sync

Grazing-incidence synchrotron radiation diffraction studies on irradiated Ce-doped and pristine Y-stabilized ZrO2 at the Rossendorf beamline

In this work, Ce-doped yttria-stabilized zirconia (YSZ) and pure YSZ phases were subjected to irradiation with 14 MeV Au ions. Irradiation studies were performed to simulate long-term structural and microstructural damage due to self-irradiation in YSZ phases hosting alpha-active radioactive species. It was found that both the Ce-doped YSZ and the YSZ phases had a reasonable tolerance to irradiation at high ion fluences and the bulk crystallinity was well preserved. Nevertheless, local microstrain increased in all compounds under study after irradiation, with the Ce-doped phases being less affected than pure YSZ. Doping with cerium ions increased the microstructural stability of YSZ phases through a possible reduction in the mobility of oxygen atoms, which limits the formation of structural defects. Doping of YSZ with tetravalent actinide elements is expected to have a similar effect. Thus, YSZ phases are promising for the safe long-term storage of radioactive elements. Using synchrotron radiation diffraction, measurements of the thin irradiated layers of the Ce-YSZ and YSZ samples were performed in grazing incidence (GI) mode. A corresponding module for measurements in GI mode was developed at the Rossendorf Beamline and relevant technical details for sample alignment and data collection are also presented.




sync

A differentiable simulation package for performing inference of synchrotron-radiation-based diagnostics

The direction of particle accelerator development is ever-increasing beam quality, currents and repetition rates. This poses a challenge to traditional diagnostics that directly intercept the beam due to the mutual destruction of both the beam and the diagnostic. An alternative approach is to infer beam parameters non-invasively from the synchrotron radiation emitted in bending magnets. However, inferring the beam distribution from a measured radiation pattern is a complex and computationally expensive task. To address this challenge we present SYRIPY (SYnchrotron Radiation In PYthon), a software package intended as a tool for performing inference of synchrotron-radiation-based diagnostics. SYRIPY has been developed using PyTorch, which makes it both differentiable and able to leverage the high performance of GPUs, two vital characteristics for performing statistical inference. The package consists of three modules: a particle tracker, Lienard–Wiechert solver and Fourier optics propagator, allowing start-to-end simulation of synchrotron radiation detection to be carried out. SYRIPY has been benchmarked against SRW, the prevalent numerical package in the field, showing good agreement and up to a 50× speed improvement. Finally, we have demonstrated how SYRIPY can be used to perform Bayesian inference of beam parameters using stochastic variational inference.




sync

Optimization of synchrotron radiation parameters using swarm intelligence and evolutionary algorithms

Alignment of each optical element at a synchrotron beamline takes days, even weeks, for each experiment costing valuable beam time. Evolutionary algorithms (EAs), efficient heuristic search methods based on Darwinian evolution, can be utilized for multi-objective optimization problems in different application areas. In this study, the flux and spot size of a synchrotron beam are optimized for two different experimental setups including optical elements such as lenses and mirrors. Calculations were carried out with the X-ray Tracer beamline simulator using swarm intelligence (SI) algorithms and for comparison the same setups were optimized with EAs. The EAs and SI algorithms used in this study for two different experimental setups are the Genetic Algorithm (GA), Non-dominated Sorting Genetic Algorithm II (NSGA-II), Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC). While one of the algorithms optimizes the lens position, the other focuses on optimizing the focal distances of Kirkpatrick–Baez mirrors. First, mono-objective evolutionary algorithms were used and the spot size or flux values checked separately. After comparison of mono-objective algorithms, the multi-objective evolutionary algorithm NSGA-II was run for both objectives – minimum spot size and maximum flux. Every algorithm configuration was run several times for Monte Carlo simulations since these processes generate random solutions and the simulator also produces solutions that are stochastic. The results show that the PSO algorithm gives the best values over all setups.




sync

High-pressure X-ray photon correlation spectroscopy at fourth-generation synchrotron sources

