anal

Proteome-wide Analysis Reveals Substrates of E3 Ligase RNF146 Targeted for Degradation [Research]

Specific E3 ligases target tumor suppressors for degradation. Inhibition of such E3 ligases may be an important approach to cancer treatment. RNF146 is a RING domain and PARylation-dependent E3 ligase that functions as an activator of the β-catenin/Wnt and YAP/Hippo pathways by targeting the degradation of several tumor suppressors. Tankyrases 1 and 2 (TNKS1/2) are the only known poly-ADP-ribosyltransferases that require RNF146 to degrade their substrates. However, systematic identification of RNF146 substrates have not yet been performed. To uncover substrates of RNF146 that are targeted for degradation, we generated RNF146 knockout cells and TNKS1/2-double knockout cells and performed proteome profiling with label-free quantification as well as transcriptome analysis. We identified 160 potential substrates of RNF146, which included many known substrates of RNF146 and TNKS1/2 and 122 potential TNKS-independent substrates of RNF146. In addition, we validated OTU domain-containing protein 5 and Protein mono-ADP-ribosyltransferase PARP10 as TNKS1/2-independent substrates of RNF146 and SARDH as a novel substrate of TNKS1/2 and RNF146. Our study is the first proteome-wide analysis of potential RNF146 substrates. Together, these findings not only demonstrate that proteome profiling can be a useful general approach for the systemic identification of substrates of E3 ligases but also reveal new substrates of RNF146, which provides a resource for further functional studies.




anal

WITHDRAWN: Quantitative mass spectrometry analysis of PD-L1 protein expression, N-glycosylation and expression stoichiometry with PD-1 and PD-L2 in human melanoma [Research]

This article has been withdrawn by the authors. We discovered an error after this manuscript was published as a Paper in Press. Specifically, we learned that the structures of glycans presented for the PD-L1 peptide were drawn and labeled incorrectly. We wish to withdraw this article and submit a corrected version for review.




anal

Recent Advances in Analytical Approaches for Glycan and Glycopeptide Quantitation [Review]

Growing implications of glycosylation in physiological occurrences and human disease have prompted intensive focus on revealing glycomic perturbations through absolute and relative quantification. Empowered by seminal methodologies and increasing capacity for detection, identification, and characterization, the past decade has provided a significant increase in the number of suitable strategies for glycan and glycopeptide quantification. Mass spectrometry-based strategies for glycomic quantitation have grown to include metabolic incorporation of stable isotopes, deposition of mass difference and mass defect isotopic labels, and isobaric chemical labeling, providing researchers with ample tools for accurate and robust quantitation. Beyond this, workflows have been designed to harness instrument capability for label-free quantification and numerous software packages have been developed to facilitate reliable spectrum scoring. In this review, we present and highlight the most recent advances in chemical labeling and associated techniques for glycan and glycopeptide quantification.




anal

Recent advances in software tools for more generic and precise intact glycopeptide analysis [Review]

Intact glycopeptide identification has long been known as a key and challenging barrier to the comprehensive and accurate understanding the role of glycosylation in an organism. Intact glycopeptide analysis is a blossoming field that has received increasing attention in recent years. Mass spectrometry (MS)-based strategies and relative software tools are major drivers that have greatly facilitated the analysis of intact glycopeptides, particularly intact N-glycopeptides. This manuscript provides a systematic review of the intact glycopeptide identification process using mass spectrometry data generated in shotgun proteomic experiments, which typically focus on N-glycopeptide analysis. Particular attention is paid to the software tools that have been recently developed in the last decade for the interpretation and quality control of glycopeptide spectra acquired using different MS strategies. The review also provides information about the characteristics and applications of these software tools, discusses their advantages and disadvantages, and concludes with a discussion of outstanding tools.




anal

Developments in Mass Spectrometry for Glycosaminoglycan Analysis: A Review [Review]

This review covers recent developments in glycosaminoglycan (GAG) analysis via mass spectrometry (MS). GAGs participate in a variety of biological functions, including cellular communication, wound healing, and anticoagulation, and are important targets for structural characterization. GAGs exhibit a diverse range of structural features due to the variety of O- and N-sulfation modifications and uronic acid C-5 epimerization that can occur, making their analysis a challenging target. Mass spectrometry approaches to the structure assignment of GAGs have been widely investigated, and new methodologies remain the subject of development. Advances in sample preparation, tandem MS techniques (MS/MS), on-line separations and automated analysis software have advanced the field of GAG analysis. These recent developments have led to remarkable improvements in the precision and time efficiency for the structural characterization of GAGs.




