On :: Recent single image unsupervised representation learning techniques show remarkable success on a variety of tasks. The basic principle in these works is instance discrimination: learning to differentiate between two augmented versions of the same image and a large batch of unrelated images. Networks learn to ignore the augmentation noise and extract semantically meaningful representations. Prior work uses artificial data augmentation techniques such as cropping, and color jitter which can only affect the image in superficial ways and are not aligned with how objects actually change e.g. occlusion, deformation, viewpoint change. In this paper, we argue that videos offer this natural augmentation for free. Videos can provide entirely new views of objects, show deformation, and even connect semantically similar but visually distinct concepts. We propose Video Noise Contrastive Estimation, a method for using unlabeled video to learn strong, transferable single image representations. We demonstrate improvements over recent unsupervised single image techniques, as well as over fully supervised ImageNet pretraining, across a variety of temporal and non-temporal tasks. Code and the Random Related Video Views dataset are available at https://www.github.com/danielgordon10/vince Full Article
learning Lake Ice Detection from Sentinel-1 SAR with Deep Learning. (arXiv:2002.07040v2 [eess.IV] UPDATED) By arxiv.org Published On :: Lake ice, as part of the Essential Climate Variable (ECV) lakes, is an important indicator to monitor climate change and global warming. The spatio-temporal extent of lake ice cover, along with the timings of key phenological events such as freeze-up and break-up, provide important cues about the local and global climate. We present a lake ice monitoring system based on the automatic analysis of Sentinel-1 Synthetic Aperture Radar (SAR) data with a deep neural network. In previous studies that used optical satellite imagery for lake ice monitoring, frequent cloud cover was a main limiting factor, which we overcome thanks to the ability of microwave sensors to penetrate clouds and observe the lakes regardless of the weather and illumination conditions. We cast ice detection as a two class (frozen, non-frozen) semantic segmentation problem and solve it using a state-of-the-art deep convolutional network (CNN). We report results on two winters ( 2016 - 17 and 2017 - 18 ) and three alpine lakes in Switzerland. The proposed model reaches mean Intersection-over-Union (mIoU) scores >90% on average, and >84% even for the most difficult lake. Additionally, we perform cross-validation tests and show that our algorithm generalises well across unseen lakes and winters. Full Article
learning SetRank: Learning a Permutation-Invariant Ranking Model for Information Retrieval. (arXiv:1912.05891v2 [cs.IR] UPDATED) By arxiv.org Published On :: In learning-to-rank for information retrieval, a ranking model is automatically learned from the data and then utilized to rank the sets of retrieved documents. Therefore, an ideal ranking model would be a mapping from a document set to a permutation on the set, and should satisfy two critical requirements: (1)~it should have the ability to model cross-document interactions so as to capture local context information in a query; (2)~it should be permutation-invariant, which means that any permutation of the inputted documents would not change the output ranking. Previous studies on learning-to-rank either design uni-variate scoring functions that score each document separately, and thus failed to model the cross-document interactions; or construct multivariate scoring functions that score documents sequentially, which inevitably sacrifice the permutation invariance requirement. In this paper, we propose a neural learning-to-rank model called SetRank which directly learns a permutation-invariant ranking model defined on document sets of any size. SetRank employs a stack of (induced) multi-head self attention blocks as its key component for learning the embeddings for all of the retrieved documents jointly. The self-attention mechanism not only helps SetRank to capture the local context information from cross-document interactions, but also to learn permutation-equivariant representations for the inputted documents, which therefore achieving a permutation-invariant ranking model. Experimental results on three large scale benchmarks showed that the SetRank significantly outperformed the baselines include the traditional learning-to-rank models and state-of-the-art Neural IR models. Full Article
