for

Toward a quantitative description of solvation structure: a framework for differential solution scattering measurements

Appreciating that the role of the solute–solvent and other outer-sphere interactions is essential for understanding chemistry and chemical dynamics in solution, experimental approaches are needed to address the structural consequences of these interactions, complementing condensed-matter simulations and coarse-grained theories. High-energy X-ray scattering (HEXS) combined with pair distribution function analysis presents the opportunity to probe these structures directly and to develop quantitative, atomistic models of molecular systems in situ in the solution phase. However, at concentrations relevant to solution-phase chemistry, the total scattering signal is dominated by the bulk solvent, prompting researchers to adopt a differential approach to eliminate this unwanted background. Though similar approaches are well established in quantitative structural studies of macromolecules in solution by small- and wide-angle X-ray scattering (SAXS/WAXS), analogous studies in the HEXS regime—where sub-ångström spatial resolution is achieved—remain underdeveloped, in part due to the lack of a rigorous theoretical description of the experiment. To address this, herein we develop a framework for differential solution scattering experiments conducted at high energies, which includes concepts of the solvent-excluded volume introduced to describe SAXS/WAXS data, as well as concepts from the time-resolved X-ray scattering community. Our theory is supported by numerical simulations and experiment and paves the way for establishing quantitative methods to determine the atomic structures of small molecules in solution with resolution approaching that of crystallography.




for

A predicted model-aided reconstruction algorithm for X-ray free-electron laser single-particle imaging

Ultra-intense, ultra-fast X-ray free-electron lasers (XFELs) enable the imaging of single protein molecules under ambient temperature and pressure. A crucial aspect of structure reconstruction involves determining the relative orientations of each diffraction pattern and recovering the missing phase information. In this paper, we introduce a predicted model-aided algorithm for orientation determination and phase retrieval, which has been tested on various simulated datasets and has shown significant improvements in the success rate, accuracy and efficiency of XFEL data reconstruction.




for

Benchmarking predictive methods for small-angle X-ray scattering from atomic coordinates of proteins using maximum likelihood consensus data

Stimulated by informal conversations at the XVII International Small Angle Scattering (SAS) conference (Traverse City, 2017), an international team of experts undertook a round-robin exercise to produce a large dataset from proteins under standard solution conditions. These data were used to generate consensus SAS profiles for xylose isomerase, urate oxidase, xylanase, lysozyme and ribonuclease A. Here, we apply a new protocol using maximum likelihood with a larger number of the contributed datasets to generate improved consensus profiles. We investigate the fits of these profiles to predicted profiles from atomic coordinates that incorporate different models to account for the contribution to the scattering of water molecules of hydration surrounding proteins in solution. Programs using an implicit, shell-type hydration layer generally optimize fits to experimental data with the aid of two parameters that adjust the volume of the bulk solvent excluded by the protein and the contrast of the hydration layer. For these models, we found the error-weighted residual differences between the model and the experiment generally reflected the subsidiary maxima and minima in the consensus profiles that are determined by the size of the protein plus the hydration layer. By comparison, all-atom solute and solvent molecular dynamics (MD) simulations are without the benefit of adjustable parameters and, nonetheless, they yielded at least equally good fits with residual differences that are less reflective of the structure in the consensus profile. Further, where MD simulations accounted for the precise solvent composition of the experiment, specifically the inclusion of ions, the modelled radius of gyration values were significantly closer to the experiment. The power of adjustable parameters to mask real differences between a model and the structure present in solution is demonstrated by the results for the conformationally dynamic ribonuclease A and calculations with pseudo-experimental data. This study shows that, while methods invoking an implicit hydration layer have the unequivocal advantage of speed, care is needed to understand the influence of the adjustable parameters. All-atom solute and solvent MD simulations are slower but are less susceptible to false positives, and can account for thermal fluctuations in atomic positions, and more accurately represent the water molecules of hydration that contribute to the scattering profile.




for

Comprehensive encoding of conformational and compositional protein structural ensembles through the mmCIF data structure

In the folded state, biomolecules exchange between multiple conformational states crucial for their function. However, most structural models derived from experiments and computational predictions only encode a single state. To represent biomolecules accurately, we must move towards modeling and predicting structural ensembles. Information about structural ensembles exists within experimental data from X-ray crystallography and cryo-electron microscopy. Although new tools are available to detect conformational and compositional heterogeneity within these ensembles, the legacy PDB data structure does not robustly encapsulate this complexity. We propose modifications to the macromolecular crystallographic information file (mmCIF) to improve the representation and interrelation of conformational and compositional heterogeneity. These modifications will enable the capture of macromolecular ensembles in a human and machine-interpretable way, potentially catalyzing breakthroughs for ensemble–function predictions, analogous to the achievements of AlphaFold with single-structure prediction.




for

Exploring serial crystallography for drug discovery

Structure-based drug design is highly dependent on the availability of structures of the protein of interest in complex with lead compounds. Ideally, this information can be used to guide the chemical optimization of a compound into a pharmaceutical drug candidate. A limitation of the main structural method used today – conventional X-ray crystallography – is that it only provides structural information about the protein complex in its frozen state. Serial crystallography is a relatively new approach that offers the possibility to study protein structures at room temperature (RT). Here, we explore the use of serial crystallography to determine the structures of the pharmaceutical target, soluble epoxide hydro­lase. We introduce a new method to screen for optimal microcrystallization conditions suitable for use in serial crystallography and present a number of RT ligand-bound structures of our target protein. From a comparison between the RT structural data and previously published cryo-temperature structures, we describe an example of a temperature-dependent difference in the ligand-binding mode and observe that flexible loops are better resolved at RT. Finally, we discuss the current limitations and potential future advances of serial crystallography for use within pharmaceutical drug discovery.




for

The crystal structure of olanzapine form III

The antipsychotic drug olanzapine is well known for its complex polymorphism. Although widely investigated, the crystal structure of one of its anhydrous polymorphs, form III, is still unknown. Its appearance, always in concomitance with forms II and I, and the impossibility of isolating it from that mixture, have prevented its structure determination so far. The scenario has changed with the emerging field of 3D electron diffraction (3D ED) and its great advantages in the characterization of polyphasic mixtures of nanosized crystals. In this study, we show how the application of 3D ED allows the ab initio structure determination and dynamical refinement of this elusive crystal structure that remained unknown for more than 20 years. Olanzapine form III is monoclinic and shows a similar but shifted packing with respect to form II. It is remarkably different from the lowest-energy structures predicted by the energy-minimization algorithms of crystal structure prediction.




for

Structure–property relationship of a complex photoluminescent arylacetylide-gold(I) compound. I: a pressure-induced phase transformation caught in the act

