for

FLEXR GUI: a graphical user interface for multi-conformer modeling of proteins

Proteins are well known `shapeshifters' which change conformation to function. In crystallography, multiple conformational states are often present within the crystal and the resulting electron-density map. Yet, explicitly incorporating alternative states into models to disentangle multi-conformer ensembles is challenging. We previously reported the tool FLEXR, which, within a few minutes, automatically separates conformational signal from noise and builds the corresponding, often missing, structural features into a multi-conformer model. To make the method widely accessible for routine multi-conformer building as part of the computational toolkit for macromolecular crystallography, we present a graphical user interface (GUI) for FLEXR, designed as a plugin for Coot 1. The GUI implementation seamlessly connects FLEXR models with the existing suite of validation and modeling tools available in Coot. We envision that FLEXR will aid crystallographers by increasing access to a multi-conformer modeling method that will ultimately lead to a better representation of protein conformational heterogeneity in the Protein Data Bank. In turn, deeper insights into the protein conformational landscape may inform biology or provide new opportunities for ligand design. The code is open source and freely available on GitHub at https://github.com/TheFischerLab/FLEXR-GUI.




for

From solution to structure: empowering inclusive cryo-EM with a pre-characterization pipeline for biological samples

In addressing the challenges faced by laboratories and universities with limited (or no) cryo-electron microscopy (cryo-EM) infrastructure, the ESRF, in collaboration with the Grenoble Institute for Structural Biology (IBS), has implemented the cryo-EM Solution-to-Structure (SOS) pipeline. This inclusive process, spanning grid preparation to high-resolution data collection, covers single-particle analysis and cryo-electron tomography (cryo-ET). Accessible through a rolling access route, proposals undergo scientific merit and technical feasibility evaluations. Stringent feasibility criteria demand robust evidence of sample homogeneity. Two distinct entry points are offered: users can either submit purified protein samples for comprehensive processing or initiate the pipeline with already vitrified cryo-EM grids. The SOS pipeline integrates negative stain imaging (exclusive to protein samples) as a first quality step, followed by cryo-EM grid preparation, grid screening and preliminary data collection for single-particle analysis, or only the first two steps for cryo-ET. In both cases, if the screening steps are successfully completed, high-resolution data collection will be carried out using a Titan Krios microscope equipped with a latest-generation direct electron counting detector coupled to an energy filter. The SOS pipeline thus emerges as a comprehensive and efficient solution, further democratizing access to cryo-EM research.




for

SEB: a computational tool for symbolic derivation of the small-angle scattering from complex composite structures

Analysis of small-angle scattering (SAS) data requires intensive modeling to infer and characterize the structures present in a sample. This iterative improvement of models is a time-consuming process. Presented here is Scattering Equation Builder (SEB), a C++ library that derives exact analytic expressions for the form factors of complex composite structures. The user writes a small program that specifies how the sub-units should be linked to form a composite structure and calls SEB to obtain an expression for the form factor. SEB supports e.g. Gaussian polymer chains and loops, thin rods and circles, solid spheres, spherical shells and cylinders, and many different options for how these can be linked together. The formalism behind SEB is presented and simple case studies are given, such as block copolymers with different types of linkage, as well as more complex examples, such as a random walk model of 100 linked sub-units, dendrimers, polymers and rods attached to the surfaces of geometric objects, and finally the scattering from a linear chain of five stars, where each star is built up of four diblock copolymers. These examples illustrate how SEB can be used to develop complex models and hence reduce the cost of analyzing SAS data.




for

A correction procedure for secondary scattering contributions from windows in small-angle X-ray scattering and ultra-small-angle X-ray scattering

This article describes a correction procedure for the removal of indirect background contributions to measured small-angle X-ray scattering patterns. The high scattering power of a sample in the ultra-small-angle region may serve as a secondary source for a window placed in front of the detector. The resulting secondary scattering appears as a sample-dependent background in the measured pattern that cannot be directly subtracted. This is an intricate problem in measurements at ultra-low angles, which can significantly reduce the useful dynamic range of detection. Two different procedures are presented to retrieve the real scattering profile of the sample.




for

Design and fabrication of 3D-printed in situ crystallization plates for probing microcrystals in an external electric field

X-ray crystallography is an established tool to probe the structure of macromolecules with atomic resolution. Compared with alternative techniques such as single-particle cryo-electron microscopy and micro-electron diffraction, X-ray crystallography is uniquely suited to room-temperature studies and for obtaining a detailed picture of macromolecules subjected to an external electric field (EEF). The impact of an EEF on proteins has been extensively explored through single-crystal X-ray crystallography, which works well with larger high-quality protein crystals. This article introduces a novel design for a 3D-printed in situ crystallization plate that serves a dual purpose: fostering crystal growth and allowing the concurrent examination of the effects of an EEF on crystals of varying sizes. The plate's compatibility with established X-ray crystallography techniques is evaluated.




for

Ray-tracing analytical absorption correction for X-ray crystallography based on tomographic reconstructions