anal

Systematic Proteome and Lysine Succinylome Analysis Reveals the Enhanced Cell Migration by Hyposuccinylation in Esophageal Squamous Cell Cancer [Research]

Esophageal squamous cell cancer (ESCC) is an aggressive malignancy with poor therapeutic outcomes. However, the alterations in proteins and post-translational modifications (PTMs) leading to the pathogenesis of ESCC remains unclear. Here, we provide the comprehensive characterization of the proteome, phosphorylome, lysine acetylome and succinylome for ESCC and matched control cells using quantitative proteomic approach. We identify abnormal protein and post-translational modification (PTM) pathways, including significantly downregulated lysine succinylation sites in cancer cells. Focusing on hyposuccinylation, we reveal that this altered PTM was enriched on enzymes of metabolic pathways inextricably linked with cancer metabolism. Importantly, ESCC malignant behaviors such as cell migration are inhibited once the level of succinylation was restored in vitro or in vivo. This effect was further verified by mutations to disrupt succinylation sites in candidate proteins. Meanwhile, we found that succinylation has a negative regulatory effect on histone methylation to promote cancer migration. Finally, hyposuccinylation is confirmed in primary ESCC specimens. Our findings together demonstrate that lysine succinylation may alter ESCC metabolism and migration, providing new insights into the functional significance of PTM in cancer biology.




anal

Transcriptome and secretome analysis of intra-mammalian life-stages of the emerging helminth pathogen, Calicophoron daubneyi reveals adaptation to a unique host environment. [Research]

Paramphistomosis, caused by the rumen fluke, Calicophoron daubneyi, is a parasitic infection of ruminant livestock which has seen a rapid rise in prevalence throughout Western Europe in recent years. Following ingestion of metacercariae (parasite cysts) by the mammalian host, newly-excysted juveniles (NEJs) emerge and invade the duodenal submucosa which causes significant pathology in heavy infections. The immature larvae then migrate upwards, along the gastrointestinal tract, and enter the rumen where they mature and begin to produce eggs. Despite their emergence, and sporadic outbreaks of acute disease, we know little about the molecular mechanisms used by C. daubneyi to establish infection, acquire nutrients and to avoid the host immune response. Here, transcriptome analysis of four intra-mammalian life-cycle stages, integrated with secretome analysis of the NEJ and adult parasites (responsible for acute and chronic disease respectively), revealed how the expression and secretion of selected families of virulence factors and immunomodulators are regulated in accordance with fluke development and migration. Our data show that whilst a family of cathepsins B with varying S2 sub-site residues (indicating distinct substrate specificities) are differentially secreted by NEJs and adult flukes, cathepsins L and F are secreted in low abundance by NEJs only. We found that C. daubneyi has an expanded family of aspartic peptidases, which is up-regulated in adult worms, although they are underrepresented in the secretome. The most abundant proteins in adult fluke secretions were helminth defence molecules (HDMs) that likely establish an immune environment permissive to fluke survival and/or neutralise pathogen-associated molecular patterns (PAMPs) such as bacterial lipopolysaccharide in the microbiome-rich rumen. The distinct collection of molecules secreted by C. daubneyi allowed the development of the first coproantigen-based ELISA for paramphistomosis which, importantly, did not recognise antigens from other helminths commonly found as co-infections with rumen fluke.




anal

Proteome analysis reveals a significant host-specific response in Rhizobium leguminosarum bv viciae endosymbiotic cells [Research]