A pressure-induced triclinic-to-monoclinic phase transition has been caught `in the act' over a wider series of high-pressure synchrotron diffraction experiments conducted on a large, photoluminescent organo-gold(I) compound. Here, we describe the mechanism of this single-crystal-to-single-crystal phase transition, the onset of which occurs at ∼0.6 GPa, and we report a high-quality structure of the new monoclinic phase, refined using aspherical atomic scattering factors. Our case illustrates how conducting a fast series of diffraction experiments, enabled by modern equipment at synchrotron facilities, can lead to overestimation of the actual pressure of a phase transition due to slow transformation kinetics.




for

A predicted model-aided one-step classification–multireconstruction algorithm for X-ray free-electron laser single-particle imaging

Ultrafast, high-intensity X-ray free-electron lasers can perform diffraction imaging of single protein molecules. Various algorithms have been developed to determine the orientation of each single-particle diffraction pattern and reconstruct the 3D diffraction intensity. Most of these algorithms rely on the premise that all diffraction patterns originate from identical protein molecules. However, in actual experiments, diffraction patterns from multiple different molecules may be collected simultaneously. Here, we propose a predicted model-aided one-step classification–multireconstruction algorithm that can handle mixed diffraction patterns from various molecules. The algorithm uses predicted structures of different protein molecules as templates to classify diffraction patterns based on correlation coefficients and determines orientations using a correlation maximization method. Tests on simulated data demonstrated high accuracy and efficiency in classification and reconstruction.




for

From formulation to structure: 3D electron diffraction for the structure solution of a new indomethacin polymorph from an amorphous solid dispersion

3D electron diffraction (3DED) is increasingly employed to determine molec­ular and crystal structures from micro-crystals. Indomethacin is a well known, marketed, small-molecule non-steroidal anti-inflammatory drug with eight known polymorphic forms, of which four structures have been elucidated to date. Using 3DED, we determined the structure of a new ninth polymorph, σ, found within an amorphous solid dispersion, a product formulation sometimes used for active pharmaceutical ingredients with poor aqueous solubility. Subsequently, we found that σ indomethacin can be produced from direct solvent evaporation using di­chloro­methane. These results demonstrate the relevance of 3DED within drug development to directly probe product formulations.




for

Roodmus: a toolkit for benchmarking heterogeneous electron cryo-microscopy reconstructions

Conformational heterogeneity of biological macromolecules is a challenge in single-particle averaging (SPA). Current standard practice is to employ classification and filtering methods that may allow a discrete number of conformational states to be reconstructed. However, the conformation space accessible to these molecules is continuous and, therefore, explored incompletely by a small number of discrete classes. Recently developed heterogeneous reconstruction algorithms (HRAs) to analyse continuous heterogeneity rely on machine-learning methods that employ low-dimensional latent space representations. The non-linear nature of many of these methods poses a challenge to their validation and interpretation and to identifying functionally relevant conformational trajectories. These methods would benefit from in-depth benchmarking using high-quality synthetic data and concomitant ground truth information. We present a framework for the simulation and subsequent analysis with respect to the ground truth of cryo-EM micrographs containing particles whose conformational heterogeneity is sourced from molecular dynamics simulations. These synthetic data can be processed as if they were experimental data, allowing aspects of standard SPA workflows as well as heterogeneous reconstruction methods to be compared with known ground truth using available utilities. The simulation and analysis of several such datasets are demonstrated and an initial investigation into HRAs is presented.




for

Synthesis, structural and spectroscopic characterization of defect-rich forsterite as a representative phase of Martian regolith

Regolith draws intensive research attention because of its importance as the basis for fabricating materials for future human space exploration. Martian regolith is predicted to consist of defect-rich crystal structures due to long-term space weathering. The present report focuses on the structural differences between defect-rich and defect-poor forsterite (Mg2SiO4) – one of the major phases in Martian regolith. In this work, forsterites were synthesized using reverse strike co-precipitation and high-energy ball milling (BM). Subsequent post-processing was also carried out using BM to enhance the defects. The crystal structures of the samples were characterized by X-ray powder diffraction and total scattering using Cu and synchrotron radiation followed by Rietveld refinement and pair distribution function (PDF) analysis, respectively. The structural models were deduced by density functional theory assisted PDF refinements, describing both long-range and short-range order caused by defects. The Raman spectral features of the synthetic forsterites complement the ab initio simulation for an in-depth understanding of the associated structural defects.




for

Unity gives strength: combining Bertaut's and Belov's concepts and the formalism of aperiodic crystals to solve magnetic structures of unprecedented complexity




for

Ab initio crystal structures and relative phase stabilities for the aleksite series, PbnBi4Te4Sn+2

Density functional theory methods are applied to crystal structures and stabilities of phases from the aleksite homologous series, PbnBi4Te4Sn+2 (n = homologue number). The seven phases investigated correspond to n = 0 (tetradymite), 2 (aleksite-21R and -42R), 4 (saddlebackite-9H and -18H), 6 (unnamed Pb6Bi4Te4S8), 8 (unnamed Pb8Bi4Te4S10), 10 (hitachiite) and 12 (unnamed Pb12Bi4Te4S14). These seven phases correspond to nine single- or double-module structures, each comprising an odd number of atom layers, 5, 7, (5.9), 9, (7.11), 11, 13, 15 and 17, expressed by the formula: S(MpXp+1)·L(Mp+1Xp+2), where M = Pb, Bi and X = Te, S, p ≥ 2, and S and L = number of short and long modules, respectively. Relaxed structures show a and c values within 1.5% of experimental data; a and the interlayer distance dsub decrease with increasing PbS content. Variable Pb—S bond lengths contrast with constant Pb—S bond lengths in galena. All phases are n-fold superstructures of a rhombohedral subcell with c/3 = dsub*. Electron diffraction patterns show two brightest reflections at the centre of dsub*, described by the modulation vector qF = (i/N) · dsub*, i = S + L. A second modulation vector, q = γ · csub*, shows a decrease in γ, from 1.8 to 1.588, across the n = 0 to n = 12 interval. The linear relationship between γ and dsub allows the prediction of any theoretical phases beyond the studied compositional range. The upper PbS-rich limit of the series is postulated as n = 398 (Pb398Bi4Te4S400), a phase with dsub (1.726 Å) identical to that of trigonal PbS within experimental error. The aleksite series is a prime example of mixed layer compounds built with accretional homology principles.




for

Attractive and repulsive forces in a crystal of [Rb(18-crown-6)][SbCl6] under high pressure