A new experimental setup combining X-ray photon correlation spectroscopy (XPCS) in the hard X-ray regime and a high-pressure sample environment has been developed to monitor the pressure dependence of the internal motion of complex systems down to the atomic scale in the multi-gigapascal range, from room temperature to 600 K. The high flux of coherent high-energy X-rays at fourth-generation synchrotron sources solves the problems caused by the absorption of diamond anvil cells used to generate high pressure, enabling the measurement of the intermediate scattering function over six orders of magnitude in time, from 10−3 s to 103 s. The constraints posed by the high-pressure generation such as the preservation of X-ray coherence, as well as the sample, pressure and temperature stability, are discussed, and the feasibility of high-pressure XPCS is demonstrated through results obtained on metallic glasses.




sync

Scattered high-energy synchrotron radiation at the KARA visible-light diagnostic beamline

To characterize an electron beam, visible synchrotron light is often used and dedicated beamlines at synchrotron sources are becoming a more common feature as instruments and methods for the diagnostics are, along with the accelerators, further developed. At KARA (Karlsruhe Research Accelerator), such a beamline exists and is based on a typical infrared/visible-light configuration. From experience at such beamlines no significant radiation was expected (dose rates larger than 0.5 µSv h−1). This was found not to be the case and a higher dose was measured which fortunately could be shielded to an acceptable level with 0.3 mm of aluminium foil or 2.0 mm of Pyrex glass. The presence of this radiation led to further investigation by both experiment and calculation. A custom setup using a silicon drift detector for energy-dispersive spectroscopy (Ketek GmbH) and attenuation experiments showed the radiation to be predominantly copper K-shell fluorescence and is confirmed by calculation. The measurement of secondary radiation from scattering of synchrotron and other radiation, and its calculation, is important for radiation protection, and, although a lot of experience exists and methods for radiation protection are well established, changes in machine, beamlines and experiments mean a constant appraisal is needed.




sync

Synchrotron infrared nanospectroscopy in fourth-generation storage rings

Fourth-generation synchrotron storage rings represent a significant milestone in synchrotron technology, offering outstandingly bright and tightly focused X-ray beams for a wide range of scientific applications. However, due to their inherently tight magnetic lattices, these storage rings have posed critical challenges for accessing lower-energy radiation, such as infrared (IR) and THz. Here the first-ever IR beamline to be installed and to operate at a fourth-generation synchrotron storage ring is introduced. This work encompasses several notable advancements, including a thorough examination of the new IR source at Sirius, a detailed description of the radiation extraction scheme, and the successful validation of our optical concept through both measurements and simulations. This optimal optical setup has enabled us to achieve an exceptionally wide frequency range for our nanospectroscopy experiments. Through the utilization of synchrotron IR nanospectroscopy on biological and hard matter samples, the practicality and effectiveness of this beamline has been successfully demonstrated. The advantages of fourth-generation synchrotron IR sources, which can now operate with unparalleled stability as a result of the stringent requirements for producing low-emittance X-rays, are emphasized.




sync

A distributed data processing scheme based on Hadoop for synchrotron radiation experiments

With the development of synchrotron radiation sources and high-frame-rate detectors, the amount of experimental data collected at synchrotron radiation beamlines has increased exponentially. As a result, data processing for synchrotron radiation experiments has entered the era of big data. It is becoming increasingly important for beamlines to have the capability to process large-scale data in parallel to keep up with the rapid growth of data. Currently, there is no set of data processing solutions based on the big data technology framework for beamlines. Apache Hadoop is a widely used distributed system architecture for solving the problem of massive data storage and computation. This paper presents a set of distributed data processing schemes for beamlines with experimental data using Hadoop. The Hadoop Distributed File System is utilized as the distributed file storage system, and Hadoop YARN serves as the resource scheduler for the distributed computing cluster. A distributed data processing pipeline that can carry out massively parallel computation is designed and developed using Hadoop Spark. The entire data processing platform adopts a distributed microservice architecture, which makes the system easy to expand, reduces module coupling and improves reliability.




sync

Teaching about the birth of synchrotron light: the role of Frascati and a missed opportunity