learning Novel Deep Learning Framework for Wideband Spectrum Characterization at Sub-Nyquist Rate. (arXiv:1912.05255v2 [eess.SP] UPDATED) By arxiv.org Published On :: Introduction of spectrum-sharing in 5G and subsequent generation networks demand base-station(s) with the capability to characterize the wideband spectrum spanned over licensed, shared and unlicensed non-contiguous frequency bands. Spectrum characterization involves the identification of vacant bands along with center frequency and parameters (energy, modulation, etc.) of occupied bands. Such characterization at Nyquist sampling is area and power-hungry due to the need for high-speed digitization. Though sub-Nyquist sampling (SNS) offers an excellent alternative when the spectrum is sparse, it suffers from poor performance at low signal to noise ratio (SNR) and demands careful design and integration of digital reconstruction, tunable channelizer and characterization algorithms. In this paper, we propose a novel deep-learning framework via a single unified pipeline to accomplish two tasks: 1)~Reconstruct the signal directly from sub-Nyquist samples, and 2)~Wideband spectrum characterization. The proposed approach eliminates the need for complex signal conditioning between reconstruction and characterization and does not need complex tunable channelizers. We extensively compare the performance of our framework for a wide range of modulation schemes, SNR and channel conditions. We show that the proposed framework outperforms existing SNS based approaches and characterization performance approaches to Nyquist sampling-based framework with an increase in SNR. Easy to design and integrate along with a single unified deep learning framework make the proposed architecture a good candidate for reconfigurable platforms. Full Article
learning Biologic and Prognostic Feature Scores from Whole-Slide Histology Images Using Deep Learning. (arXiv:1910.09100v4 [q-bio.QM] UPDATED) By arxiv.org Published On :: Histopathology is a reflection of the molecular changes and provides prognostic phenotypes representing the disease progression. In this study, we introduced feature scores generated from hematoxylin and eosin histology images based on deep learning (DL) models developed for prostate pathology. We demonstrated that these feature scores were significantly prognostic for time to event endpoints (biochemical recurrence and cancer-specific survival) and had simultaneously molecular biologic associations to relevant genomic alterations and molecular subtypes using already trained DL models that were not previously exposed to the datasets of the current study. Further, we discussed the potential of such feature scores to improve the current tumor grading system and the challenges that are associated with tumor heterogeneity and the development of prognostic models from histology images. Our findings uncover the potential of feature scores from histology images as digital biomarkers in precision medicine and as an expanding utility for digital pathology. Full Article
learning Imitation Learning for Human-robot Cooperation Using Bilateral Control. (arXiv:1909.13018v2 [cs.RO] UPDATED) By arxiv.org Published On :: Robots are required to operate autonomously in response to changing situations. Previously, imitation learning using 4ch-bilateral control was demonstrated to be suitable for imitation of object manipulation. However, cooperative work between humans and robots has not yet been verified in these studies. In this study, the task was expanded by cooperative work between a human and a robot. 4ch-bilateral control was used to collect training data for training robot motion. We focused on serving salad as a task in the home. The task was executed with a spoon and a fork fixed to robots. Adjustment of force was indispensable in manipulating indefinitely shaped objects such as salad. Results confirmed the effectiveness of the proposed method as demonstrated by the success of the task. Full Article
learning Dynamic Face Video Segmentation via Reinforcement Learning. (arXiv:1907.01296v3 [cs.CV] UPDATED) By arxiv.org Published On :: For real-time semantic video segmentation, most recent works utilised a dynamic framework with a key scheduler to make online key/non-key decisions. Some works used a fixed key scheduling policy, while others proposed adaptive key scheduling methods based on heuristic strategies, both of which may lead to suboptimal global performance. To overcome this limitation, we model the online key decision process in dynamic video segmentation as a deep reinforcement learning problem and learn an efficient and effective scheduling policy from expert information about decision history and from the process of maximising global return. Moreover, we study the application of dynamic video segmentation on face videos, a field that has not been investigated before. By evaluating on the 300VW dataset, we show that the performance of our reinforcement key scheduler outperforms that of various baselines in terms of both effective key selections and running speed. Further results on the Cityscapes dataset demonstrate that our proposed method can also generalise to other scenarios. To the best of our knowledge, this is the first work to use reinforcement learning for online key-frame decision in dynamic video segmentation, and also the first work on its application on face videos. Full Article