The compression behavior of [Rb(18-crown-6)][SbCl6] crystal under pressure up to 2.16 (3) GPa was investigated in a diamond anvil cell (DAC) using a mixture of pentane–iso­pentane (1:4) as the pressure-transmitting fluid. The compound crystallizes in trigonal space group R3 and no phase transition was observed in the indicated pressure range. The low value of pressure bulk modulus [9.1 (5) GPa] found in this crystal is a characteristic of soft materials with predominant dispersive and electrostatic interaction forces. The nonlinear relationship between unit-cell parameters under high pressure is attributed to the influence of reduced intermolecular H⋯Cl contacts under pressure over 0.73 GPa. It also explains the high compression efficiency of [Rb(18-crown-6)][SbCl6] crystals at relatively low pressures, resulting in a significant shift of the Rb atom to the center of the crown ether cavity. At pressures above 0.9 GPa, steric repulsion forces begin to play a remarkable role, since an increasing number of interatomic H⋯Cl and H⋯H contacts become shorter than the sum of their van der Waals (vdW) radii. Below 0.9 GPa, both unit-cell parameter dependences (P–a and P–c) exhibit hysteresis upon pressure release, demonstrating their influence on the disordered model of Rb atoms. The void reduction under pressure also demonstrates two linear sections with the inflection point at 0.9 GPa. Compression of the crystal is accompanied by a significant decrease in the volume of the voids, leading to the rapid approach of Rb atoms to the center of the crown ether cavity. For the Rb atom to penetrate into the center of the crown ether cavity in [Rb(18-crown-6)][SbCl6], it is necessary to apply a pressure of about 2.5 GPa to disrupt the balance of atomic forces in the crystal. This sample serves as a compression model demonstrating the influence of both attractive and repulsive forces on the change in unit-cell parameters under pressure.




for

Supramolecular synthons in hydrates and solvates of lamotrigine: a tool for cocrystal design

The molecule of anti-epileptic drug lamotrigine [LAM; 3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine] is capable of the formation of multicomponent solids. Such an enhanced tendency is related to the diverse functionalities of the LAM chemical groups able to form hydrogen bonds. Two robust synthons are recognized in the supramolecular structure of LAM itself formed via N—H⋯N hydrogen bond: homosynthon, so-called aminopyridine dimer or synthon 1 [R22(8)] and larger homosynthon 2 [R32(8)]. The synthetic procedures for a new hydrate and 11 solvates of LAM (in the series: with acetone, ethanol: two polymorphs: form I and form II, 2-propanol, n-butanol, tert-butanol, n-pentanol, benzonitrile, acetonitrile, DMSO and dioxane) were performed. The comparative solid state structural analysis of a new hydrate and 11 solvates of LAM has been undertaken in order to establish robustness of the supramolecular synthons 1 and 2 found in the crystal structure of LAM itself as well as LAM susceptibility to build methodical solid state supramolecular architecture in the given competitive surrounding of potential hydrogen bonds. The aminopyridine dimer homosynthon 1 [R22(8)] has been switched from para-para (P-P) topology to ortho-ortho (O-O) topology in all crystal structures, except in LAM:n-pentanol:water solvate where it remains P-P. Homosynthon 2 [R32(8)] of the LAM crystal structure imitates in the LAM solvates as a heterosynthon by replacing the triazine nitrogen proton acceptor atoms of LAM with the proton acceptors of solvates molecules.




for

New ion radii for oxides and oxysalts, fluorides, chlorides and nitrides

Ion radii are derived here from the characteristic (grand mean) bond lengths for (i) 135 ions bonded to oxygen in 459 configurations (on the basis of coordination number) using 177 143 bond lengths extracted from 30 805 ordered coordination polyhedra from 9210 crystal structures; and (ii) 76 ions bonded to nitro­gen in 137 configurations using 4048 bond lengths extracted from 875 ordered coordination polyhedra from 434 crystal structures. There are two broad categories of use for ion radii: (1) those methods which use the relative sizes of cation and anion radii to predict local atomic arrangements; (2) those methods which compare the radii of different cations (or the radii of different anions) to predict local atomic arrangements. There is much uncertainty with regard to the relative sizes of cations and anions, giving rise to the common failure of type (1) methods, e.g. Pauling's first rule which purports to relate the coordination adopted by cations to the radius ratio of the constituent cation and anion. Conversely, type (2) methods, which involve comparing the sizes of different cations with each other (or different anions with each other), can give very accurate predictions of site occupancies, physical properties etc. Methods belonging to type (2) can equally well use the characteristic bond lengths themselves (from which the radii are derived) in place of radii to develop correlations and predict crystal properties. Extensive quantum-mechanical calculations of electron density in crystals in the literature indicate that the radii of both cations and anions are quite variable with local arrangement, suggesting significant problems with any use of ion radii. However, the dichotomy between the experimentally derived ion radii and the quantum-mechanical calculations of electron density in crystals is removed by the recognition that ion radii are pr­oxy variables for characteristic bond lengths in type (2) relations.




for

Following the guidelines for communicating commensurate magnetic structures: real case examples

A few real case examples are presented on how to report magnetic structures, with precise step-by-step explanations, following the guidelines of the IUCr Commission on Magnetic Structures [Perez-Mato et al. (2024). Acta Cryst. B80, 219–234]. Four examples have been chosen, illustrating different types of single-k magnetic orders, from the basic case to more complex ones, including odd-harmonics, and one multi-k order. In addition to acquainting researchers with the process of communicating commensurate magnetic structures, these examples also aim to clarify important concepts, which are used throughout the guidelines, such as the transformation to a standard setting of a magnetic space group.




for

Importance of powder diffraction raw data archival in a curated database for materials science applications

In recent years, there is a significant interest from the crystallographic and materials science communities to have access to raw diffraction data. The effort in archiving raw data for access by the user community is spearheaded by the International Union of Crystallography (IUCr) Committee on Data. In materials science, where powder diffraction is extensively used, the challenge in archiving raw data is different to that from single crystal data, owing to the very nature of the contributions involved. Powder diffraction (X-ray or neutron) data consist of contributions from the material under study as well as instrument specific parameters. Having raw powder diffraction data can be essential in cases of analysing materials with poor crystallinity, disorder, micro structure (size/strain) etc. Here, the initiative and progress made by the International Centre for Diffraction Data (ICDDR) in archiving powder X-ray diffraction raw data in the Powder Diffraction FileTM (PDFR) database is outlined. The upcoming 2025 release of the PDF-5+ database will have more than 20 800 raw powder diffraction patterns that are available for reference.




for

A short note on the use of irreducible representations for tilted octahedra in perovskites

It is pointed out that many authors are unaware that the particular choice of unit-cell origin determines the irreducible representations to which octahedral tilts in perovskites belong. Furthermore, a recommendation is made that the preferred option is with the origin at the B-cation site rather than that of the A site.