The users of synchrotron light are now tens of thousands throughout the world. Paradoxically, many of them do not know much about the early history of their domain. This is regrettable, since education about the initial developments makes it easier to fully understand synchrotron radiation and effectively use its amazing features. Scarcely known, in particular, is the key role of scientists working in Frascati, Italy. Partly based on his personal experiences, the author reports here relevant aspects of this story, including a pioneering French–Italian experiment that started in the early 1960s, and the Frascati contributions in the 1970s and 1980s to the birth of synchrotron light research. Finally, the unwise strategic decisions that prevented Italy from achieving absolute leadership in this domain – in spite of its unique initial advantages – are analyzed.




sync

First X-ray spectral ptychography and resonant ptychographic computed tomography experiments at the SWING beamline from Synchrotron SOLEIL

X-ray ptychography and ptychographic computed tomography have seen a rapid rise since the advent of fourth-generation synchrotrons with a high degree of coherent radiation. In addition to quantitative multiscale structural analysis, ptychography with spectral capabilities has been developed, allowing for spatial-localized multiscale structural and spectral information of samples. The SWING beamline of Synchrotron SOLEIL has recently developed a nanoprobe setup where the endstation's first spectral and resonant ptychographic measurements have been successfully conducted. A metallic nickel wire sample was measured using 2D spectral ptychography in XANES mode and resonant ptychographic tomography. From the 2D spectral ptychography measurements, the spectra of the components of the sample's complex-valued refractive index, δ and β, were extracted, integrated along the sample thickness. By performing resonance ptychographic tomography at two photon energies, 3D maps of the refractive index decrement, δ, were obtained at the Ni K-edge energy and another energy above the edge. These maps allowed the detection of impurities in the Ni wire. The significance of accounting for the atomic scattering factor is demonstrated in the calculation of electron density near a resonance through the use of the δ values. These results indicate that at the SWING beamline it is possible to conduct state-of-the-art spectral and resonant ptychography experiments using the nanoprobe setup.




sync

Development of a portable and cost-effective femtosecond fibre laser synchronizable with synchrotron X-ray pulses

This study introduces a compact, portable femtosecond fibre laser system designed for synchronization with SPring-8 synchrotron X-ray pulses in a uniform filling mode. Unlike traditional titanium–sapphire mode-locked lasers, which are fixed installations, our system utilizes fibre laser technology to provide a practical alternative for time-resolved spectroscopy, striking a balance between usability, portability and cost-efficiency. Comprehensive evaluations, including pulse characterization, timing jitter and frequency stability tests revealed a centre wavelength of 1600 nm, a pulse energy of 4.5 nJ, a pulse duration of 35 fs with a timing jitter of less than 9 ps, confirming the suitability of the system for time-resolved spectroscopic studies. This development enhances the feasibility of experiments that combine synchrotron X-rays and laser pulses, offering significant scientific contributions by enabling more flexible and diverse research applications.




sync

The HEPS synchrotron unleashes new medical frontiers




sync

GIWAXS experimental methods at the NFPS-BL17B beamline at Shanghai Synchrotron Radiation Facility

The BL17B beamline at the Shanghai Synchrotron Radiation Facility was first designed as a versatile high-throughput protein crystallography beamline and one of five beamlines affiliated to the National Facility for Protein Science in Shanghai. It was officially opened to users in July 2015. As a bending magnet beamline, BL17B has the advantages of high photon flux, brightness, energy resolution and continuous adjustable energy between 5 and 23 keV. The experimental station excels in crystal screening and structure determination, providing cost-effective routine experimental services to numerous users. Given the interdisciplinary and green energy research demands, BL17B beamline has undergone optimization, expanded its range of experimental methods and enhanced sample environments for a more user-friendly testing mode. These methods include single-crystal X-ray diffraction, powder crystal X-ray diffraction, wide-angle X-ray scattering, grazing-incidence wide-angle X-ray scattering (GIWAXS), and fully scattered atom pair distribution function analysis, covering structure detection from crystalline to amorphous states. This paper primarily presents the performance of the BL17B beamline and the application of the GIWAXS methodology at the beamline in the field of perovskite materials.