Processing of single-crystal X-ray diffraction data from area detectors can be separated into two steps. First, raw intensities are obtained by integration of the diffraction images, and then data correction and reduction are performed to determine structure-factor amplitudes and their uncertainties. The second step considers the diffraction geometry, sample illumination, decay, absorption and other effects. While absorption is only a minor effect in standard macromolecular crystallography (MX), it can become the largest source of uncertainty for experiments performed at long wavelengths. Current software packages for MX typically employ empirical models to correct for the effects of absorption, with the corrections determined through the procedure of minimizing the differences in intensities between symmetry-equivalent reflections; these models are well suited to capturing smoothly varying experimental effects. However, for very long wavelengths, empirical methods become an unreliable approach to model strong absorption effects with high fidelity. This problem is particularly acute when data multiplicity is low. This paper presents an analytical absorption correction strategy (implemented in new software AnACor) based on a volumetric model of the sample derived from X-ray tomography. Individual path lengths through the different sample materials for all reflections are determined by a ray-tracing method. Several approaches for absorption corrections (spherical harmonics correction, analytical absorption correction and a combination of the two) are compared for two samples, the membrane protein OmpK36 GD, measured at a wavelength of λ = 3.54 Å, and chlorite dismutase, measured at λ = 4.13 Å. Data set statistics, the peak heights in the anomalous difference Fourier maps and the success of experimental phasing are used to compare the results from the different absorption correction approaches. The strategies using the new analytical absorption correction are shown to be superior to the standard spherical harmonics corrections. While the improvements are modest in the 3.54 Å data, the analytical absorption correction outperforms spherical harmonics in the longer-wavelength data (λ = 4.13 Å), which is also reflected in the reduced amount of data being required for successful experimental phasing.




for

Applications of the Clifford torus to material textures

This paper introduces a new 2D representation of the orientation distribution function for an arbitrary material texture. The approach is based on the isometric square torus mapping of the Clifford torus, which allows for points on the unit quaternion hypersphere (each corresponding to a 3D orientation) to be represented in a periodic 2D square map. The combination of three such orthogonal mappings into a single RGB (red–green–blue) image provides a compact periodic representation of any set of orientations. Square torus representations of five different orientation sampling methods are compared and analyzed in terms of the Riesz s energies that quantify the uniformity of the samplings. The effect of crystallographic symmetry on the square torus map is analyzed in terms of the Rodrigues fundamental zones for the rotational symmetry groups. The paper concludes with example representations of important texture components in cubic and hexagonal materials. The new RGB representation provides a convenient and compact way of generating training data for the automated analysis of material textures by means of neural networks.




for

Program VUE: analysing distributions of cryo-EM projections using uniform spherical grids

Three-dimensional cryo electron microscopy reconstructions are obtained by extracting information from a large number of projections of the object. These projections correspond to different `views' or `orientations', i.e. directions in which these projections show the reconstructed object. Uneven distribution of these views and the presence of dominating preferred orientations may distort the reconstructed spatial images. This work describes the program VUE (views on uniform grids for cryo electron microscopy), designed to study such distributions. Its algorithms, based on uniform virtual grids on a sphere, allow an easy calculation and accurate quantitative analysis of the frequency distribution of the views. The key computational element is the Lambert azimuthal equal-area projection of a spherical uniform grid onto a disc. This projection keeps the surface area constant and represents the frequency distribution with no visual bias. Since it has multiple tunable parameters, the program is easily adaptable to individual needs, and to the features of a particular project or of the figure to be produced. It can help identify problems related to an uneven distribution of views. Optionally, it can modify the list of projections, distributing the views more uniformly. The program can also be used as a teaching tool.




for

Novel high-efficiency 2D position-sensitive ZnS:Ag/6LiF scintillator detector for neutron diffraction

Scintillator-based ZnS:Ag/6LiF neutron detectors have been under development at ISIS for more than three decades. Continuous research and development aim to improve detector capabilities, achieve better performance and meet the increasingly demanding requirements set by neutron instruments. As part of this program, a high-efficiency 2D position-sensitive scintillator detector with wavelength-shifting fibres has been developed for neutron-diffraction applications. The detector consists of a double scintillator-fibre layer to improve detection efficiency. Each layer is made up of two orthogonal fibre planes placed between two ZnS:Ag/6LiF scintillator screens. Thin reflective foils are attached to the front and back scintillators of each layer to minimize light cross-talk between layers. The detector has an active area of 192 × 192 mm with a square pixel size of 3 × 3 mm. As part of the development process of the double-layer detector, a single-layer detector was built, together with a prototype detector in which the two layers of the detector could be read out separately. Efficiency calculations and measurements of all three detectors are discussed. The novel double-layer detector has been installed and tested on the SXD diffractometer at ISIS. The detector performance is compared with the current scintillator detectors employed on SXD by studying reference crystal samples. More than a factor of 3 improvement in efficiency is achieved with the double-layer wavelength-shifting-fibre detector. Software routines for further optimizations in spatial resolution and uniformity of response have been implemented and tested for 2D detectors. The methods and results are discussed in this manuscript.




for

Bragg Spot Finder (BSF): a new machine-learning-aided approach to deal with spot finding for rapidly filtering diffraction pattern images

Macromolecular crystallography contributes significantly to understanding diseases and, more importantly, how to treat them by providing atomic resolution 3D structures of proteins. This is achieved by collecting X-ray diffraction images of protein crystals from important biological pathways. Spotfinders are used to detect the presence of crystals with usable data, and the spots from such crystals are the primary data used to solve the relevant structures. Having fast and accurate spot finding is essential, but recent advances in synchrotron beamlines used to generate X-ray diffraction images have brought us to the limits of what the best existing spotfinders can do. This bottleneck must be removed so spotfinder software can keep pace with the X-ray beamline hardware improvements and be able to see the weak or diffuse spots required to solve the most challenging problems encountered when working with diffraction images. In this paper, we first present Bragg Spot Detection (BSD), a large benchmark Bragg spot image dataset that contains 304 images with more than 66 000 spots. We then discuss the open source extensible U-Net-based spotfinder Bragg Spot Finder (BSF), with image pre-processing, a U-Net segmentation backbone, and post-processing that includes artifact removal and watershed segmentation. Finally, we perform experiments on the BSD benchmark and obtain results that are (in terms of accuracy) comparable to or better than those obtained with two popular spotfinder software packages (Dozor and DIALS), demonstrating that this is an appropriate framework to support future extensions and improvements.




for

TORO Indexer: a PyTorch-based indexing algorithm for kilohertz serial crystallography