learning Ranked List Loss for Deep Metric Learning. (arXiv:1903.03238v6 [cs.CV] UPDATED) By arxiv.org Published On :: The objective of deep metric learning (DML) is to learn embeddings that can capture semantic similarity and dissimilarity information among data points. Existing pairwise or tripletwise loss functions used in DML are known to suffer from slow convergence due to a large proportion of trivial pairs or triplets as the model improves. To improve this, ranking-motivated structured losses are proposed recently to incorporate multiple examples and exploit the structured information among them. They converge faster and achieve state-of-the-art performance. In this work, we unveil two limitations of existing ranking-motivated structured losses and propose a novel ranked list loss to solve both of them. First, given a query, only a fraction of data points is incorporated to build the similarity structure. To address this, we propose to build a set-based similarity structure by exploiting all instances in the gallery. The learning setting can be interpreted as few-shot retrieval: given a mini-batch, every example is iteratively used as a query, and the rest ones compose the galley to search, i.e., the support set in few-shot setting. The rest examples are split into a positive set and a negative set. For every mini-batch, the learning objective of ranked list loss is to make the query closer to the positive set than to the negative set by a margin. Second, previous methods aim to pull positive pairs as close as possible in the embedding space. As a result, the intraclass data distribution tends to be extremely compressed. In contrast, we propose to learn a hypersphere for each class in order to preserve useful similarity structure inside it, which functions as regularisation. Extensive experiments demonstrate the superiority of our proposal by comparing with the state-of-the-art methods on the fine-grained image retrieval task. Full Article
learning Machine learning topological phases in real space. (arXiv:1901.01963v4 [cond-mat.mes-hall] UPDATED) By arxiv.org Published On :: We develop a supervised machine learning algorithm that is able to learn topological phases for finite condensed matter systems from bulk data in real lattice space. The algorithm employs diagonalization in real space together with any supervised learning algorithm to learn topological phases through an eigenvector ensembling procedure. We combine our algorithm with decision trees and random forests to successfully recover topological phase diagrams of Su-Schrieffer-Heeger (SSH) models from bulk lattice data in real space and show how the Shannon information entropy of ensembles of lattice eigenvectors can be used to retrieve a signal detailing how topological information is distributed in the bulk. The discovery of Shannon information entropy signals associated with topological phase transitions from the analysis of data from several thousand SSH systems illustrates how model explainability in machine learning can advance the research of exotic quantum materials with properties that may power future technological applications such as qubit engineering for quantum computing. Full Article
learning Learning Direct Optimization for Scene Understanding. (arXiv:1812.07524v2 [cs.CV] UPDATED) By arxiv.org Published On :: We develop a Learning Direct Optimization (LiDO) method for the refinement of a latent variable model that describes input image x. Our goal is to explain a single image x with an interpretable 3D computer graphics model having scene graph latent variables z (such as object appearance, camera position). Given a current estimate of z we can render a prediction of the image g(z), which can be compared to the image x. The standard way to proceed is then to measure the error E(x, g(z)) between the two, and use an optimizer to minimize the error. However, it is unknown which error measure E would be most effective for simultaneously addressing issues such as misaligned objects, occlusions, textures, etc. In contrast, the LiDO approach trains a Prediction Network to predict an update directly to correct z, rather than minimizing the error with respect to z. Experiments show that our LiDO method converges rapidly as it does not need to perform a search on the error landscape, produces better solutions than error-based competitors, and is able to handle the mismatch between the data and the fitted scene model. We apply LiDO to a realistic synthetic dataset, and show that the method also transfers to work well with real images. Full Article