sync

High-angular-sensitivity X-ray phase-contrast microtomography of soft tissue through a two-directional beam-tracking synchrotron set-up

Two-directional beam-tracking (2DBT) is a method for phase-contrast imaging and tomography that uses an intensity modulator to structure the X-ray beam into an array of independent circular beamlets that are resolved by a high-resolution detector. It features isotropic spatial resolution, provides two-dimensional phase sensitivity, and enables the three-dimensional reconstructions of the refractive index decrement, δ, and the attenuation coefficient, μ. In this work, the angular sensitivity and the spatial resolution of 2DBT images in a synchrotron-based implementation is reported. In its best configuration, angular sensitivities of ∼20 nrad and spatial resolution of at least 6.25 µm in phase-contrast images were obtained. Exemplar application to the three-dimensional imaging of soft tissue samples, including a mouse liver and a decellularized porcine dermis, is also demonstrated.




sync

BEATS: BEAmline for synchrotron X-ray microTomography at SESAME

The ID10 beamline of the SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) synchrotron light source in Jordan was inaugurated in June 2023 and is now open to scientific users. The beamline, which was designed and installed within the European Horizon 2020 project BEAmline for Tomography at SESAME (BEATS), provides full-field X-ray radiography and microtomography imaging with monochromatic or polychromatic X-rays up to photon energies of 100 keV. The photon source generated by a 2.9 T wavelength shifter with variable gap, and a double-multilayer monochromator system allow versatile application for experiments requiring either an X-ray beam with high intensity and flux, and/or a partially spatial coherent beam for phase-contrast applications. Sample manipulation and X-ray detection systems are designed to allow scanning samples with different size, weight and material, providing image voxel sizes from 13 µm down to 0.33 µm. A state-of-the-art computing infrastructure for data collection, three-dimensional (3D) image reconstruction and data analysis allows the visualization and exploration of results online within a few seconds from the completion of a scan. Insights from 3D X-ray imaging are key to the investigation of specimens from archaeology and cultural heritage, biology and health sciences, materials science and engineering, earth, environmental sciences and more. Microtomography scans and preliminary results obtained at the beamline demonstrate that the new beamline ID10-BEATS expands significantly the range of scientific applications that can be targeted at SESAME.




sync

Prediction of the treatment effect of FLASH radiotherapy with synchrotron radiation from the Circular Electron–Positron Collider (CEPC)

The Circular Electron–Positron Collider (CEPC) in China can also work as an excellent powerful synchrotron light source, which can generate high-quality synchrotron radiation. This synchrotron radiation has potential advantages in the medical field as it has a broad spectrum, with energies ranging from visible light to X-rays used in conventional radiotherapy, up to several megaelectronvolts. FLASH radiotherapy is one of the most advanced radiotherapy modalities. It is a radiotherapy method that uses ultra-high dose rate irradiation to achieve the treatment dose in an instant; the ultra-high dose rate used is generally greater than 40 Gy s−1, and this type of radiotherapy can protect normal tissues well. In this paper, the treatment effect of CEPC synchrotron radiation for FLASH radiotherapy was evaluated by simulation. First, a Geant4 simulation was used to build a synchrotron radiation radiotherapy beamline station, and then the dose rate that the CEPC can produce was calculated. A physicochemical model of radiotherapy response kinetics was then established, and a large number of radiotherapy experimental data were comprehensively used to fit and determine the functional relationship between the treatment effect, dose rate and dose. Finally, the macroscopic treatment effect of FLASH radiotherapy was predicted using CEPC synchrotron radiation through the dose rate and the above-mentioned functional relationship. The results show that the synchrotron radiation beam from the CEPC is one of the best beams for FLASH radiotherapy.