Serial crystallography (SX) involves combining observations from a very large number of diffraction patterns coming from crystals in random orientations. To compile a complete data set, these patterns must be indexed (i.e. their orientation determined), integrated and merged. Introduced here is TORO (Torch-powered robust optimization) Indexer, a robust and adaptable indexing algorithm developed using the PyTorch framework. TORO is capable of operating on graphics processing units (GPUs), central processing units (CPUs) and other hardware accelerators supported by PyTorch, ensuring compatibility with a wide variety of computational setups. In tests, TORO outpaces existing solutions, indexing thousands of frames per second when running on GPUs, which positions it as an attractive candidate to produce real-time indexing and user feedback. The algorithm streamlines some of the ideas introduced by previous indexers like DIALS real-space grid search [Gildea, Waterman, Parkhurst, Axford, Sutton, Stuart, Sauter, Evans & Winter (2014). Acta Cryst. D70, 2652–2666] and XGandalf [Gevorkov, Yefanov, Barty, White, Mariani, Brehm, Tolstikova, Grigat & Chapman (2019). Acta Cryst. A75, 694–704] and refines them using faster and principled robust optimization techniques which result in a concise code base consisting of less than 500 lines. On the basis of evaluations across four proteins, TORO consistently matches, and in certain instances outperforms, established algorithms such as XGandalf and MOSFLM [Powell (1999). Acta Cryst. D55, 1690–1695], occasionally amplifying the quality of the consolidated data while achieving superior indexing speed. The inherent modularity of TORO and the versatility of PyTorch code bases facilitate its deployment into a wide array of architectures, software platforms and bespoke applications, highlighting its prospective significance in SX.




for

MatchMaps: non-isomorphous difference maps for X-ray crystallography

Conformational change mediates the biological functions of macromolecules. Crystallographic measurements can map these changes with extraordinary sensitivity as a function of mutations, ligands and time. A popular method for detecting structural differences between crystallographic data sets is the isomorphous difference map. These maps combine the phases of a chosen reference state with the observed changes in structure factor amplitudes to yield a map of changes in electron density. Such maps are much more sensitive to conformational change than structure refinement is, and are unbiased in the sense that observed differences do not depend on refinement of the perturbed state. However, even modest changes in unit-cell properties can render isomorphous difference maps useless. This is unnecessary. Described here is a generalized procedure for calculating observed difference maps that retains the high sensitivity to conformational change and avoids structure refinement of the perturbed state. This procedure is implemented in an open-source Python package, MatchMaps, that can be run in any software environment supporting PHENIX [Liebschner et al. (2019). Acta Cryst. D75, 861–877] and CCP4 [Agirre et al. (2023). Acta Cryst. D79, 449–461]. Worked examples show that MatchMaps `rescues' observed difference electron-density maps for poorly isomorphous crystals, corrects artifacts in nominally isomorphous difference maps, and extends to detecting differences across copies within the asymmetric unit or across altogether different crystal forms.




for

Application of laboratory micro X-ray fluorescence devices for X-ray topography

It is demonstrated that high-resolution energy-dispersive X-ray fluorescence mapping devices based on a micro-focused beam are not restricted to high-speed analyses of element distributions or to the detection of different grains, twins and subgrains in crystalline materials but can also be used for the detection of dislocations in high-quality single crystals. Si single crystals with low dislocation densities were selected as model materials to visualize the position of dis­locations by the spatially resolved measurement of Bragg-peak intensity fluctuations. These originate from the most distorted planes caused by the stress fields of dislocations. The results obtained by this approach are compared with laboratory-based Lang X-ray topographs. The presented methodology yields comparable results and it is of particular interest in the field of crystal growth, where fast chemical and microstructural characterization feedback loops are indispensable for short and efficient development times. The beam divergence was reduced via an aperture management system to facilitate the visualization of dislocations for virtually as-grown, non-polished and non-planar samples with a very pronounced surface profile.




for

Neural networks for rapid phase quantification of cultural heritage X-ray powder diffraction data

Recent developments in synchrotron radiation facilities have increased the amount of data generated during acquisitions considerably, requiring fast and efficient data processing techniques. Here, the application of dense neural networks (DNNs) to data treatment of X-ray diffraction computed tomography (XRD-CT) experiments is presented. Processing involves mapping the phases in a tomographic slice by predicting the phase fraction in each individual pixel. DNNs were trained on sets of calculated XRD patterns generated using a Python algorithm developed in-house. An initial Rietveld refinement of the tomographic slice sum pattern provides additional information (peak widths and integrated intensities for each phase) to improve the generation of simulated patterns and make them closer to real data. A grid search was used to optimize the network architecture and demonstrated that a single fully connected dense layer was sufficient to accurately determine phase proportions. This DNN was used on the XRD-CT acquisition of a mock-up and a historical sample of highly heterogeneous multi-layered decoration of a late medieval statue, called `applied brocade'. The phase maps predicted by the DNN were in good agreement with other methods, such as non-negative matrix factorization and serial Rietveld refinements performed with TOPAS, and outperformed them in terms of speed and efficiency. The method was evaluated by regenerating experimental patterns from predictions and using the R-weighted profile as the agreement factor. This assessment allowed us to confirm the accuracy of the results.




for

RMCProfile7: reverse Monte Carlo for multiphase systems

This work introduces a completely rewritten version of the program RMCProfile (version 7), big-box, reverse Monte Carlo modelling software for analysis of total scattering data. The major new feature of RMCProfile7 is the ability to refine multiple phases simultaneously, which is relevant for many current research areas such as energy materials, catalysis and engineering. Other new features include improved support for molecular potentials and rigid-body refinements, as well as multiple different data sets. An empirical resolution correction and calculation of the pair distribution function as a back-Fourier transform are now also available. RMCProfile7 is freely available for download at https://rmcprofile.ornl.gov/.




for

Patching-based deep-learning model for the inpainting of Bragg coherent diffraction patterns affected by detector gaps