The Rhizobium-legume symbiosis is a beneficial interaction in which the bacterium converts atmospheric nitrogen into ammonia and delivers it to the plant in exchange for carbon compounds. This symbiosis implies the adaptation of bacteria to live inside host plant cells. In this work we apply RP-LC-MS/MS and  iTRAQ techniques to study the proteomic profile of endosymbiotic cells (bacteroids) induced by Rhizobium leguminosarum bv viciae strain UPM791 in legume nodules. Nitrogenase subunits, tricarboxylic acid cycle enzymes, and stress response proteins are amongst the most abundant from over one thousand rhizobial proteins identified in pea (Pisum sativum) bacteroids. Comparative analysis of bacteroids induced in pea and in lentil (Lens culinaris)nodules revealed the existence of a significant host-specific differential response affecting dozens of bacterial proteins, including stress-related proteins, transcriptional regulators, and proteins involved in the carbon and nitrogen metabolisms. A mutant affected in one of these proteins, homologous to a GntR-like transcriptional regulator, showed a symbiotic performance significantly  impaired in symbiosis with pea, but not with lentil plants. Analysis of the proteomes of bacteroids isolated from both hosts also revealed the presence of different sets of plant-derived nodule-specific cysteine rich (NCR) peptides, indicating that the endosymbiotic bacteria find a host-specific cocktail of chemical stressors inside the nodule. By studying variations of the bacterial response to different plant cell environments we will be able to identify specific limitations imposed by the host that might give us clues for the improvement of rhizobial performance.




anal

Imaging Mass Spectrometry and Lectin Analysis of N-linked Glycans in Carbohydrate Antigen Defined Pancreatic Cancer Tissues [Research]

The early detection of pancreatic ductal adenocarcinoma is a complex clinical obstacle yet is key to improving the overall likelihood of patient survival. Current and prospective carbohydrate biomarkers CA19-9 and sTRA are sufficient for surveilling disease progression yet are not approved for delineating PDAC from other abdominal cancers and non-cancerous pancreatic pathologies. To further understand these glycan epitopes, an imaging mass spectrometry approach was utilized to assess the N-glycome of the human pancreas and pancreatic cancer in a cohort of PDAC patients represented by tissue microarrays and whole tissue sections. Orthogonally, these same tissues were characterized by multi-round immunofluorescence which defined expression of CA19-9 and sTRA as well as other lectins towards carbohydrate epitopes with the potential to improve PDAC diagnosis. These analyses revealed distinct differences not only in N-glycan spatial localization across both healthy and diseased tissues but importantly between different biomarker-categorized tissue samples. Unique sulfated bi-antennary N-glycans were detected specifically in normal pancreatic islets. N-glycans from CA19-9 expressing tissues tended to be bi-, tri- and tetra-antennary structures with both core and terminal fucose residues and bisecting N-acetylglucosamines. These N-glycans were detected in less abundance in sTRA-expressing tumor tissues, which favored tri- and tetra-antennary structures with polylactosamine extensions. Increased sialylation of N-glycans was detected in all tumor tissues. A candidate new biomarker derived from IMS was further explored by fluorescence staining with selected lectins on the same tissues. The lectins confirmed the expression of the epitopes in cancer cells and revealed different tumor-associated staining patterns between glycans with bisecting GlcNAc and those with terminal GlcNAc. Thus, the combination of lectin-IHC and IMS techniques produces more complete information for tumor classification than the individual analyses alone. These findings potentiate the development of early assessment technologies to rapidly and specifically identify PDAC in the clinic that may directly impact patient outcomes.




anal

Proteomic analyses identify differentially expressed proteins and pathways between low-risk and high-risk subtypes of early-stage lung adenocarcinoma and their prognostic impacts [Research]

The histopathological subtype of lung adenocarcinoma (LUAD) is closely associated with prognosis. Micropapillary or solid predominant LUAD tends to relapse after surgery at an early stage, whereas lepidic pattern shows a favorable outcome. However, the molecular mechanism underlying this phenomenon remains unknown. Here, we recruited 31 lepidic predominant LUADs (LR: low-risk subtype group) and 28 micropapillary or solid predominant LUADs (HR: high-risk subtype group). Tissues of these cases were obtained and label-free quantitative proteomic and bioinformatic analyses were performed. Additionally, prognostic impact of targeted proteins was validated using The Cancer Genome Atlas databases (n=492) and tissue microarrays composed of early-stage LUADs (n=228). A total of 192 differentially expressed proteins were identified between tumor tissues of LR and HR and three clusters were identified via hierarchical clustering excluding eight proteins. Cluster 1 (65 proteins) showed a sequential decrease in expression from normal tissues to tumor tissues of LR and then to HR and was predominantly enriched in pathways such as tyrosine metabolism and ECM-receptor interaction, and increased matched mRNA expression of 18 proteins from this cluster predicted favorable prognosis. Cluster 2 (70 proteins) demonstrated a sequential increase in expression from normal tissues to tumor tissues of LR and then to HR and was mainly enriched in pathways such as extracellular organization, DNA replication and cell cycle, and high matched mRNA expression of 25 proteins indicated poor prognosis. Cluster 3 (49 proteins) showed high expression only in LR, with high matched mRNA expression of 20 proteins in this cluster indicating favorable prognosis. Furthermore, high expression of ERO1A and FEN1 at protein level predicted poor prognosis in early-stage LUAD, supporting the mRNA results. In conclusion, we discovered key differentially expressed proteins and pathways between low-risk and high-risk subtypes of early-stage LUAD. Some of these proteins could serve as potential biomarkers in prognostic evaluation.