learning Mutli-task Learning with Alignment Loss for Far-field Small-Footprint Keyword Spotting. (arXiv:2005.03633v1 [eess.AS]) By arxiv.org Published On :: In this paper, we focus on the task of small-footprint keyword spotting under the far-field scenario. Far-field environments are commonly encountered in real-life speech applications, and it causes serve degradation of performance due to room reverberation and various kinds of noises. Our baseline system is built on the convolutional neural network trained with pooled data of both far-field and close-talking speech. To cope with the distortions, we adopt the multi-task learning scheme with alignment loss to reduce the mismatch between the embedding features learned from different domains of data. Experimental results show that our proposed method maintains the performance on close-talking speech and achieves significant improvement on the far-field test set. Full Article
learning Learning Robust Models for e-Commerce Product Search. (arXiv:2005.03624v1 [cs.CL]) By arxiv.org Published On :: Showing items that do not match search query intent degrades customer experience in e-commerce. These mismatches result from counterfactual biases of the ranking algorithms toward noisy behavioral signals such as clicks and purchases in the search logs. Mitigating the problem requires a large labeled dataset, which is expensive and time-consuming to obtain. In this paper, we develop a deep, end-to-end model that learns to effectively classify mismatches and to generate hard mismatched examples to improve the classifier. We train the model end-to-end by introducing a latent variable into the cross-entropy loss that alternates between using the real and generated samples. This not only makes the classifier more robust but also boosts the overall ranking performance. Our model achieves a relative gain compared to baselines by over 26% in F-score, and over 17% in Area Under PR curve. On live search traffic, our model gains significant improvement in multiple countries. Full Article
learning Learning Implicit Text Generation via Feature Matching. (arXiv:2005.03588v1 [cs.CL]) By arxiv.org Published On :: Generative feature matching network (GFMN) is an approach for training implicit generative models for images by performing moment matching on features from pre-trained neural networks. In this paper, we present new GFMN formulations that are effective for sequential data. Our experimental results show the effectiveness of the proposed method, SeqGFMN, for three distinct generation tasks in English: unconditional text generation, class-conditional text generation, and unsupervised text style transfer. SeqGFMN is stable to train and outperforms various adversarial approaches for text generation and text style transfer. Full Article
learning Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation. (arXiv:2005.03572v1 [cs.CV]) By arxiv.org Published On :: Deep learning-based object detection and instance segmentation have achieved unprecedented progress. In this paper, we propose Complete-IoU (CIoU) loss and Cluster-NMS for enhancing geometric factors in both bounding box regression and Non-Maximum Suppression (NMS), leading to notable gains of average precision (AP) and average recall (AR), without the sacrifice of inference efficiency. In particular, we consider three geometric factors, i.e., overlap area, normalized central point distance and aspect ratio, which are crucial for measuring bounding box regression in object detection and instance segmentation. The three geometric factors are then incorporated into CIoU loss for better distinguishing difficult regression cases. The training of deep models using CIoU loss results in consistent AP and AR improvements in comparison to widely adopted $ell_n$-norm loss and IoU-based loss. Furthermore, we propose Cluster-NMS, where NMS during inference is done by implicitly clustering detected boxes and usually requires less iterations. Cluster-NMS is very efficient due to its pure GPU implementation, , and geometric factors can be incorporated to improve both AP and AR. In the experiments, CIoU loss and Cluster-NMS have been applied to state-of-the-art instance segmentation (e.g., YOLACT), and object detection (e.g., YOLO v3, SSD and Faster R-CNN) models. Taking YOLACT on MS COCO as an example, our method achieves performance gains as +1.7 AP and +6.2 AR$_{100}$ for object detection, and +0.9 AP and +3.5 AR$_{100}$ for instance segmentation, with 27.1 FPS on one NVIDIA GTX 1080Ti GPU. All the source code and trained models are available at https://github.com/Zzh-tju/CIoU Full Article