A deep-learning algorithm is proposed for the inpainting of Bragg coherent diffraction imaging (BCDI) patterns affected by detector gaps. These regions of missing intensity can compromise the accuracy of reconstruction algorithms, inducing artefacts in the final result. It is thus desirable to restore the intensity in these regions in order to ensure more reliable reconstructions. The key aspect of the method lies in the choice of training the neural network with cropped sections of diffraction data and subsequently patching the predictions generated by the model along the gap, thus completing the full diffraction peak. This approach enables access to a greater amount of experimental data for training and offers the ability to average overlapping sections during patching. As a result, it produces robust and dependable predictions for experimental data arrays of any size. It is shown that the method is able to remove gap-induced artefacts on the reconstructed objects for both simulated and experimental data, which becomes essential in the case of high-resolution BCDI experiments.




for

A simple protocol for determining the zone axis direction from selected-area electron diffraction spot patterns of cubic materials

Using the well known Rn ratio method, a protocol has been elaborated for determining the lattice direction for the 15 most common cubic zone axis spot patterns. The method makes use of the lengths of the three shortest reciprocal-lattice vectors in each pattern and the angles between them. No prior pattern calibration is required for the method to work, as the Rn ratio method is based entirely on geometric relationships. In the first step the pattern is assigned to one of three possible pattern types according to the angles that are measured between the three reciprocal-lattice vectors. The lattice direction [uvw] and possible Bravais type(s) and Laue indices of the corresponding reflections can then be determined by using lookup tables. In addition to determining the lattice direction, this simple geometric analysis allows one to distinguish between the P, I and F Bravais lattices for spot patterns aligned along [013], [112], [114] and [233]. Moreover, the F lattice can always be uniquely identified from the [011] and [123] patterns.




for

Mix and measure II: joint high-energy laboratory powder diffraction and microtomography for cement hydration studies

Portland cements (PCs) and cement blends are multiphase materials of different fineness, and quantitatively analysing their hydration pathways is very challenging. The dissolution (hydration) of the initial crystalline and amorphous phases must be determined, as well as the formation of labile (such as ettringite), reactive (such as portlandite) and amorphous (such as calcium silicate hydrate gel) components. The microstructural changes with hydration time must also be mapped out. To address this robustly and accurately, an innovative approach is being developed based on in situ measurements of pastes without any sample conditioning. Data are sequentially acquired by Mo Kα1 laboratory X-ray powder diffraction (LXRPD) and microtomography (µCT), where the same volume is scanned with time to reduce variability. Wide capillaries (2 mm in diameter) are key to avoid artefacts, e.g. self-desiccation, and to have excellent particle averaging. This methodology is tested in three cement paste samples: (i) a commercial PC 52.5 R, (ii) a blend of 80 wt% of this PC and 20 wt% quartz, to simulate an addition of supplementary cementitious materials, and (iii) a blend of 80 wt% PC and 20 wt% limestone, to simulate a limestone Portland cement. LXRPD data are acquired at 3 h and 1, 3, 7 and 28 days, and µCT data are collected at 12 h and 1, 3, 7 and 28 days. Later age data can also be easily acquired. In this methodology, the amounts of the crystalline phases are directly obtained from Rietveld analysis and the amorphous phase contents are obtained from mass-balance calculations. From the µCT study, and within the attained spatial resolution, three components (porosity, hydrated products and unhydrated cement particles) are determined. The analyses quantitatively demonstrate the filler effect of quartz and limestone in the hydration of alite and the calcium aluminate phases. Further hydration details are discussed.




for

X-ray tensor tomography for small-grained polycrystals with strong texture

Small-angle X-ray tensor tomography and the related wide-angle X-ray tensor tomography are X-ray imaging techniques that tomographically reconstruct the anisotropic scattering density of extended samples. In previous studies, these methods have been used to image samples where the scattering density depends slowly on the direction of scattering, typically modeling the directionality, i.e. the texture, with a spherical harmonics expansion up until order ℓ = 8 or lower. This study investigates the performance of several established algorithms from small-angle X-ray tensor tomography on samples with a faster variation as a function of scattering direction and compares their expected and achieved performance. The various algorithms are tested using wide-angle scattering data from an as-drawn steel wire with known texture to establish the viability of the tensor tomography approach for such samples and to compare the performance of existing algorithms.




for

Subgradient-projection-based stable phase-retrieval algorithm for X-ray ptychography

X-ray ptychography is a lensless imaging technique that visualizes the nano­structure of a thick specimen which cannot be observed with an electron microscope. It reconstructs a complex-valued refractive index of the specimen from observed diffraction patterns. This reconstruction problem is called phase retrieval (PR). For further improvement in the imaging capability, including expansion of the depth of field, various PR algorithms have been proposed. Since a high-quality PR method is built upon a base PR algorithm such as ePIE, developing a well performing base PR algorithm is important. This paper proposes an improved iterative algorithm named CRISP. It exploits subgradient projection which allows adaptive step size and can be expected to avoid yielding a poor image. The proposed algorithm was compared with ePIE, which is a simple and fast-convergence algorithm, and its modified algorithm, rPIE. The experiments confirmed that the proposed method improved the reconstruction performance for both simulation and real data.