anal

PTM-Shepherd: analysis and summarization of post-translational and chemical modifications from open search results [Technological Innovation and Resources]

Open searching has proven to be an effective strategy for identifying both known and unknown modifications in shotgun proteomics experiments. Rather than being limited to a small set of user-specified modifications, open searches identify peptides with any mass shift that may correspond to a single modification or a combination of several modifications. Here we present PTM-Shepherd, a bioinformatics tool that automates characterization of PTM profiles detected in open searches based on attributes such as amino acid localization, fragmentation spectra similarity, retention time shifts, and relative modification rates. PTM-Shepherd can also perform multi-experiment comparisons for studying changes in modification profiles, e.g. in data generated in different laboratories or under different conditions. We demonstrate how PTM-Shepherd improves the analysis of data from formalin-fixed paraffin-embedded samples, detects extreme underalkylation of cysteine in some datasets, discovers an artefactual modification introduced during peptide synthesis, and uncovers site-specific biases in sample preparation artifacts in a multi-center proteomics profiling study.




anal

A potential role for the Gsdf-eEF1{alpha} complex in inhibiting germ cell proliferation: A protein-interaction analysis in medaka (Oryzias latipes) from a proteomics perspective [Research]

Gonadal soma-derived factor (gsdf) has been demonstrated to be essential for testicular differentiation in medaka (Oryzias latipes). To understand the protein dynamics of Gsdf in spermatogenesis regulation, we used a His-tag "pull-down" assay coupled with shotgun LC-MS/MS to identify a group of potential interacting partners for Gsdf, which included cytoplasmic dynein light chain 2, eukaryotic polypeptide elongation factor 1 alpha (eEF1α), and actin filaments in mature medaka testis. As for the interaction with TGFβ-dynein being critical for spermatogonial division in Drosophila melanogaster, the physical interactions of Gsdf-dynein and Gsdf-eEF1α were identified through a yeast 2-hybrid (Y2H) screening of an adult testis cDNA library using Gsdf as bait, which were verified by a paired Y2H assay. Co-immunoprecipitation of Gsdf and eEF1α was defined in adult testes as supporting the requirement of a Gsdf and eEF1α interaction in testis development. Proteomics analysis (data are available via ProteomeXchange with identifier PXD022153) and ultrastrutural observations showed that Gsdf deficiency activated eEF1α-mediated protein synthesis and ribosomal biogenesis, which in turn led to the differentiation of undifferentiated germ cells. Thus, our results provide a framework and new insight into the coordination of a Gsdf (TGFβ and eEF1α complex in the basic processes of germ cell proliferation, transcriptional and translational control of sexual RNA which may be fundamentally conserved across phyla during sexual differentiation.




anal

High-throughput and site-specific N-glycosylation analysis of human alpha-1-acid glycoprotein offers a great potential for new biomarker discovery [Research]