for

Search for missing symmetry in the Inorganic Crystal Structure Database (ICSD)

An exhaustive search for missing symmetry was performed for 223 076 entries in the ICSD (2023-2 release). Approximately 0.65% of them can be described with higher symmetry than reported. Out of the identified noncentrosymmetric entries, ∼74% can be described by centrosymmetric space groups; this has implications for compatible physical properties. It is proposed that the information on the correct space group is included in the ICSD.




for

Crystal structures of two formamidinium hexa­fluorido­phosphate salts, one with batch-dependent disorder

Syntheses of the acyclic amidinium salts, morpholino­formamidinium hexa­fluorido­phosphate [OC4H8N—CH=NH2]PF6 or C5H11N2O+·PF6−, 1, and pyrrolidinoformamidinium hexa­fluorido­phosphate [C4H8N—CH= NH2]PF6 or C5H11N2+·PF6−, 2, were carried out by heating either morpholine or pyrrolidine with triethyl orthoformate and ammonium hexa­fluorido­phosphate. Crystals of 1 obtained directly from the reaction mixture contain one cation and one anion in the asymmetric unit. The structure involves cations linked in chains parallel to the b axis by N—H⋯O hydrogen bonds in space group Pbca, with glide-related chains pointing in opposite directions. Crystals of 1 obtained by recrystallization from ethanol, however, showed a similar unit cell and the same basic structure, but unexpectedly, there was positional disorder [occupancy ratio 0.639 (4):0.361 (4)] in one of the cation chains, which lowered the crystal symmetry to the non-centrosymmetric space group Pca21, with two cations and anions in the asymmetric unit. In the pyrrolidino compound, 2, cations and anions are ordered and are stacked separately, with zigzag N—H⋯F hydrogen-bonding between stacks, forming ribbons parallel to (101), extended along the b-axis direction. Slight differences in the delocalized C=N distances between the two cations may reflect the inductive effect of the oxygen atom in the morpholino compound.




for

JUAMI, the joint undertaking for an African materials institute: building materials science research collaborations and capabilities between continents

JUAMI, the joint undertaking for an African materials institute, is a project to build collaborations and materials research capabilities between PhD researchers in Africa, the United States, and the world. Focusing on research-active universities in the East African countries of Kenya, Ethiopia, Tanzania and Uganda, the effort has run a series of schools focused on materials for sustainable energy and materials for sustainable development. These bring together early-career researchers from Africa, the US, and beyond, for two weeks in a close-knit environment. The program includes lectures on cutting-edge research from internationally renowned speakers, highly interactive tutorial lectures on the science behind the research, also from internationally known researchers, and hands-on practicals and team-building exercises that culminate in group proposals from self-formed student teams. The schools have benefited more than 300 early-career students and led to proposals that have received funding and have led to research collaborations and educational non-profits. JUAMI continues and has an ongoing community of alumni who share resources and expertise, and is open to like-minded people who want to join and develop contacts and collaborations internationally.




for

Crystal structure and Hirshfeld surface analysis of (E)-2-[2-(2-amino-1-cyano-2-oxo­ethyl­idene)hydrazin-1-yl]benzoic acid N,N-di­methylformamide monosolvate

In the title compound, C10H8N4O3·C3H7NO, the asymmetric unit contains two crystallographically independent mol­ecules A and B, each of which has one DMF solvate mol­ecule. Mol­ecules A and B both feature intra­molecular N—H⋯O hydrogen bonds, forming S(6) ring motifs and consolidating the mol­ecular configuration. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds connect mol­ecules A and B, forming R22(8) ring motifs. Weak C—H⋯O inter­actions link the mol­ecules, forming layers parallel to the (overline{2}12) plane. The DMF solvent mol­ecules are also connected to the main mol­ecules (A and B) by N—H⋯O hydrogen bonds. π–π stacking inter­actions [centroid-to-centroid distance = 3.8702 (17) Å] between the layers also increase the stability of the mol­ecular structure in the third dimension. According to the Hirshfeld surface study, O⋯H/H⋯O inter­actions are the most significant contributors to the crystal packing (27.5% for mol­ecule A and 25.1% for mol­ecule B).




for

Crystal structure and Hirshfeld surface analysis of (Z)-N-{chloro­[(4-ferrocenylphen­yl)imino]­meth­yl}-4-ferrocenylaniline N,N-di­methyl­formamide monosolvate

The title mol­ecule, [Fe2(C5H5)2(C23H17ClN2)]·C3H7NO, is twisted end to end and the central N/C/N unit is disordered. In the crystal, several C—H⋯π(ring) inter­actions lead to the formation of layers, which are connected by further C—H⋯π(ring) inter­actions. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (60.2%) and H⋯C/C⋯H (27.0%) inter­actions. Hydrogen bonding, C—H⋯π(ring) inter­actions and van der Waals inter­actions dominate the crystal packing.




for

Crystal structure of 2,4-di­amino-5-(4-hy­droxy-3-meth­oxy­phen­yl)-8,8-dimethyl-6-oxo-6,7,8,9-tetra­hydro-5H-chromeno[2,3-b]pyridine-3-carbo­nitrile–di­methyl­formamide–water (1/1/1)

In the structure of the title compound, C22H22N4O4·C3H7NO·H2O, the entire tricyclic system is approximately planar except for the carbon atom bearing the two methyl groups; the meth­oxy­phenyl ring is approximately perpendicular to the tricycle. All seven potential hydrogen-bond donors take part in classical hydrogen bonds. The main mol­ecule and the DMF combine to form broad ribbons parallel to the a axis and roughly parallel to the ab plane; the water mol­ecules connect the residues in the third dimension.




for

Synthesis, characterization and supra­molecular analysis for (E)-3-(pyridin-4-yl)acrylic acid

The title compound, C8H7NO2, crystallizes as prismatic colourless crystals in space group Poverline{1}, with one mol­ecule in the asymmetric unit. The pyridine ring is fused to acrylic acid, forming an almost planar structure with an E-configuration about the double bond with a torsion angle of −6.1 (2)°. In the crystal, strong O—H⋯N inter­actions link the mol­ecules, forming chains along the [101] direction. Weak C—H⋯O inter­actions link adjacent chains along the [100] direction, generating an R22(14) homosynthon. Finally, π–π stacking inter­actions lead to the formation of the three-dimensional structure. The supra­molecular analysis was supported by Hirshfeld surface and two-dimensional fingerprint plot analysis, indicating that the most abundant contacts are associated with H⋯H, O⋯H/H⋯O, N⋯H/H⋯N and C⋯H/H⋯C inter­actions.