learning Brain-like approaches to unsupervised learning of hidden representations -- a comparative study. (arXiv:2005.03476v1 [cs.NE]) By arxiv.org Published On :: Unsupervised learning of hidden representations has been one of the most vibrant research directions in machine learning in recent years. In this work we study the brain-like Bayesian Confidence Propagating Neural Network (BCPNN) model, recently extended to extract sparse distributed high-dimensional representations. The saliency and separability of the hidden representations when trained on MNIST dataset is studied using an external classifier, and compared with other unsupervised learning methods that include restricted Boltzmann machines and autoencoders. Full Article
learning Estimating Blood Pressure from Photoplethysmogram Signal and Demographic Features using Machine Learning Techniques. (arXiv:2005.03357v1 [eess.SP]) By arxiv.org Published On :: Hypertension is a potentially unsafe health ailment, which can be indicated directly from the Blood pressure (BP). Hypertension always leads to other health complications. Continuous monitoring of BP is very important; however, cuff-based BP measurements are discrete and uncomfortable to the user. To address this need, a cuff-less, continuous and a non-invasive BP measurement system is proposed using Photoplethysmogram (PPG) signal and demographic features using machine learning (ML) algorithms. PPG signals were acquired from 219 subjects, which undergo pre-processing and feature extraction steps. Time, frequency and time-frequency domain features were extracted from the PPG and their derivative signals. Feature selection techniques were used to reduce the computational complexity and to decrease the chance of over-fitting the ML algorithms. The features were then used to train and evaluate ML algorithms. The best regression models were selected for Systolic BP (SBP) and Diastolic BP (DBP) estimation individually. Gaussian Process Regression (GPR) along with ReliefF feature selection algorithm outperforms other algorithms in estimating SBP and DBP with a root-mean-square error (RMSE) of 6.74 and 3.59 respectively. This ML model can be implemented in hardware systems to continuously monitor BP and avoid any critical health conditions due to sudden changes. Full Article
learning Adaptive Dialog Policy Learning with Hindsight and User Modeling. (arXiv:2005.03299v1 [cs.AI]) By arxiv.org Published On :: Reinforcement learning methods have been used to compute dialog policies from language-based interaction experiences. Efficiency is of particular importance in dialog policy learning, because of the considerable cost of interacting with people, and the very poor user experience from low-quality conversations. Aiming at improving the efficiency of dialog policy learning, we develop algorithm LHUA (Learning with Hindsight, User modeling, and Adaptation) that, for the first time, enables dialog agents to adaptively learn with hindsight from both simulated and real users. Simulation and hindsight provide the dialog agent with more experience and more (positive) reinforcements respectively. Experimental results suggest that, in success rate and policy quality, LHUA outperforms competitive baselines from the literature, including its no-simulation, no-adaptation, and no-hindsight counterparts. Full Article
learning Deep Learning based Person Re-identification. (arXiv:2005.03293v1 [cs.CV]) By arxiv.org Published On :: Automated person re-identification in a multi-camera surveillance setup is very important for effective tracking and monitoring crowd movement. In the recent years, few deep learning based re-identification approaches have been developed which are quite accurate but time-intensive, and hence not very suitable for practical purposes. In this paper, we propose an efficient hierarchical re-identification approach in which color histogram based comparison is first employed to find the closest matches in the gallery set, and next deep feature based comparison is carried out using Siamese network. Reduction in search space after the first level of matching helps in achieving a fast response time as well as improving the accuracy of prediction by the Siamese network by eliminating vastly dissimilar elements. A silhouette part-based feature extraction scheme is adopted in each level of hierarchy to preserve the relative locations of the different body structures and make the appearance descriptors more discriminating in nature. The proposed approach has been evaluated on five public data sets and also a new data set captured by our team in our laboratory. Results reveal that it outperforms most state-of-the-art approaches in terms of overall accuracy. Full Article