Alpha-1-acid glycoprotein (AGP) is an acute phase glycoprotein in blood, which is primarily synthetized in the liver and whose biological role is not completely understood. It consists of 45% carbohydrates that are present in the form of five N-linked complex glycans. AGP N-glycosylation was shown to be changed in many different diseases and some changes appear to be disease-specific, thus it has a great diagnostic and prognostic potential. However, AGP glycosylation was mainly analyzed in small cohorts and without detailed site-specific glycan information. Here, we developed a cost-effective method for a high-throughput and site-specific N-glycosylation LC-MS analysis of AGP which can be applied on large cohorts, aid in search for novel disease biomarkers and enable better understanding of AGP’s role and function in health and disease. The method does not require isolation of AGP with antibodies and affinity chromatography, but AGP is enriched by acid precipitation from 5 μl of bloodplasma in a 96 well format. After trypsinization, AGP glycopeptides are purified using a hydrophilic interaction chromatography based solid-phase extraction and analyzed by RP-LC-ESI-MS. We used our method to show for the first time that AGP N-glycan profile is stable in healthy individuals (14 individuals in 3 time points), which is a requirement for evaluation of its diagnostic potential. Furthermore, we tested our method on a population including individuals with registered hyperglycemia in critical illness (59 cases and 49 controls), which represents a significantly increased risk of developing type 2 diabetes. Individuals at higher risk of diabetes presented increased N-glycan branching on AGP’s second glycosylation site and lower sialylation of N-glycans on AGP’s third and AGP1’s fourth glycosylation site. Although this should be confirmed on a larger prospective cohort, it indicates that site-specific AGP N-glycan profile could help distinguish individuals who are at risk of type 2 diabetes.




anal

Correction: Functional domain and motif analyses of androgen receptor coregulator ARA70 and its differential expression in prostate cancer. [Additions and Corrections]

VOLUME 279 (2004) PAGES 33438–33446For Fig. 1B, the second, third, and fifth panels were mistakenly duplicated during article preparation as no yeast colonies were observed in these conditions. The corrected images are presented in the revised Fig. 1B. This correction does not affect the results or conclusions of the work. The authors apologize for the error.jbc;295/50/17382/F1F1F1Figure 1B.




anal

Association between prediabetes and risk of cardiovascular disease and all cause mortality: systematic review and meta-analysis




anal

Diagnostic Accuracy of [18F]FDG PET/MRI in Head and Neck Squamous Cell Carcinoma: A Systematic Review and Metaanalysis

This study evaluates the diagnostic utility of PET/MRI for primary, locoregional, and nodal head and neck squamous cell carcinoma (HNSCC) through systematic review and metaanalysis. Methods: A systematic search was conducted using PubMed and Scopus to identify studies on the diagnostic accuracy of PET/MRI for HNSCC. The search included specific terms and excluded nonhybrid PET/MRI studies, and those with a sample size of fewer than 10 patients were excluded. Results: In total, 15 studies encompassing 638 patients were found addressing the diagnostic test accuracy for PET/MRI within the chosen subject domain. Squamous cell carcinoma of the nasopharynx was the most observed HNSCC subtype (n = 198). The metaanalysis included 12 studies, with pooled sensitivity and specificity values of 93% and 95% per patient for primary disease evaluation, 93% and 96% for locoregional evaluation, and 89% and 98% per lesion for nodal disease detection, respectively. An examination of a subset of studies comparing PET/MRI against PET/CT or MRI alone for evaluating nodal and locoregional HNSCC found that PET/MRI may offer slightly higher accuracy than other modalities. However, this difference was not statistically significant. Conclusion: PET/MRI has excellent potential for identifying primary, locoregional, and nodal HNSCC.





anal

Ansys, Intel Foundry Collaborate on Multiphysics Analysis Solution for EMIB 2.5D Assembly Tech

PITTSBURGH, Feb. 22, 2024 — Ansys and Intel Foundry have collaborated to provide multiphysics signoff solutions for Intel’s innovative 2.5D chip assembly technology, which uses EMIB technology to connect the […]

The post Ansys, Intel Foundry Collaborate on Multiphysics Analysis Solution for EMIB 2.5D Assembly Tech appeared first on HPCwire.




anal

These Six Teacher-Evaluation Systems Have Gotten Results, Analysis Says

Teacher-evaluation reforms in places like New Mexico, Tennessee, Denver, and the District of Columbia have paid off, says the National Council on Teacher Quality.




anal

Achievement Gap Growing in Minnesota Charter Schools, Analysis Finds

The Minnesota Star Tribune review found that similar to traditional district schools, the highest performing charters generally served wealthier families.




anal

Mindfulness Meditation-Based Pain Relief Employs Different Neural Mechanisms Than Placebo and Sham Mindfulness Meditation-Induced Analgesia

Fadel Zeidan
Nov 18, 2015; 35:15307-15325
BehavioralSystemsCognitive




anal

Genomic Analysis of Reactive Astrogliosis

Jennifer L. Zamanian
May 2, 2012; 32:6391-6410
Neurobiology of Disease




anal

A Virtual In Vivo Dissection and Analysis of Socioaffective Symptoms Related to Cerebellum-Midbrain Reward Circuitry in Humans