sync

Electrochemical cell for synchrotron nuclear resonance techniques

Developing new materials for Li-ion and Na-ion batteries is a high priority in materials science. Such development always includes performance tests and scientific research. Synchrotron radiation techniques provide unique abilities to study batteries. Electrochemical cell design should be optimized for synchrotron studies without losing electrochemical performance. Such design should also be compatible with operando measurement, which is the most appropriate approach to study batteries and provides the most reliable results. The more experimental setups a cell can be adjusted for, the easier and faster the experiments are to carry out and the more reliable the results will be. This requires optimization of window materials and sizes, cell topology, pressure distribution on electrodes etc. to reach a higher efficiency of measurement without losing stability and reproducibility in electrochemical cycling. Here, we present a cell design optimized for nuclear resonance techniques, tested using nuclear forward scattering, synchrotron Mössbauer source and nuclear inelastic scattering.




sync

Using synchrotron high-resolution powder X-ray diffraction for the structure determination of a new cocrystal formed by two active principle ingredients

The crystal structure of a new 1:1 cocrystal of carbamazepine and S-naproxen (C15H12N2O·C14H14O3) was solved from powder X-ray diffraction (PXRD). The PXRD pattern was measured at the high-resolution beamline CRISTAL at synchrotron SOLEIL (France). The structure was solved using Monte Carlo simulated annealing, then refined with Rietveld refinement. The positions of the H atoms were obtained from density functional theory (DFT) ground-state calculations. The symmetry is ortho­rhom­bic with the space group P212121 (No. 19) and the following lattice parameters: a = 33.5486 (9), b = 26.4223 (6), c = 5.3651 (10) Å and V = 4755.83 (19) Å3.




sync

From femtoseconds to minutes: time-resolved macromolecular crystallography at XFELs and synchrotrons

Over the last decade, the development of time-resolved serial crystallography (TR-SX) at X-ray free-electron lasers (XFELs) and synchrotrons has allowed researchers to study phenomena occurring in proteins on the femtosecond-to-minute timescale, taking advantage of many technical and methodological breakthroughs. Protein crystals of various sizes are presented to the X-ray beam in either a static or a moving medium. Photoactive proteins were naturally the initial systems to be studied in TR-SX experiments using pump–probe schemes, where the pump is a pulse of visible light. Other reaction initiations through small-molecule diffusion are gaining momentum. Here, selected examples of XFEL and synchrotron time-resolved crystallography studies will be used to highlight the specificities of the various instruments and methods with respect to time resolution, and are compared with cryo-trapping studies.




sync

Capturing the blue-light activated state of the Phot-LOV1 domain from Chlamydomonas reinhardtii using time-resolved serial synchrotron crystallography

Light–oxygen–voltage (LOV) domains are small photosensory flavoprotein modules that allow the conversion of external stimuli (sunlight) into intra­cellular signals responsible for various cell behaviors (e.g. phototropism and chloro­plast relocation). This ability relies on the light-induced formation of a covalent thio­ether adduct between a flavin chromophore and a reactive cysteine from the protein environment, which triggers a cascade of structural changes that result in the activation of a serine/threonine (Ser/Thr) kinase. Recent developments in time-resolved crystallography may allow the activation cascade of the LOV domain to be observed in real time, which has been elusive. In this study, we report a robust protocol for the production and stable delivery of microcrystals of the LOV domain of phototropin Phot-1 from Chlamydomonas reinhardtii (CrPhotLOV1) with a high-viscosity injector for time-resolved serial synchrotron crystallography (TR-SSX). The detailed process covers all aspects, from sample optimization to data collection, which may serve as a guide for soluble protein preparation for TR-SSX. In addition, we show that the crystals obtained preserve the photoreactivity using infrared spectroscopy. Furthermore, the results of the TR-SSX experiment provide high-resolution insights into structural alterations of CrPhotLOV1 from Δt = 2.5 ms up to Δt = 95 ms post-photoactivation, including resolving the geometry of the thio­ether adduct and the C-terminal region implicated in the signal transduction process.




sync

Crystal structure of a bacterial photoactivated adenylate cyclase determined by serial femtosecond and serial synchrotron crystallography