learning Data selection for multi-task learning under dynamic constraints. (arXiv:2005.03270v1 [eess.SY]) By arxiv.org Published On :: Learning-based techniques are increasingly effective at controlling complex systems using data-driven models. However, most work done so far has focused on learning individual tasks or control laws. Hence, it is still a largely unaddressed research question how multiple tasks can be learned efficiently and simultaneously on the same system. In particular, no efficient state space exploration schemes have been designed for multi-task control settings. Using this research gap as our main motivation, we present an algorithm that approximates the smallest data set that needs to be collected in order to achieve high control performance for multiple learning-based control laws. We describe system uncertainty using a probabilistic Gaussian process model, which allows us to quantify the impact of potentially collected data on each learning-based controller. We then determine the optimal measurement locations by solving a stochastic optimization problem approximately. We show that, under reasonable assumptions, the approximate solution converges towards that of the exact problem. Additionally, we provide a numerical illustration of the proposed algorithm. Full Article
learning Safe Reinforcement Learning through Meta-learned Instincts. (arXiv:2005.03233v1 [cs.LG]) By arxiv.org Published On :: An important goal in reinforcement learning is to create agents that can quickly adapt to new goals while avoiding situations that might cause damage to themselves or their environments. One way agents learn is through exploration mechanisms, which are needed to discover new policies. However, in deep reinforcement learning, exploration is normally done by injecting noise in the action space. While performing well in many domains, this setup has the inherent risk that the noisy actions performed by the agent lead to unsafe states in the environment. Here we introduce a novel approach called Meta-Learned Instinctual Networks (MLIN) that allows agents to safely learn during their lifetime while avoiding potentially hazardous states. At the core of the approach is a plastic network trained through reinforcement learning and an evolved "instinctual" network, which does not change during the agent's lifetime but can modulate the noisy output of the plastic network. We test our idea on a simple 2D navigation task with no-go zones, in which the agent has to learn to approach new targets during deployment. MLIN outperforms standard meta-trained networks and allows agents to learn to navigate to new targets without colliding with any of the no-go zones. These results suggest that meta-learning augmented with an instinctual network is a promising new approach for safe AI, which may enable progress in this area on a variety of different domains. Full Article
learning Multi-Target Deep Learning for Algal Detection and Classification. (arXiv:2005.03232v1 [cs.CV]) By arxiv.org Published On :: Water quality has a direct impact on industry, agriculture, and public health. Algae species are common indicators of water quality. It is because algal communities are sensitive to changes in their habitats, giving valuable knowledge on variations in water quality. However, water quality analysis requires professional inspection of algal detection and classification under microscopes, which is very time-consuming and tedious. In this paper, we propose a novel multi-target deep learning framework for algal detection and classification. Extensive experiments were carried out on a large-scale colored microscopic algal dataset. Experimental results demonstrate that the proposed method leads to the promising performance on algal detection, class identification and genus identification. Full Article
learning Hierarchical Predictive Coding Models in a Deep-Learning Framework. (arXiv:2005.03230v1 [cs.CV]) By arxiv.org Published On :: Bayesian predictive coding is a putative neuromorphic method for acquiring higher-level neural representations to account for sensory input. Although originating in the neuroscience community, there are also efforts in the machine learning community to study these models. This paper reviews some of the more well known models. Our review analyzes module connectivity and patterns of information transfer, seeking to find general principles used across the models. We also survey some recent attempts to cast these models within a deep learning framework. A defining feature of Bayesian predictive coding is that it uses top-down, reconstructive mechanisms to predict incoming sensory inputs or their lower-level representations. Discrepancies between the predicted and the actual inputs, known as prediction errors, then give rise to future learning that refines and improves the predictive accuracy of learned higher-level representations. Predictive coding models intended to describe computations in the neocortex emerged prior to the development of deep learning and used a communication structure between modules that we name the Rao-Ballard protocol. This protocol was derived from a Bayesian generative model with some rather strong statistical assumptions. The RB protocol provides a rubric to assess the fidelity of deep learning models that claim to implement predictive coding. Full Article