Emerging research in nonhuman animals implicates cerebellar projections to the ventral tegmental area (VTA) in appetitive behaviors, but these circuits have not been characterized in humans. Here, we mapped cerebello-VTA white matter connectivity in a cohort of men and women using probabilistic tractography on diffusion imaging data from the Human Connectome Project. We uncovered the topographical organization of these connections by separately tracking from parcels of cerebellar lobule VI, crus I/II, vermis, paravermis, and cerebrocerebellum. Results revealed that connections between the cerebellum and VTA predominantly originate in the right cerebellar hemisphere, interposed nucleus, and paravermal cortex and terminate mostly ipsilaterally. Paravermal crus I sends the most connections to the VTA compared with other lobules. We discovered a mediolateral gradient of connectivity, such that the medial cerebellum has the highest connectivity with the VTA. Individual differences in microstructure were associated with measures of negative affect and social functioning. By splitting the tracts into quarters, we found that the socioaffective effects were driven by the third quarter of the tract, corresponding to the point at which the fibers leave the deep nuclei. Taken together, we produced detailed maps of cerebello-VTA structural connectivity for the first time in humans and established their relevance for trait differences in socioaffective regulation.




anal

Transcriptomic Correlates of State Modulation in GABAergic Interneurons: A Cross-Species Analysis

GABAergic inhibitory interneurons comprise many subtypes that differ in their molecular, anatomical, and functional properties. In mouse visual cortex, they also differ in their modulation with an animal’s behavioral state, and this state modulation can be predicted from the first principal component (PC) of the gene expression matrix. Here, we ask whether this link between transcriptome and state-dependent processing generalizes across species. To this end, we analysed seven single-cell and single-nucleus RNA sequencing datasets from mouse, human, songbird, and turtle forebrains. Despite homology at the level of cell types, we found clear differences between transcriptomic PCs, with greater dissimilarities between evolutionarily distant species. These dissimilarities arise from two factors: divergence in gene expression within homologous cell types and divergence in cell-type abundance. We also compare the expression of cholinergic receptors, which are thought to causally link transcriptome and state modulation. Several cholinergic receptors predictive of state modulation in mouse interneurons are differentially expressed between species. Circuit modelling and mathematical analyses suggest conditions under which these expression differences could translate into functional differences.




anal

A Novel Directed Seed-Based Connectivity Analysis Toolbox Applied to Human and Marmoset Resting-State FMRI

Estimating the direction of functional connectivity (FC) can help further elucidate complex brain function. However, the estimation of directed FC at the voxel level in fMRI data, and evaluating its performance, has yet to be done. We therefore developed a novel directed seed-based connectivity analysis (SCA) method based on normalized pairwise Granger causality that provides greater detail and accuracy over ROI-based methods. We evaluated its performance against 145 cortical retrograde tracer injections in male and female marmosets that were used as ground truth cellular connectivity on a voxel-by-voxel basis. The receiver operating characteristic (ROC) curve was calculated for each injection, and we achieved area under the ROC curve of 0.95 for undirected and 0.942 for directed SCA in the case of high cell count threshold. This indicates that SCA can reliably estimate the strong cellular connections between voxels in fMRI data. We then used our directed SCA method to analyze the human default mode network (DMN) and found that dlPFC (dorsolateral prefrontal cortex) and temporal lobe were separated from other DMN regions, forming part of the language-network that works together with the core DMN regions. We also found that the cerebellum (Crus I-II) was strongly targeted by the posterior parietal cortices and dlPFC, but reciprocal connections were not observed. Thus, the cerebellum may not be a part of, but instead a target of, the DMN and language-network. Summarily, our novel directed SCA method, visualized with a new functional flat mapping technique, opens a new paradigm for whole-brain functional analysis.




anal

FAO to provide UN Security Council with regular analysis of food security statuses in countries in conflict

New York- FAO Director-General José Graziano da Silva and the President of the UN Security Council (UNSC), Ambassador Ismael Gaspar Martins, have concurred upon the importance of using FAO’s regular [...]




anal

FAO to provide UN Security Council with regular analysis on food security

The Director-General addressed the members of the UN Security Council (UNSC) on Tuesday in what was FAO’s first appearance before the principal UN body on global peace and security affairs.