for

Flow-Xl: a new facility for the analysis of crystallization in flow systems

Characterization of crystallization processes in situ is of great importance to furthering knowledge of how nucleation and growth processes direct the assembly of organic and inorganic materials in solution and, critically, understanding the influence that these processes have on the final physico-chemical properties of the resulting solid form. With careful specification and design, as demonstrated here, it is now possible to bring combined X-ray diffraction and Raman spectroscopy, coupled to a range of fully integrated segmented and continuous flow platforms, to the laboratory environment for in situ data acquisition for timescales of the order of seconds. The facility used here (Flow-Xl) houses a diffractometer with a micro-focus Cu Kα rotating anode X-ray source and a 2D hybrid photon-counting detector, together with a Raman spectrometer with 532 and 785 nm lasers. An overview of the diffractometer and spectrometer setup is given, and current sample environments for flow crystallization are described. Commissioning experiments highlight the sensitivity of the two instruments for time-resolved in situ data collection of samples in flow. Finally, an example case study to monitor the batch crystallization of sodium sulfate from aqueous solution, by tracking both the solute and solution phase species as a function of time, highlights the applicability of such measurements in determining the kinetics associated with crystallization processes. This work illustrates that the Flow-Xl facility provides high-resolution time-resolved in situ structural phase information through diffraction data together with molecular-scale solution data through spectroscopy, which allows crystallization mechanisms and their associated kinetics to be analysed in a laboratory setting.




for

Low-dose electron microscopy imaging for beam-sensitive metal–organic frameworks

Metal–organic frameworks (MOFs) have garnered significant attention in recent years owing to their exceptional properties. Understanding the intricate relationship between the structure of a material and its properties is crucial for guiding the synthesis and application of these materials. (Scanning) Transmission electron microscopy (S)TEM imaging stands out as a powerful tool for structural characterization at the nanoscale, capable of detailing both periodic and aperiodic local structures. However, the high electron-beam sensitivity of MOFs presents substantial challenges in their structural characterization using (S)TEM. This paper summarizes the latest advancements in low-dose high-resolution (S)TEM imaging technology and its application in MOF material characterization. It covers aspects such as framework structure, defects, and surface and interface analysis, along with the distribution of guest molecules within MOFs. This review also discusses emerging technologies like electron ptychography and outlines several prospective research directions in this field.




for

Coordinate-based simulation of pair distance distribution functions for small and large molecular assemblies: implementation and applications

X-ray scattering has become a major tool in the structural characterization of nanoscale materials. Thanks to the widely available experimental and computational atomic models, coordinate-based X-ray scattering simulation has played a crucial role in data interpretation in the past two decades. However, simulation of real-space pair distance distribution functions (PDDFs) from small- and wide-angle X-ray scattering, SAXS/WAXS, has been relatively less exploited. This study presents a comparison of PDDF simulation methods, which are applied to molecular structures that range in size from β-cyclo­dextrin [1 kDa molecular weight (MW), 66 non-hydrogen atoms] to the satellite tobacco mosaic virus capsid (1.1 MDa MW, 81 960 non-hydrogen atoms). The results demonstrate the power of interpretation of experimental SAXS/WAXS from the real-space view, particularly by providing a more intuitive method for understanding of partial structure contributions. Furthermore, the computational efficiency of PDDF simulation algorithms makes them attractive as approaches for the analysis of large nanoscale materials and biological assemblies. The simulation methods demonstrated in this article have been implemented in stand-alone software, SolX 3.0, which is available to download from https://12idb.xray.aps.anl.gov/solx.html.




for

The promise of GaAs 200 in small-angle neutron scattering for higher resolution

The Q resolution in Bonse–Hart double-crystal diffractometers is determined for a given Bragg angle by the value of the crystallographic structure factor. To date, the reflections Si 220 or Si 111 have been used exclusively in neutron scattering, which provide resolutions for triple-bounce crystals of about 2 × 10−5 Å−1 (FWHM). The Darwin width of the GaAs 200 reflection is about a factor of 10 smaller, offering the possibility of a Q resolution of 2 × 10−6 Å−1 provided crystals of sufficient quality are available. This article reports a feasibility study with single-bounce GaAs 200, yielding a Q resolution of 4.6 × 10−6 Å−1, six times superior in comparison with a Si 220 setup.




for

In situ counter-diffusion crystallization and long-term crystal preservation in microfluidic fixed targets for serial crystallography

Compared with batch and vapor diffusion methods, counter diffusion can generate larger and higher-quality protein crystals yielding improved diffraction data and higher-resolution structures. Typically, counter-diffusion experiments are conducted in elongated chambers, such as glass capillaries, and the crystals are either directly measured in the capillary or extracted and mounted at the X-ray beamline. Despite the advantages of counter-diffusion protein crystallization, there are few fixed-target devices that utilize counter diffusion for crystallization. In this article, different designs of user-friendly counter-diffusion chambers are presented which can be used to grow large protein crystals in a 2D polymer microfluidic fixed-target chip. Methods for rapid chip fabrication using commercially available thin-film materials such as Mylar, propyl­ene and Kapton are also detailed. Rules of thumb are provided to tune the nucleation and crystal growth to meet users' needs while minimizing sample consumption. These designs provide a reliable approach to forming large crystals and maintaining their hydration for weeks and even months. This allows ample time to grow, select and preserve the best crystal batches before X-ray beam time. Importantly, the fixed-target microfluidic chip has a low background scatter and can be directly used at beamlines without any crystal handling, enabling crystal quality to be preserved. The approach is demonstrated with serial diffraction of photoactive yellow protein, yielding 1.32 Å resolution at room temperature. Fabrication of this standard microfluidic chip with commercially available thin films greatly simplifies fabrication and provides enhanced stability under vacuum. These advances will further broaden microfluidic fixed-target utilization by crystallographers.




for

Free tools for crystallographic symmetry handling and visualization

Online courses and innovative teaching methods have triggered a trend in education, where the integration of multimedia, online resources and interactive tools is reshaping the view of both virtual and traditional classrooms. The use of interactive tools extends beyond the boundaries of the physical classroom, offering students the flexibility to access materials at their own speed and convenience and enhancing their learning experience. In the field of crystallography, there are a wide variety of free online resources such as web pages, interactive applets, databases and programs that can be implemented in fundamental crystallography courses for different academic levels and curricula. This paper discusses a variety of resources that can be helpful for crystallographic symmetry handling and visualization, discussing four specific resources in detail: the Bilbao Crystallographic Server, the Cambridge Structural Database, VESTA and Jmol. The utility of these resources is explained and shown by several illustrative examples.