learning Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent Multi-View Representation Learning. (arXiv:2005.03227v1 [eess.IV]) By arxiv.org Published On :: Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world. Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed, and could largely reduce the efforts of clinicians and accelerate the diagnosis process. Chest computed tomography (CT) has been recognized as an informative tool for diagnosis of the disease. In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images. To fully explore multiple features describing CT images from different views, a unified latent representation is learned which can completely encode information from different aspects of features and is endowed with promising class structure for separability. Specifically, the completeness is guaranteed with a group of backward neural networks (each for one type of features), while by using class labels the representation is enforced to be compact within COVID-19/community-acquired pneumonia (CAP) and also a large margin is guaranteed between different types of pneumonia. In this way, our model can well avoid overfitting compared to the case of directly projecting highdimensional features into classes. Extensive experimental results show that the proposed method outperforms all comparison methods, and rather stable performances are observed when varying the numbers of training data. Full Article
learning Deeply Supervised Active Learning for Finger Bones Segmentation. (arXiv:2005.03225v1 [cs.CV]) By arxiv.org Published On :: Segmentation is a prerequisite yet challenging task for medical image analysis. In this paper, we introduce a novel deeply supervised active learning approach for finger bones segmentation. The proposed architecture is fine-tuned in an iterative and incremental learning manner. In each step, the deep supervision mechanism guides the learning process of hidden layers and selects samples to be labeled. Extensive experiments demonstrated that our method achieves competitive segmentation results using less labeled samples as compared with full annotation. Full Article
learning Deep Learning for Image-based Automatic Dial Meter Reading: Dataset and Baselines. (arXiv:2005.03106v1 [cs.CV]) By arxiv.org Published On :: Smart meters enable remote and automatic electricity, water and gas consumption reading and are being widely deployed in developed countries. Nonetheless, there is still a huge number of non-smart meters in operation. Image-based Automatic Meter Reading (AMR) focuses on dealing with this type of meter readings. We estimate that the Energy Company of Paran'a (Copel), in Brazil, performs more than 850,000 readings of dial meters per month. Those meters are the focus of this work. Our main contributions are: (i) a public real-world dial meter dataset (shared upon request) called UFPR-ADMR; (ii) a deep learning-based recognition baseline on the proposed dataset; and (iii) a detailed error analysis of the main issues present in AMR for dial meters. To the best of our knowledge, this is the first work to introduce deep learning approaches to multi-dial meter reading, and perform experiments on unconstrained images. We achieved a 100.0% F1-score on the dial detection stage with both Faster R-CNN and YOLO, while the recognition rates reached 93.6% for dials and 75.25% for meters using Faster R-CNN (ResNext-101). Full Article
learning Eliminating NB-IoT Interference to LTE System: a Sparse Machine Learning Based Approach. (arXiv:2005.03092v1 [cs.IT]) By arxiv.org Published On :: Narrowband internet-of-things (NB-IoT) is a competitive 5G technology for massive machine-type communication scenarios, but meanwhile introduces narrowband interference (NBI) to existing broadband transmission such as the long term evolution (LTE) systems in enhanced mobile broadband (eMBB) scenarios. In order to facilitate the harmonic and fair coexistence in wireless heterogeneous networks, it is important to eliminate NB-IoT interference to LTE systems. In this paper, a novel sparse machine learning based framework and a sparse combinatorial optimization problem is formulated for accurate NBI recovery, which can be efficiently solved using the proposed iterative sparse learning algorithm called sparse cross-entropy minimization (SCEM). To further improve the recovery accuracy and convergence rate, regularization is introduced to the loss function in the enhanced algorithm called regularized SCEM. Moreover, exploiting the spatial correlation of NBI, the framework is extended to multiple-input multiple-output systems. Simulation results demonstrate that the proposed methods are effective in eliminating NB-IoT interference to LTE systems, and significantly outperform the state-of-the-art methods. Full Article