for

Dimeric ethyl­tin(IV)–dibromide–hydroxide–N,N-di­methyl­formamide

Di-μ-hydroxido-bis­[di­bromido­(di­methyl­formamide-κO)ethyl­tin(IV)], [Sn2Br4(C2H5)2(OH)2(C3H7NO)2], was prepared from ethyl­tin(IV) bromide and N,N-di­methyl­formamide (DMF) in air. The crystal structure exhibits the typical structural features of dimeric Lewis-base-stabilized monoorganotin(IV)–dihalide–hydroxides, RSnHal2(OH), i.e. two octa­hedrally coordinated Sn atoms are linked together via two bridging hydroxide groups, resulting in a centrosymmetric four-membered rhomboid-like Sn–OH ring with acute angles at the Sn atom, obtuse angles at the O atoms and two different tin–oxygen bond lengths. With the shorter bond trans to the ethyl group, this observation underlines once more the so-called trans-strengthening effect in monoorganotin(IV) com­pounds with octa­hedrally coordinated Sn atoms. Differences and similarities in the bond lengths and angles in the four-membered Sn–OH rings have been worked out for the rings in dimeric diorganotin(IV)–halide–hydroxides, [R2SnHal(OH)]2, and hydrates of dimeric tin(IV)–trihalide–hydroxide–aqua–hydrates, [SnHal3(OH)(H2O)]2·nH2O.




for

Structural characterization and comparative analysis of polymorphic forms of psilocin (4-hy­droxy-N,N-di­methyl­tryptamine)

The title compound, C12H16N2O, is a hy­droxy-substituted mono­amine alkaloid, and the primary metabolite of the naturally occurring psychedelic compound psilocybin. Crystalline forms of psilocin are known, but their characterization by single-crystal structure analysis is limited. Herein, two anhydrous polymorphic forms (I and II) of psilocin are described. The crystal structure of polymorphic Form I, in space group P21/c, was first reported in 1974. Along with the redeterm­ination to modern standards and unambiguous location of the acidic H atom and variable-temperature single-crystal unit-cell determinations for Form I, the Form II polymorph of the title compound, which crystallizes in the monoclinic space group P21/n, is described for the first time. The psilocin mol­ecules are present in both forms in their phenol–amine tautomeric forms (not resolved in the 1974 report). The mol­ecules in Forms I and II, however, feature different conformations of their N,N-dimethyl ethyl­ene substituent, with the N—C—C—C link in Form I being trans and in Form II being gauche, allowing the latter to bend back to the hydroxyl group of the same mol­ecule, leading to the formation of a strong intra­molecular O—H⋯N hydrogen bond between the hydroxyl moiety and ethyl­amino-nitro­gen group. In the extended structure of Form II, the mol­ecules form one-dimensional strands through N—H⋯O hydrogen bonds from the indole group to the oxygen atom of the hydroxyl moiety of an adjacent mol­ecule. Form II exhibits whole-mol­ecule disorder due to a pseudo-mirror operation, with an occupancy ratio of 0.689 (5):0.311 (5) for the two components. In contrast, Form I does not feature intra­molecular hydrogen bonds but forms a layered structure through inter­molecular N—H⋯O and O—H⋯N hydrogen bonds.




for

Crystal structures of seven gold(III) complexes of the form LAuX3 (L = substituted pyridine, X = Cl or Br)

The structures of seven gold(III) halide derivatives of general formula LAuX3 (L = methyl­pyridines or di­methyl­pyridines, X = Cl or Br) are presented: tri­chlorido­(2-methyl­pyridine)­gold(III), [AuCl3(C6H7N)], 1 (as two polymorphs 1a and 1b); tri­bromido­(2-methyl­pyridine)­gold(III), [AuBr3(C6H7N)], 2; tri­bromido­(3-methyl­pyridine)­gold(III), [AuBr3(C6H7N)], 3; tri­bromido­(2,4-di­meth­yl­pyridine)­gold(III), [AuBr3(C7H9N)], 4; tri­chlorido­(3,5-di­methylpyridine)­gold(III), [AuCl3(C7H9N)], 5; tri­bromido­(3,5-di­methyl­pyridine)­gold(III), [AuBr3(C7H9N)], 6, and tri­chlorido­(2,6-di­methyl­pyridine)­gold(III), [AuCl3(C7H9N)], 7. Additionally, the structure of 8, the 1:1 adduct of 2 and 6, [AuBr3(C6H7N)]·[AuBr3(C7H9N)], is included. All the structures crystallize solvent-free, and all have Z' = 1 except for 5 and 7, which display crystallographic twofold rotation symmetry, and 4, which has Z' = 2. 1a and 2 are isotypic. The coordination geometry at the gold(III) atoms is, as expected, square-planar. Four of the crystals (1a, 1b, 2 and 8) were non-merohedral twins, and these structures were refined using the ‘HKLF 5’ method. The largest inter­planar angles between the pyridine ring and the coordination plane are observed for those structures with a 2-methyl substituent of the pyridine ring. The Au—N bonds are consistently longer trans to Br (average 2.059 Å) than trans to Cl (average 2.036 Å). In the crystal packing, a frequent feature is the offset-stacked and approximately rectangular dimeric moiety (Au—X)2, with anti­parallel Au—X bonds linked by Au⋯X contacts at the vacant positions axial to the coordination plane. The dimers are connected by further secondary inter­actions (Au⋯X or X⋯X contacts, `weak' C—H⋯X hydrogen bonds) to form chain, double chain (`ladder') or layer structures, and in several cases linked again in the third dimension. Only 1b and 7 contain no offset dimers; these structures instead involve C—H⋯Cl hydrogen bonds combined with Cl⋯Cl contacts (1b) or Cl⋯π contacts (7). The packing patterns of seven further complexes LAuX3 involving simple pyridines (taken from the Cambridge Structural Database) are compared with those of 1–8.




for

Puckering effects of 4-hy­droxy-l-proline isomers on the conformation of ornithine-free Gramicidin S