for

Use of a confocal optical device for centring a diamond anvil cell in single-crystal X-ray diffraction experiments

High-pressure crystallographic data can be measured using a diamond anvil cell (DAC), which allows the sample to be viewed only along a cell vector which runs perpendicular to the diamond anvils. Although centring a sample perpendicular to this direction is straightforward, methods for centring along this direction often rely on sample focusing, measurements of the direct beam or short data collections followed by refinement of the crystal offsets. These methods may be inaccurate, difficult to apply or slow. Described here is a method based on precise measurement of the offset in this direction using a confocal optical device, whereby the cell centre is located at the mid-point of two measurements of the distance between a light source and the external faces of the diamond anvils viewed along the forward and reverse directions of the cell vector. It is shown that the method enables a DAC to be centred to within a few micrometres reproducibly and quickly.




for

The AUREX cell: a versatile operando electrochemical cell for studying catalytic materials using X-ray diffraction, total scattering and X-ray absorption spectroscopy under working conditions

Understanding the structure–property relationship in electrocatalysts under working conditions is crucial for the rational design of novel and improved catalytic materials. This paper presents the Aarhus University reactor for electrochemical studies using X-rays (AUREX) operando electrocatalytic flow cell, designed as an easy-to-use versatile setup with a minimal background contribution and a uniform flow field to limit concentration polarization and handle gas formation. The cell has been employed to measure operando total scattering, diffraction and absorption spectroscopy as well as simultaneous combinations thereof on a commercial silver electrocatalyst for proof of concept. This combination of operando techniques allows for monitoring of the short-, medium- and long-range structure under working conditions, including an applied potential, liquid electrolyte and local reaction environment. The structural transformations of the Ag electrocatalyst are monitored with non-negative matrix factorization, linear combination analysis, the Pearson correlation coefficient matrix, and refinements in both real and reciprocal space. Upon application of an oxidative potential in an Ar-saturated aqueous 0.1 M KHCO3/K2CO3 electrolyte, the face-centered cubic (f.c.c.) Ag gradually transforms first to a trigonal Ag2CO3 phase, followed by the formation of a monoclinic Ag2CO3 phase. A reducing potential immediately reverts the structure to the Ag (f.c.c.) phase. Following the electrochemical-reaction-induced phase transitions is of fundamental interest and necessary for understanding and improving the stability of electrocatalysts, and the operando cell proves a versatile setup for probing this. In addition, it is demonstrated that, when studying electrochemical reactions, a high energy or short exposure time is needed to circumvent beam-induced effects.




for

Towards dynamically configured databases for CIFs: the new modulated structures open database at the Bilbao Crystallographic Server

This article presents a web-based framework to build a database without in-depth programming knowledge given a set of CIF dictionaries and a collection of CIFs. The framework consists of two main elements: the public site that displays the information contained in the CIFs in an ordered manner, and the restricted administrative site which defines how that information is stored, processed and, eventually, displayed. Thus, the web application allows users to easily explore, filter and access the data, download the original CIFs, and visualize the structures via JSmol. The modulated structures open database B-IncStrDB, the official International Union of Crystallography repository for this type of material and available through the Bilbao Crystallographic Server, has been re-implemented following the proposed framework.




for

SUBGROUPS: a computer tool at the Bilbao Crystallographic Server for the study of pseudo-symmetric or distorted structures

SUBGROUPS is a free online program at the Bilbao Crystallographic Server (https://www.cryst.ehu.es/). It permits the exploration of all possible symmetries resulting from the distortion of a higher-symmetry parent structure, provided that the relation between the lattices of the distorted and parent structures is known. The program calculates all the subgroups of the parent space group which comply with this relation. The required minimal input is the space-group information of the parent structure and the relation of the unit cell of the distorted or pseudo-symmetric structure with that of the parent structure. Alternatively, the wavevector(s) observed in the diffraction data characterizing the distortion can be introduced. Additional conditions can be added, including filters related to space-group representations. The program provides very detailed information on all the subgroups, including group–subgroup hierarchy graphs. If a Crystallographic Information Framework (CIF) file of the parent high-symmetry structure is uploaded, the program generates CIF files of the parent structure described under each of the chosen lower symmetries. These CIF files may then be used as starting points for the refinement of the distorted structure under these possible symmetries. They can also be used for density functional theory calculations or for any other type of analysis. The power and efficiency of the program are illustrated with a few examples.




for

Pinhole small-angle neutron scattering based approach for desmearing slit ultra-small-angle neutron scattering data

Presented here is an effective approach to desmearing slit ultra-small-angle neutron scattering (USANS) data, based on complementary small-angle neutron scattering (SANS) measurements, leading to a seamless merging of these data sets. The study focuses on the methodological aspects of desmearing USANS data, which can then be presented in the conventional manner of SANS, enabling a broader pool of data analysis methods. The key innovation lies in the use of smeared SANS data for extrapolating slit USANS, offering a self-consistent integrand function for desmearing with Lake's iterative method. The proposed approach is validated through experimental data on porous anodized aluminium oxide membranes, showcasing its applicability and benefits. The findings emphasize the importance of accurate desmearing for merging USANS and SANS data in the crossover q region, which is particularly crucial for complex scattering patterns.




for

Electronic angle focusing for neutron time-of-flight powder diffractometers

A neutron time-of-flight (TOF) powder diffractometer with a continuous wide-angle array of detectors can be electronically focused to make a single pseudo-constant wavelength diffraction pattern, thus facilitating angle-dependent intensity corrections. The resulting powder diffraction peak profiles are affected by the neutron source emission profile and resemble the function currently used for TOF diffraction.