OaPAC is a recently discovered blue-light-using flavin adenosine dinucleotide (BLUF) photoactivated adenylate cyclase from the cyanobacterium Oscillatoria acuminata that uses adenosine triphosphate and translates the light signal into the production of cyclic adenosine monophosphate. Here, we report crystal structures of the enzyme in the absence of its natural substrate determined from room-temperature serial crystallography data collected at both an X-ray free-electron laser and a synchrotron, and we compare these structures with cryo-macromolecular crystallography structures obtained at a synchrotron by us and others. These results reveal slight differences in the structure of the enzyme due to data collection at different temperatures and X-ray sources. We further investigate the effect of the Y6W mutation in the BLUF domain, a mutation which results in a rearrangement of the hydrogen-bond network around the flavin and a notable rotation of the side chain of the critical Gln48 residue. These studies pave the way for picosecond–millisecond time-resolved serial crystallography experiments at X-ray free-electron lasers and synchrotrons in order to determine the early structural intermediates and correlate them with the well studied pico­second–millisecond spectroscopic intermediates.




sync

The use of ethanol as contrast enhancer in Synchrotron X-ray phase-contrast imaging leads to heterogeneous myocardial tissue shrinkage: a case report

In this work, we showed that the use of ethanol to increase image contrast when imaging cardiac tissue with synchrotron X-ray phase-contrast imaging (X-PCI) leads to heterogeneous tissue shrinkage, which has an impact on the 3D organization of the myocardium.




sync

Upgrade of crystallography beamline BL19U1 at the Shanghai Synchrotron Radiation Facility

BL19U1, an energy-tunable protein complex crystallography beamline at the Shanghai Synchrotron Radiation Facility, has emerged as one of the most productive MX beamlines since opening to the public in July 2015. As of October 2023, it has contributed to over 2000 protein structures deposited in the Protein Data Bank (PDB), resulting in the publication of more than 1000 scientific papers. In response to increasing interest in structure-based drug design utilizing X-ray crystallography for fragment library screening, enhancements have been implemented in both hardware and data collection systems on the beamline to optimize efficiency. Hardware upgrades include the transition from MD2 to MD2S for the diffractometer, alongside the installation of a humidity controller featuring a rapid nozzle exchanger. This allows users to opt for either low-temperature or room-temperature data collection modes. The control system has been upgraded from Blu-Ice to MXCuBE3, which supports website-mode data collection, providing enhanced compatibility and easy expansion with new features. An automated data processing pipeline has also been developed to offer users real-time feedback on data quality.




sync

A miniature X-ray diffraction setup on ID20 at the European Synchrotron Radiation Facility

We describe an ultra-compact setup for in situ X-ray diffraction on the inelastic X-ray scattering beamline ID20 at the European Synchrotron Radiation Facility. The main motivation for the design and construction of this setup is the increasing demand for on-the-fly sample characterization, as well as ease of navigation through a sample's phase diagram, for example subjected to high-pressure and/or high-temperature conditions. We provide technical details and demonstrate the performance of the setup.




sync

In situ/operando method for energy stability measurement of synchrotron radiation

A novel in situ/operando method is introduced to measure the photon beam stability of synchrotron radiation based on orthogonal diffraction imaging of a Laue crystal/analyzer, which can decouple the energy/wavelength and Bragg angle of the photon beam using the dispersion effect in the diffraction process. The method was used to measure the energy jitter and drift of the photon beam on BL09B and BL16U at the Shanghai Synchrotron Radiation Facility. The experimental results show that this method can provide a fast way to measure the beam stability of different light sources including bending magnet and undulator with meV-level energy resolution and ms-level time response.




sync

Mitigation of DMM-induced stripe patterns in synchrotron X-ray radiography through dynamic tilting