Organized [...]




anal

Identification of Mosquito Eggshell Proteins from Aedes aegypti by Liquid Chromatography with Tandem Mass Spectrometry (LC-MS/MS) Proteomic Analysis

The insect eggshell is a multifunctional structure with several important roles, including generating an entry point for sperm via the micropyle before oviposition, serving as an oviposition substrate attachment surface, and functioning as a protective layer during embryo development. Eggshell proteins play major roles in eggshell tanning and hardening following oviposition and provide molecular cues that define dorsal–ventral axis formation. Precise eggshell formation during ovarian follicle maturation is critical for normal embryo development and the synthesis of a defective eggshell often gives rise to inviable embryos. Therefore, simple and accurate methods for identifying eggshell proteins will facilitate our understanding of the molecular pathways regulating eggshell formation and the mechanisms underlying normal embryo development. This protocol describes how to isolate and enrich eggshells from mature oocytes of Aedes aegypti mosquitoes and how to extract their eggshell proteins for liquid chromatography with tandem mass spectrometry (LC–MS/MS) proteomic analysis. Although this methodology was developed for studying mosquito eggshells, it may be applicable to eggs from a variety of insects. Mosquitoes are ideal model organisms for this study as their ovarian follicle development and eggshell formation are meticulously regulated by blood feeding and their follicles develop synchronously throughout oogenesis in a time-dependent manner.




anal

Auditor finds federal critical minerals strategy lacking analysis of impact on climate, Indigenous people

A federal audit of Canada’s strategy to promote the extraction of critical minerals says the government isn’t giving due consideration to the potential impact of mining on the environment, biodiversity and Indigenous people.



  • News/Canada/Sudbury

anal

NCC explores adapting standards around opening Rideau Canal Skateway

The National Capital Commission says it opened the Rideau Canal Skateway below its usual stands for ice thickness a few times last season — and plans to do the same this year. 



  • News/Canada/Ottawa

anal

Analysis of Axon Guidance in the Drosophila Embryo

The establishment of neural connectivity is a major part of neural development. The central nervous system (CNS) midline is the most characterized axon guidance choice point, and work in Drosophila has played a pivotal role in understanding the molecular mechanisms responsible. Axons respond to attractive cues such as Netrin via the Frazzled receptor, and repulsive cues such as Slit via Robo receptors. Both signals are expressed at the CNS midline, affect pioneer axons, and have dramatic effects on the axon scaffold as a whole. Here, we focus on previous research analyzing classic mutants in the Slit/Robo pathway, which can readily be detected with a dissecting microscope. We also discuss analyzing these mutants in a teaching lab situation. The combination of sophisticated genetics and reliable axonal markers in Drosophila allows phenotypic analysis to be performed at the single-cell level. The elaborate architecture of neurons is very sensitive to disruption by genetic mutations, allowing the effects of novel mutations to be easily detected and assessed.




anal

Mosquito Blood Meal Analysis

The host associations of mosquitoes vary by species, with some species being relative generalists, whereas others specialize, to varying extents, on a particular subset of the available host community. These host associations are driving factors in transmission dynamics of mosquito-vectored pathogens. For this reason, characterizing the host associations of mosquito species is critical for understanding the epidemiology of mosquito-vectored pathogens. Diverse methods have been used to associate mosquito species with their hosts. These typically include collecting mosquitoes that bite a restrained host (bait) or collecting wild blood-engorged mosquitoes and matching their blood meal to reference samples (blood meal analysis). Blood meal analysis refers to a collection of molecular techniques for determining the taxonomic identity of the source of a mosquito blood meal using cytological, serological, or DNA-based characteristics of the blood meal. Blood meal analyses that are based on DNA markers have advantages over cytological and serological methods and are effective for determining species-level identities of hosts from a broad range of potential host taxa. Here, we discuss effective techniques for analyzing blood meals.




anal

SolidWorks 3D design and COSMOS design analysis software setting global standard for offshore oil and oilfield equipment design

Andergauge and National Oilwell are the latest of more than 300 petroleum industry companies to streamline product development and delivery




anal

COSMOS 2006 software spotlights technological innovations and simplified analysis for every engineer's desktop