for

Five-analyzer Johann spectrometer for hard X-ray photon-in/photon-out spectroscopy at the Inner Shell Spectroscopy beamline at NSLS-II: design, alignment and data acquisition

Here, a recently commissioned five-analyzer Johann spectrometer at the Inner Shell Spectroscopy beamline (8-ID) at the National Synchrotron Light Source II (NSLS-II) is presented. Designed for hard X-ray photon-in/photon-out spectroscopy, the spectrometer achieves a resolution in the 0.5–2 eV range, depending on the element and/or emission line, providing detailed insights into the local electronic and geometric structure of materials. It serves a diverse user community, including fields such as physical, chemical, biological, environmental and materials sciences. This article details the mechanical design, alignment procedures and data-acquisition scheme of the spectrometer, with a particular focus on the continuous asynchronous data-acquisition approach that significantly enhances experimental efficiency.




for

Upgraded front ends for SLS 2.0 with next-generation high-power diaphragms and slits

The upgrade of the Swiss Light Source, called SLS 2.0, necessitates comprehensive updates to all 18 user front ends. This upgrade is driven by the increased power of the synchrotron beam, reduced floor space, changing source points, new safety regulations and enhanced beam properties, including a brightness increase by up to a factor of 40. While some existing front-end components are being thoroughly refurbished and upgraded for safety reasons, other components, especially those designed to tailor the new synchrotron beam, are being completely rebuilt. These new designs feature innovative and enhanced cooling systems to manage the high-power load and meet new requirements such as mechanical stability and compact footprints.




for

In situ/operando method for energy stability measurement of synchrotron radiation

A novel in situ/operando method is introduced to measure the photon beam stability of synchrotron radiation based on orthogonal diffraction imaging of a Laue crystal/analyzer, which can decouple the energy/wavelength and Bragg angle of the photon beam using the dispersion effect in the diffraction process. The method was used to measure the energy jitter and drift of the photon beam on BL09B and BL16U at the Shanghai Synchrotron Radiation Facility. The experimental results show that this method can provide a fast way to measure the beam stability of different light sources including bending magnet and undulator with meV-level energy resolution and ms-level time response.




for

Development of crystal optics for X-ray multi-projection imaging for synchrotron and XFEL sources

X-ray multi-projection imaging (XMPI) is an emerging experimental technique for the acquisition of rotation-free, time-resolved, volumetric information on stochastic processes. The technique is developed for high-brilliance light-source facilities, aiming to address known limitations of state-of-the-art imaging methods in the acquisition of 4D sample information, linked to their need for sample rotation. XMPI relies on a beam-splitting scheme, that illuminates a sample from multiple, angularly spaced viewpoints, and employs fast, indirect, X-ray imaging detectors for the collection of the data. This approach enables studies of previously inaccessible phenomena of industrial and societal relevance such as fractures in solids, propagation of shock waves, laser-based 3D printing, or even fast processes in the biological domain. In this work, we discuss in detail the beam-splitting scheme of XMPI. More specifically, we explore the relevant properties of X-ray splitter optics for their use in XMPI schemes, both at synchrotron insertion devices and XFEL facilities. Furthermore, we describe two distinct XMPI schemes, designed to faciliate large samples and complex sample environments. Finally, we present experimental proof of the feasibility of MHz-rate XMPI at the European XFEL. This detailed overview aims to state the challenges and the potential of XMPI and act as a stepping stone for future development of the technique.




for

distect: automatic sample-position tracking for X-ray experiments using computer vision algorithms

Soft X-ray spectroscopy is an important technique for measuring the fundamental properties of materials. However, for measurements of samples in the sub-millimetre range, many experimental setups show limitations. Position drifts on the order of hundreds of micrometres during thermal stabilization of the system can last for hours of expensive beam time. To compensate for drifts, sample tracking and feedback systems must be used. However, in complex sample environments where sample access is very limited, many existing solutions cannot be applied. In this work, we apply a robust computer vision algorithm to automatically track and readjust the sample position in the dozens of micrometres range. Our approach is applied in a complex sample environment, where the sample is in an ultra-high vacuum chamber, surrounded by cooled thermal shields to reach sample temperatures down to 2.5 K and in the center of a superconducting split coil. Our implementation allows sample-position tracking and adjustment in the vertical direction since this is the dimension where drifts occur during sample temperature change in our setup. The approach can be easily extended to 2D. The algorithm enables a factor of ten improvement in the overlap of a series of X-ray absorption spectra in a sample with a vertical size down to 70 µm. This solution can be used in a variety of experimental stations, where optical access is available and sample access by other means is reduced.




for

High-transmission spectrometer for rapid resonant inelastic soft X-ray scattering (rRIXS) maps

The design and first results of a high-transmission soft X-ray spectrometer operated at the X-SPEC double-undulator beamline of the KIT Light Source are presented. As a unique feature, particular emphasis was placed on optimizing the spectrometer transmission by maximizing the solid angle and the efficiencies of spectrometer gratings and detector. A CMOS detector, optimized for soft X-rays, allows for quantum efficiencies of 90% or above over the full energy range of the spectrometer, while simultaneously offering short readout times. Combining an optimized control system at the X-SPEC beamline with continuous energy scans (as opposed to step scans), the high transmission of the spectrometer, and the fast readout of the CMOS camera, enable the collection of entire rapid resonant inelastic soft X-ray scattering maps in less than 1 min. Series of spectra at a fixed energy can be taken with a frequency of up to 5 Hz. Furthermore, the use of higher-order reflections allows a very wide energy range (45 to 2000 eV) to be covered with only two blazed gratings, while keeping the efficiency high and the resolving power E/ΔE above 1500 and 3000 with low- and high-energy gratings, respectively.




for

Formulation of perfect-crystal diffraction from Takagi–Taupin equations: numerical implementation in the crystalpy library