In synchrotron X-ray radiography, achieving high image resolution and an optimal signal-to-noise ratio (SNR) is crucial for the subsequent accurate image analysis. Traditional methods often struggle to balance these two parameters, especially in situ applications where rapid data acquisition is essential to capture specific dynamic processes. For quantitative image data analysis, using monochromatic X-rays is essential. A double multilayer monochromator (DMM) is successfully used for this aim at the BAMline, BESSY II (Helmholtz Zentrum Berlin, Germany). However, such DMMs are prone to producing an unstable horizontal stripe pattern. Such an unstable pattern renders proper signal normalization difficult and thereby causes a reduction of the SNR. We introduce a novel approach to enhance SNR while preserving resolution: dynamic tilting of the DMM. By adjusting the orientation of the DMM during the acquisition of radiographic projections, we optimize the X-ray imaging quality, thereby enhancing the SNR. The corresponding shift of the projection during this movement is corrected in post-processing. The latter correction allows a good resolution to be preserved. This dynamic tilting technique enables the homogenization of the beam profile and thereby effectively reduces noise while maintaining high resolution. We demonstrate that data captured using this proposed technique can be seamlessly integrated into the existing radiographic data workflow, as it does not need hardware modifications to classical X-ray imaging beamline setups. This facilitates further image analysis and processing using established methods.




sync

Development of crystal optics for X-ray multi-projection imaging for synchrotron and XFEL sources

X-ray multi-projection imaging (XMPI) is an emerging experimental technique for the acquisition of rotation-free, time-resolved, volumetric information on stochastic processes. The technique is developed for high-brilliance light-source facilities, aiming to address known limitations of state-of-the-art imaging methods in the acquisition of 4D sample information, linked to their need for sample rotation. XMPI relies on a beam-splitting scheme, that illuminates a sample from multiple, angularly spaced viewpoints, and employs fast, indirect, X-ray imaging detectors for the collection of the data. This approach enables studies of previously inaccessible phenomena of industrial and societal relevance such as fractures in solids, propagation of shock waves, laser-based 3D printing, or even fast processes in the biological domain. In this work, we discuss in detail the beam-splitting scheme of XMPI. More specifically, we explore the relevant properties of X-ray splitter optics for their use in XMPI schemes, both at synchrotron insertion devices and XFEL facilities. Furthermore, we describe two distinct XMPI schemes, designed to faciliate large samples and complex sample environments. Finally, we present experimental proof of the feasibility of MHz-rate XMPI at the European XFEL. This detailed overview aims to state the challenges and the potential of XMPI and act as a stepping stone for future development of the technique.




sync

Synchrotron CT dosimetry for wiggler operation at reduced magnetic field and spatial modulation with bow tie filters

The Australian Synchrotron Imaging and Medical Beamline (IMBL) uses a superconducting multipole wiggler (SCMPW) source, dual crystal Laue monochromator and 135 m propagation distance to enable imaging and computed tomography (CT) studies of large samples with mono-energetic radiation. This study aimed to quantify two methods for CT dose reduction: wiggler source operation at reduced magnetic field strength, and beam modulation with spatial filters placed upstream from the sample. Transmission measurements with copper were used to indirectly quantify the influence of third harmonic radiation. Operation at lower wiggler magnetic field strength reduces dose rates by an order of magnitude, and suppresses the influence of harmonic radiation, which is of significance near 30 keV. Beam shaping filters modulate the incident beam profile for near constant transmitted signal, and offer protection to radio-sensitive surface organs: the eye lens, thyroid and female breast. Their effect is to reduce the peripheral dose and the dose to the scanned volume by about 10% for biological samples of 35–50 mm diameter and by 20–30% for samples of up to 160 mm diameter. CT dosimetry results are presented as in-air measurements that are specific to the IMBL, and as ratios to in-air measurements that may be applied to other beamlines. As CT dose calculators for small animals are yet to be developed, results presented here and in a previous study may be used to estimate absorbed dose to organs near the surface and the isocentre.





sync

Synchrony donates $100,000 to Women in HVACR to support scholarships

The donation, presented at WHVACR's 21st Annual Conference in Dallas, Texas, includes $50,000 to be awarded in 2024 and an additional $50,000 in 2025. 