World's #1 mainstream analysis software adds 100-plus new features that put powerful design validation in easy-to-use packages




anal

SolidWorks Corporation adds motion analysis software to SolidWorks Office Premium

COSMOSMotion offers efficiency, quality, and cost benefits that increase value for designers who develop moving assemblies




anal

SolidWorks Corporation unveils 64-bit editions of its CAD and analysis software

SolidWorks 2006 x64 Edition and COSMOS 2006 x64 Edition revolutionize handling of very large assemblies




anal

COSMOSFloWorks fluid flow analysis software cuts unnecessary prototypes from design processes

Customers highlight ability to see flow of gasses, liquids, and heat helps designers anticipate and correct flaws early in the design process




anal

Triumph Aerospace Systems-Seattle uses COSMOS analysis software to put winning doses of precision in design proposals

Stress, fluid flow, and motion analysis lend credence to company's designs for Boeing, Airbus, and other major aerospace companies




anal

Syncroness uses COSMOSMotion analysis technology to design high-quality, complex mechanisms in less time at lower cost

Cutting days and weeks from design cycle gives Syncroness more time to focus on designing lightweight, high performance products




anal

Massachusetts company saves more than $500,000 with COSMOS analysis software

Faced with soaring material costs, LeBARON Foundry streamlined designs, lightening manhole covers and frames by as much as 50 pounds




anal

Grote Company uses COSMOS analysis software to design durable, easily cleaned food processing equipment

Software helps engineers choose the most promising designs for slicers and sanitation equipment by comparing and contrasting features and performance in virtual design environment




anal

James Engineering uses COSMOS analysis software to develop patent-winning designs for truck brakes and race karts

COSMOS enables engineers to catch and correct errors early in the design process, encouraging innovation and better product design




anal

SOLIDWORKS Education Edition 2007-2008 gives students integrated, real-world design and analysis capabilities

Both teachers and students have more resources to improve engineering education and prepare students for professional careers




anal

iPhones stored for forensic analysis unexpectedly reboot, causing problems for police

Multiple iPhone units stored for forensic analysis have rebooted themselves, causing concern among law enforcement officials that Apple has a new security feature.


iPhones stored for forensic analysis have reportedly begun rebooting themselves.

The phones in question had a few things in common, they were all running iOS 18.0, and they had been disconnected from cellular networks for some time. They were sent into a forensics lab on October 3, 2024.

The affected devices even included one that was in Airplane Mode and another that was kept in a Faraday cage, which prevents electrical signals from accessing the device. While it's most likely that the devices began boot-looping or that they ran low on battery, officials believe the restarts were caused by something else entirely.


Continue Reading on AppleInsider | Discuss on our Forums




anal

Great Valley grad students to analyze opioid epidemic data on faculty project

Two Penn State Great Valley graduate students are collaborating with faculty — who received a University Presidential Public Impact Research Award — to conduct a research project that will use artificial intelligence and machine learning to analyze demographic data to help predict and prevent opioid deaths. 




anal

States' ESSA Plans Fall Short on Educator Equity, NCTQ Analysis Finds

More than half of the state plans fail to publicly report data on educator equity gaps, the National Council of Teacher Quality found in its analyses.




anal

News24 Business | ANALYSIS-How Asia's markets could actually benefit from a Trump White House

SINGAPORE, Nov 8 - Asia and even China are shaping up as surprisingly resilient investment markets as Donald Trump returns to the White House, with fund managers optimistic the region can withstand tariffs better than Europe.




anal

News24 Business | ANALYSIS | Wall Street girds for Trump 2.0: Tariffs, tax cuts and volatility

Nov 6 - With Donald Trump heading back to the White House, Wall Street is anticipating the potential for lower taxes, deregulation and a U.S. president who is quick to sound off on everything from the stock market to the dollar. Trump made tariffs a




anal

Trump vs. McConnell: The final showdown: ANALYSIS

Trump's unlikely to endorse, sources say, because he doubts Rick Scott can win.




anal

PHP Class Dependencies Analyzer

Package:
Summary:
Analyze the dependencies of project classes
Groups:
Author:
Description:
This package can analyze the dependencies of project classes...

Read more at https://www.phpclasses.org/package/13383-PHP-Analyze-the-dependencies-of-project-classes.html#2024-11-03-14:28:01