The cyclic peptide cyclo(Val-Leu-Leu-d-Phe-Pro)2 (peptide 1) was specifically designed for structural chemistry investigations, drawing inspiration from Gramicidin S (GS). Previous studies have shown that Pro residues within 1 adopt a down-puckering conformation of the pyrrolidine ring. By incorporating fluoride-Pro with 4-trans/cis-isomers into 1, an up-puckering conformation was successfully induced. In the current investigation, introducing hy­droxy­prolines with 4-trans/cis-isomer configurations (tHyp/cHyp) into 1 gave cyclo(Val-Leu-Leu-d-Phe-tHyp)2 methanol disolvate monohydrate, C62H94N10O12·2CH4O·H2O (4), and cyclo(Val-Leu-Leu-d-Phe-cHyp)2 monohydrate, C62H94N10O12·H2O (5), respectively. However, the puckering of 4 and 5 remained in the down conformation, regardless of the geometric position of the hydroxyl group. Although the backbone structure of 4 with trans-substitution was asymmetric, the asymmetric backbone of 5 with cis-substitution was unexpected. It is speculated that the anti­cipated influence of stress from the geometric positioning, which was expected to affect the puckering, may have been mitigated by inter­actions between the hydroxyl groups of hy­droxy­proline, the solvent mol­ecules, and peptides.




for

Crystal structure and Hirshfeld surface analysis of di­chlorido­[2-(3-cyclo­pentyl-1,2,4-triazol-5-yl-κN4)pyridine-κN]palladium(II) di­methyl­formamide monosolvate

This study presents the synthesis, characterization and Hirshfeld surface analysis of the title mononuclear complex, [PdCl2(C12H14N4)]·C3H7NO. The compound crystalizes in the P21/c space group of the monoclinic system. The asymmetric unit contains one neutral complex Pd(HLc-Pe)Cl2 [HLc-Pe is 2-(3-cyclo­pentyl-1,2,4-triazol-5-yl)pyridine] and one mol­ecule of DMF as a solvate. The Pd atom has a square-planar coordination. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to the bc plane. A Hirshfeld surface analysis showed that the H⋯H contacts dominate the crystal packing with a contribution of 41.4%. The contribution of the N⋯H/H⋯N and H⋯O/O⋯H inter­actions is somewhat smaller, amounting to 12.4% and 5%, respectively.




for

Foreword to the AfCA collection: celebrating work published by African researchers in IUCr journals




for

Crystal structures of seven mixed-valence gold compounds of the form [(R1R2R3PE)2AuI]+[AuIIIX4]− (R = tert-butyl or isopropyl, E = S or Se, and X = Cl or Br)

During our studies of the oxidation of gold(I) complexes of tri­alkyl­phosphane chalcogenides, general formula R1R2R3PEAuX, (R = tert-butyl or isopropyl, E = S or Se, X = Cl or Br) with PhICl2 or elemental bromine, we have isolated a set of seven mixed-valence by-products, the bis­(tri­alkyl­phosphane chalcogenido)gold(I) tetra­halogenidoaurates(III) [(R1R2R3PE)2Au]+[AuX4]−. These corres­pond to the addition of one halogen atom per gold atom of the AuI precursor. Com­pound 1, bis­(triiso­propyl­phosphane sulfide)­gold(I) tetra­chlorido­aur­ate(III), [Au(C9H21PS)2][AuCl4] or [(iPr3PS)2Au][AuCl4], crystallizes in space group P21/n with Z = 4; the gold(I) atoms of the two cations lie on twofold rotation axes, and the gold(III) atoms of the two anions lie on inversion centres. Compound 2, bis­(tert-butyl­diiso­propyl­phosphane sulfide)­gold(I) tetra­chlorido­aurate(III), [Au(C10H23PS)2][AuCl4] or [(tBuiPr2PS)2Au][AuCl4], crystallizes in space group P1 with Z = 4; the asymmetric unit contains two cations and two anions with no imposed symmetry. A least-squares fit of the two cations gave an r.m.s. deviation of 0.19 Å. Compound 3, bis­(tri-tert-butyl­phosphane sulfide)­gold(I) tetra­chlorido­aurate(III), [Au(C12H27PS)2][AuCl4] or [(tBu3PS)2Au][AuCl4], crystallizes in space group P1 with Z = 1; both gold atoms lie on inversion centres. Compound 4a, bis­(tert-butyl­diiso­propyl­phosphane sulfide)­gold(I) tetra­bromi­doaurate(III), [Au(C10H23PS)2][AuBr4] or [(tBuiPr2PS)2Au][AuBr4], crystallizes in space group P21/c with Z = 4; the cation lies on a general position, whereas the gold(III) atoms of the two anions lie on inversion centres. Compound 4b, bis­(tert-butyl­diiso­propyl­phosphane selenide)gold(I) tetra­bromido­aurate(III), [Au(C10H23PSe)2][AuBr4] or [(tBuiPr2PSe)2Au][AuBr4], is isotypic with 4a. Compound 5a, bis­(tri-tert-butyl­phosphane sulfide)­gold(I) tetra­bromido­aurate(III), [Au(C12H27PS)2][AuBr4] or [(tBu3PS)2Au][AuBr4], is isotypic with compound 4a. Compound 5a, bis­(tri-tert-butyl­phosphane sulfide)­gold(I) tetra­bromido­aurate(III), [Au(C12H27PS)2][AuBr4] or [(tBu3PS)2Au][AuBr4], crystallizes in space group P1 with Z = 1; both gold atoms lie on inversion centres. Compound 5b, bis­(tri-tert-butyl­phosphane selenide)gold(I) tetra­bromido­aurate(III), [Au(C12H27PSe)2][AuBr4] or [(tBu3PSe)2Au][AuBr4], is isotypic with 5a. All AuI atoms are linearly coordinated and all AuIII atoms exhibit a square-planar coordination environment. The ligands at the AuI atoms are anti­periplanar to each other across the S⋯S vectors. There are several short intra­molecular H⋯Au and H⋯E contacts. Average bond lengths (Å) are: P—S = 2.0322, P—Se = 2.1933, S—Au = 2.2915, and Se—Au = 2.4037. The complex three-dimensional packing of 1 involves two short C—Hmethine⋯Cl contacts (and some slightly longer contacts). For 2, four C—Hmethine⋯Cl inter­actions combine to produce zigzag chains of residues parallel to the c axis. Additionally, an S⋯Cl contact is observed that might qualify as a ‘chalcogen bond’. The packing of 3 is three-dimensional, but can be broken down into two layer structures, each involving an S⋯Cl and an H⋯Cl contact. For the bromido derivatives 4a/b and 5a/b, loose associations of the anions form part of the packing patterns. For all four compounds, these combine with an E⋯Br contact to form layers parallel to the ab plane.




for

Review and experimental comparison of speckle-tracking algorithms for X-ray phase contrast imaging

This review focuses on low-dose near-field X-ray speckle phase imaging in the differential mode introducing the existing algorithms with their specifications and comparing their performances under various experimental conditions.




for

Development and testing of a dual-frequency, real-time hardware feedback system for the hard X-ray nanoprobe beamline of the SSRF

we introduce a novel approach for a real-time dual-frequency feedback system, which has been firstly used at the hard X-ray nanoprobe beamline of SSRF. The BiBEST can then efficiently stabilize X-ray beam position and stability in parallel, making use of different optical systems in the beamline.