sync

Business Investment in AI Wildly Out of Sync with Consumer Demand

Sympler's AI Sentiment Report Reveals a Gap Between Consumer Expectations and Business Adoption of AI Technology




sync

My Software Tutor Launches Real-Time, Synchronous PowerPoint Training

Three levels of practical, functional eLearning with a live instructor added to existing Excel suite of courses




sync

How to Sync Your Photos in Lightroom With WordPress

There’s no doubt that we’re spoilt for choice when it comes to powerful photo editing software – for instance, Adobe Photoshop Lightroom provides astounding functionality at a relatively cheap price. The same can be said for creating websites, especially when using WordPress. However, combining them effectively as one solution for managing your photos is just […]




sync

Project Files: Episode 50 — Synchronized Hydronic Loop Saves Towson Court House HVAC

When it began “raining” inside the Towson Court House, a leaky roof was assumed to be the culprit. But for the Maryland Department of General Services, the truth turned out to be much stranger.




sync

The art of achieving synchronous motor transient stability (especially in weak grids)

Since the subject of this article is somewhat not-that-easy to understand, I suggest starting with the basics of the synchronous motor. In the synchronous motor, the basic magnetic field is obtained by direct current excitation rather than through the air... Read more

The post The art of achieving synchronous motor transient stability (especially in weak grids) appeared first on EEP - Electrical Engineering Portal.




sync

Synchronization and Reactive Power Control in Power System

In the world of power systems, synchronization and reactive power control are crucial to maintaining stability, efficiency, and reliability. Synchronizing various power sources, such as generators and grids, ensures they operate in harmony to meet the demand and support the... Read more

The post Synchronization and Reactive Power Control in Power System appeared first on EEP - Electrical Engineering Portal.




sync

[ G.8262.1/Y.1362.1 (01/19) ] - Timing characteristics of an enhanced synchronous equipment slave clock

Timing characteristics of an enhanced synchronous equipment slave clock




sync

[ G.7721 (11/18) ] - Management requirement and information model for synchronization

Management requirement and information model for synchronization




sync

[ G.8261/Y.1361 (08/19) ] - Timing and synchronization aspects in packet networks

Timing and synchronization aspects in packet networks




sync

[ V.250 (07/03) ] - Serial asynchronous automatic dialling and control

Serial asynchronous automatic dialling and control




sync

[ V.25ter (08/95) ] - Serial asynchronous automatic dialling and control

Serial asynchronous automatic dialling and control




sync

[ V.42 (03/93) ] - Error-correcting procedures for DCEs using asynchronous-to-synchronous conversion

Error-correcting procedures for DCEs using asynchronous-to-synchronous conversion




sync

[ V.14 (11/88) ] - Transmission of start-stop characters over synchronous bearer channels

Transmission of start-stop characters over synchronous bearer channels




sync

[ V.42 (11/88) ] - Error-correcting procedures for DCEs using asynchronous-to-synchronous conversion

Error-correcting procedures for DCEs using asynchronous-to-synchronous conversion




sync

[ V.254 (09/10) ] - Asynchronous serial command interface for assistive and multi-functional communication devices

Asynchronous serial command interface for assistive and multi-functional communication devices





sync

2023 Speech Industry Award Winner: SyncWords Leads in Live Captioning, Dubbing, and Subtitling

The New York-based company reportedly last year captioned and subtitled more than 15 million minutes in video on-demand, processed more than 500,000 minutes of content with speech recognition, and live-captioned more than 300,000 minutes of events.




sync

HitPaw Edimakor Win 3.2.3 Unveils AI Avatar and Talking Photo with Lip Sync

HitPaw's latest Edimakor release offers additional customization and personalization.




sync

SyncWords Is Now on AWS Marketplace

SyncWords makes its Live AI Captioning and Dubbing available via AWS Marketplace.




sync

The Rediscovery of Synchronous Reluctance and Ferrite Permanent Magnet Motors Tutorial Course Notes

Location: Electronic Resource- 




sync

Reactive programming with RxJS : untangle your asynchronous JavaScript code

Location: Engineering Library- QA76.73.J39M36 2015