The Takagi–Taupin equations are solved in their simplest form (zero deformation) to obtain the Bragg-diffracted and transmitted complex amplitudes. The case of plane-parallel crystal plates is discussed using a matrix model. The equations are implemented in an open-source Python library crystalpy adapted for numerical applications such as crystal reflectivity calculations and ray tracing.




for

Mirror-centered representation of a focusing hyperbolic mirror for X-ray beamlines

Conic sections are commonly used in reflective X-ray optics. Hyperbolic mirrors can focus a converging light source and are frequently paired with elliptical or parabolic mirrors in Wolter type configurations. This paper derives the closed-form expression for a mirror-centered hyperbolic shape, with zero-slope at the origin. Combined with the slope and curvature, such an expression facilitates metrology, manufacturing and mirror-bending calculations. Previous works consider ellipses, parabolas, magnifying hyperbolas or employ lengthy approximations. Here, the exact shape function is given in terms of the mirror incidence angle and the source and image distances.




for

A study of structural effects on the focusing and imaging performance of hard X-rays with 20–30 nm zone plates

Hard X-ray microscopes with 20–30 nm spatial resolution ranges are an advanced tool for the inspection of materials at the nanoscale. However, the limited efficiency of the focusing optics, for example, a Fresnel zone plate (ZP) lens, can significantly reduce the power of a nanoprobe. Despite several reports on ZP lenses that focus hard X-rays with 20 nm resolution – mainly constructed by zone-doubling techniques – a systematic investigation into the limiting factors has not been reported. We report the structural effects on the focusing and imaging efficiency of 20–30 nm-resolution ZPs, employing a modified beam-propagation method. The zone width and the duty cycle (zone width/ring pitch) were optimized to achieve maximum efficiency, and a comparative analysis of the zone materials was conducted. The optimized zone structures were used in the fabrication of Pt-hydrogen silsesquioxane (HSQ) ZPs. The highest focusing efficiency of the Pt-HSQ-ZP with a resolution of 30 nm was 10% at 7 keV and >5% in the range 6–10 keV, whereas the highest efficiency of the Pt-HSQ-ZP with a resolution of 20 nm was realized at 7 keV with an efficiency of 7.6%. Optical characterization conducted at X-ray beamlines demonstrated significant enhancement of the focusing and imaging efficiency in a broader range of hard X-rays from 5 keV to 10 keV, demonstrating the potential application in hard X-ray focusing and imaging.




for

A general Bayesian algorithm for the autonomous alignment of beamlines

Autonomous methods to align beamlines can decrease the amount of time spent on diagnostics, and also uncover better global optima leading to better beam quality. The alignment of these beamlines is a high-dimensional expensive-to-sample optimization problem involving the simultaneous treatment of many optical elements with correlated and nonlinear dynamics. Bayesian optimization is a strategy of efficient global optimization that has proved successful in similar regimes in a wide variety of beamline alignment applications, though it has typically been implemented for particular beamlines and optimization tasks. In this paper, we present a basic formulation of Bayesian inference and Gaussian process models as they relate to multi-objective Bayesian optimization, as well as the practical challenges presented by beamline alignment. We show that the same general implementation of Bayesian optimization with special consideration for beamline alignment can quickly learn the dynamics of particular beamlines in an online fashion through hyperparameter fitting with no prior information. We present the implementation of a concise software framework for beamline alignment and test it on four different optimization problems for experiments on X-ray beamlines at the National Synchrotron Light Source II and the Advanced Light Source, and an electron beam at the Accelerator Test Facility, along with benchmarking on a simulated digital twin. We discuss new applications of the framework, and the potential for a unified approach to beamline alignment at synchrotron facilities.




for

Synchrotron CT dosimetry for wiggler operation at reduced magnetic field and spatial modulation with bow tie filters

The Australian Synchrotron Imaging and Medical Beamline (IMBL) uses a superconducting multipole wiggler (SCMPW) source, dual crystal Laue monochromator and 135 m propagation distance to enable imaging and computed tomography (CT) studies of large samples with mono-energetic radiation. This study aimed to quantify two methods for CT dose reduction: wiggler source operation at reduced magnetic field strength, and beam modulation with spatial filters placed upstream from the sample. Transmission measurements with copper were used to indirectly quantify the influence of third harmonic radiation. Operation at lower wiggler magnetic field strength reduces dose rates by an order of magnitude, and suppresses the influence of harmonic radiation, which is of significance near 30 keV. Beam shaping filters modulate the incident beam profile for near constant transmitted signal, and offer protection to radio-sensitive surface organs: the eye lens, thyroid and female breast. Their effect is to reduce the peripheral dose and the dose to the scanned volume by about 10% for biological samples of 35–50 mm diameter and by 20–30% for samples of up to 160 mm diameter. CT dosimetry results are presented as in-air measurements that are specific to the IMBL, and as ratios to in-air measurements that may be applied to other beamlines. As CT dose calculators for small animals are yet to be developed, results presented here and in a previous study may be used to estimate absorbed dose to organs near the surface and the isocentre.




for

Foreword to the special virtual issue on X-ray spectroscopy to understand functional materials: instrumentation, applications, data analysis




for

Foreword to the special virtual issue dedicated to the proceedings of the PhotonMEADOW2023 Joint Workshop




for

ADIB safely tests fractional Sukuks offering for retail investors

Abu Dhabi Islamic Bank (ADIB) has announced that...




for

Careem Pay introduces instant transfers for customers in Europe

Digital wallet and fintech platform Careem Pay has launched...




for

Tide expands platform with acquisition of UK payroll solution Onfolk

Tide, a UK-based business...




for

Fintech for Marketplaces and Platforms Report 2024

The 1st edition of the Fintech for Marketplaces and Platforms Report covers essential ecommerce trends and future perspectives.