for

Form factor of helical structures and twisted fibres

A general formalism is presented for the isotropically averaged single-chain scattering function (form factor) of single, double, triple and higher-order helices, as well as twisted fibres consisting of concentric layers of strands. Form factors for double and triple helices with differently sized grooves have also been derived. The formulas include the longitudinal and transverse interference over the pitch and radius of the helices, respectively. The results may be useful for the analysis of small-angle scattering data of (bio)macromolecules or molecular assemblies exhibiting a helical arrangement.




for

Texture measurements on quartz single crystals to validate coordinate systems for neutron time-of-flight texture analysis

In crystallographic texture analysis, ensuring that sample directions are preserved from experiment to the resulting orientation distribution is crucial to obtain physical meaning from diffraction data. This work details a procedure to ensure instrument and sample coordinates are consistent when analyzing diffraction data with a Rietveld refinement using the texture analysis software MAUD. A quartz crystal is measured on the HIPPO diffractometer at Los Alamos National Laboratory for this purpose. The methods described here can be applied to any diffraction instrument measuring orientation distributions in polycrystalline materials.




for

An electropneumatic cleaning device for piezo-actuator-driven picolitre-droplet dispensers

Recently, we introduced the liquid application method for time-resolved analyses (LAMA). The time-consuming cleaning cycles required for the substrate solution exchange and storage of the sensitive droplet-dispenser nozzles present practical challenges. In this work, a dispenser cleaning system for the semi-automated cleaning of the piezo-actuator-driven picolitre-droplet dispensers required for LAMA is introduced to streamline typical workflows.




for

ProLEED Studio: software for modeling low-energy electron diffraction patterns

Low-energy electron diffraction patterns contain precise information about the structure of the surface studied. However, retrieving the real space lattice periodicity from complex diffraction patterns is challenging, especially when the modeled patterns originate from superlattices with large unit cells composed of several symmetry-equivalent domains without a simple relation to the substrate. This work presents ProLEED Studio software, built to provide simple, intuitive and precise modeling of low-energy electron diffraction patterns. The interactive graphical user interface allows real-time modeling of experimental diffraction patterns, change of depicted diffraction spot intensities, visualization of different diffraction domains, and manipulation of any lattice points or diffraction spots. The visualization of unit cells, lattice vectors, grids and scale bars as well as the possibility of exporting ready-to-publish models in bitmap and vector formats significantly simplifies the modeling process and publishing of results.




for

Using XAS to monitor radiation damage in real time and post-analysis, and investigation of systematic errors of fluorescence XAS for Cu-bound amyloid-β

X-ray absorption spectroscopy (XAS) is a promising technique for determining structural information from sensitive biological samples, but high-accuracy X-ray absorption fine structure (XAFS) requires corrections of systematic errors in experimental data. Low-temperature XAS and room-temperature X-ray absorption spectro-electrochemical (XAS-EC) measurements of N-truncated amyloid-β samples were collected and corrected for systematic effects such as dead time, detector efficiencies, monochromator glitches, self-absorption, radiation damage and noise at higher wavenumber (k). A new protocol was developed using extended X-ray absorption fine structure (EXAFS) data analysis for monitoring radiation damage in real time and post-analysis. The reliability of the structural determinations and consistency were validated using the XAS measurement experimental uncertainty. The correction of detector pixel efficiencies improved the fitting χ2 by 12%. An improvement of about 2.5% of the structural fitting was obtained after dead-time corrections. Normalization allowed the elimination of 90% of the monochromator glitches. The remaining glitches were manually removed. The dispersion of spectra due to self-absorption was corrected. Standard errors of experimental measurements were propagated from pointwise variance of the spectra after systematic corrections. Calculated uncertainties were used in structural refinements for obtaining precise and reliable values of structural parameters including atomic bond lengths and thermal parameters. This has permitted hypothesis testing.




for

BioXTAS RAW 2: new developments for a free open-source program for small-angle scattering data reduction and analysis

BioXTAS RAW is a free open-source program for reduction, analysis and modelling of biological small-angle scattering data. Here, the new developments in RAW version 2 are described. These include improved data reduction using pyFAI; updated automated Guinier fitting and Dmax finding algorithms; automated series (e.g. size-exclusion chromatography coupled small-angle X-ray scattering or SEC-SAXS) buffer- and sample-region finding algorithms; linear and integral baseline correction for series; deconvolution of series data using regularized alternating least squares (REGALS); creation of electron-density reconstructions using electron density via solution scattering (DENSS); a comparison window showing residuals, ratios and statistical comparisons between profiles; and generation of PDF reports with summary plots and tables for all analysis. Furthermore, there is now a RAW API, which can be used without the graphical user interface (GUI), providing full access to all of the functionality found in the GUI. In addition to these new capabilities, RAW has undergone significant technical updates, such as adding Python 3 compatibility, and has entirely new documentation available both online and in the program.




for

Refinement of X-ray and electron diffraction crystal structures using analytical Fourier transforms of Slater-type atomic wavefunctions in Olex2

An implementation of Slater-type spherical scattering factors for X-ray and electron diffraction for elements in the range Z = 1–103 is presented within the software Olex2. Both high- and low-angle Fourier behaviour of atomic electron density and electrostatic potential can thus be addressed, in contrast to the limited flexibility of the four Gaussian plus constant descriptions which are currently the most widely used method for calculating atomic scattering factors during refinement. The implementation presented here accommodates the increasing complexity of the electronic structure of heavier elements by using complete atomic wavefunctions without any interpolation between precalculated tables or intermediate fitting functions. Atomic wavefunctions for singly charged ions are implemented and made accessible, and these show drastic changes in electron diffraction scattering factors compared with the neutral atom. A comparison between the two different spherical models of neutral atoms is presented as an example for four different kinds of X-ray and two electron diffraction structures, and comparisons of refinement results using the existing diffraction data are discussed. A systematic but slight improvement in R values and residual densities can be observed when using the new scattering factors, and this is discussed relative to effects on the atomic displacement parameters and atomic positions, which are prominent near the heavier elements in a structure.




for

INSIGHT: in situ heuristic tool for the efficient reduction of grazing-incidence X-ray scattering data

INSIGHT is a Python-based software tool for processing and reducing 2D grazing-incidence wide- and small-angle X-ray scattering (GIWAXS/GISAXS) data. It offers the geometric transformation of the 2D GIWAXS/GISAXS detector image to reciprocal space, including vectorized and parallelized pixel-wise intensity correction calculations. An explicit focus on efficient data management and batch processing enables full control of large time-resolved synchrotron and laboratory data sets for a detailed analysis of kinetic GIWAXS/GISAXS studies of thin films. It processes data acquired with arbitrarily rotated detectors and performs vertical, horizontal, azimuthal and radial cuts in reciprocal space. It further allows crystallographic indexing and GIWAXS pattern simulation, and provides various plotting and export functionalities. Customized scripting offers a one-step solution to reduce, process, analyze and export findings of large in situ and operando data sets.




for

The Pixel Anomaly Detection Tool: a user-friendly GUI for classifying detector frames using machine-learning approaches

Data collection at X-ray free electron lasers has particular experimental challenges, such as continuous sample delivery or the use of novel ultrafast high-dynamic-range gain-switching X-ray detectors. This can result in a multitude of data artefacts, which can be detrimental to accurately determining structure-factor amplitudes for serial crystallography or single-particle imaging experiments. Here, a new data-classification tool is reported that offers a variety of machine-learning algorithms to sort data trained either on manual data sorting by the user or by profile fitting the intensity distribution on the detector based on the experiment. This is integrated into an easy-to-use graphical user interface, specifically designed to support the detectors, file formats and software available at most X-ray free electron laser facilities. The highly modular design makes the tool easily expandable to comply with other X-ray sources and detectors, and the supervised learning approach enables even the novice user to sort data containing unwanted artefacts or perform routine data-analysis tasks such as hit finding during an experiment, without needing to write code.




for

Convolutional neural network approach for the automated identification of in cellulo crystals

In cellulo crystallization is a rare event in nature. Recent advances that have made use of heterologous overexpression can promote the intracellular formation of protein crystals, but new tools are required to detect and characterize these targets in the complex cell environment. The present work makes use of Mask R-CNN, a convolutional neural network (CNN)-based instance segmentation method, for the identification of either single or multi-shaped crystals growing in living insect cells, using conventional bright field images. The algorithm can be rapidly adapted to recognize different targets, with the aim of extracting relevant information to support a semi-automated screening pipeline, in order to aid the development of the intracellular protein crystallization approach.




for

A workflow for single-particle structure determination via iterative phasing of rotational invariants in fluctuation X-ray scattering

Fluctuation X-ray scattering (FXS) offers a complementary approach for nano- and bioparticle imaging with an X-ray free-electron laser (XFEL), by extracting structural information from correlations in scattered XFEL pulses. Here a workflow is presented for single-particle structure determination using FXS. The workflow includes procedures for extracting the rotational invariants from FXS patterns, performing structure reconstructions via iterative phasing of the invariants, and aligning and averaging multiple reconstructions. The reconstruction pipeline is implemented in the open-source software xFrame and its functionality is demonstrated on several simulated structures.




for

X-Ray Calc 3: improved software for simulation and inverse problem solving for X-ray reflectivity

This work introduces X-Ray Calc (XRC), an open-source software package designed to simulate X-ray reflectivity (XRR) and address the inverse problem of reconstructing film structures on the basis of measured XRR curves. XRC features a user-friendly graphical interface that facilitates interactive simulation and reconstruction. The software employs a recursive approach based on the Fresnel equations to calculate XRR and incorporates specialized tools for modeling periodic multilayer structures. This article presents the latest version of the X-Ray Calc software (XRC3), with notable improvements. These enhancements encompass an automatic fitting capability for XRR curves utilizing a modified flight particle swarm optimization algorithm. A novel cost function was also developed specifically for fitting XRR curves of periodic structures. Furthermore, the overall user experience has been enhanced by developing a new single-window interface.




for

Unlocking the surface chemistry of ionic minerals: a high-throughput pipeline for modeling realistic interfaces

A systematic procedure is introduced for modeling charge-neutral non-polar surfaces of ionic minerals containing polyatomic anions. By integrating distance- and charge-based clustering to identify chemical species within the mineral bulk, our pipeline, PolyCleaver, renders a variety of theoretically viable surface terminations. As a demonstrative example, this approach was applied to forsterite (Mg2SiO4), unveiling a rich interface landscape based on interactions with formaldehyde, a relevant multifaceted molecule, and more particularly in prebiotic chemistry. This high-throughput method, going beyond techniques traditionally applied in the modeling of minerals, offers new insights into the potential catalytic properties of diverse surfaces, enabling a broader exploration of synthetic pathways in complex mineral systems.




for

DLSIA: Deep Learning for Scientific Image Analysis

DLSIA (Deep Learning for Scientific Image Analysis) is a Python-based machine learning library that empowers scientists and researchers across diverse scientific domains with a range of customizable convolutional neural network (CNN) architectures for a wide variety of tasks in image analysis to be used in downstream data processing. DLSIA features easy-to-use architectures, such as autoencoders, tunable U-Nets and parameter-lean mixed-scale dense networks (MSDNets). Additionally, this article introduces sparse mixed-scale networks (SMSNets), generated using random graphs, sparse connections and dilated convolutions connecting different length scales. For verification, several DLSIA-instantiated networks and training scripts are employed in multiple applications, including inpainting for X-ray scattering data using U-Nets and MSDNets, segmenting 3D fibers in X-ray tomographic reconstructions of concrete using an ensemble of SMSNets, and leveraging autoencoder latent spaces for data compression and clustering. As experimental data continue to grow in scale and complexity, DLSIA provides accessible CNN construction and abstracts CNN complexities, allowing scientists to tailor their machine learning approaches, accelerate discoveries, foster interdisciplinary collaboration and advance research in scientific image analysis.




for

Robust image descriptor for machine learning based data reduction in serial crystallography

Serial crystallography experiments at synchrotron and X-ray free-electron laser (XFEL) sources are producing crystallographic data sets of ever-increasing volume. While these experiments have large data sets and high-frame-rate detectors (around 3520 frames per second), only a small percentage of the data are useful for downstream analysis. Thus, an efficient and real-time data classification pipeline is essential to differentiate reliably between useful and non-useful images, typically known as `hit' and `miss', respectively, and keep only hit images on disk for further analysis such as peak finding and indexing. While feature-point extraction is a key component of modern approaches to image classification, existing approaches require computationally expensive patch preprocessing to handle perspective distortion. This paper proposes a pipeline to categorize the data, consisting of a real-time feature extraction algorithm called modified and parallelized FAST (MP-FAST), an image descriptor and a machine learning classifier. For parallelizing the primary operations of the proposed pipeline, central processing units, graphics processing units and field-programmable gate arrays are implemented and their performances compared. Finally, MP-FAST-based image classification is evaluated using a multi-layer perceptron on various data sets, including both synthetic and experimental data. This approach demonstrates superior performance compared with other feature extractors and classifiers.