radio

Angie Martinez on Hip Hop Radio in NY



Angie Martinez discusses early days of NYC hip hop radio.




radio

AI in radio: A Polish interviewer fired




radio

BBC Radio 2 In Concert complete show




radio

Album of the Week on BBC Radio 2

From The Cure:

SONGS OF A LOST WORLD IS ALBUM OF THE WEEK ON @BBCRADIO2. TUNE IN THIS WEEK TO VERNON KEY & OJ BORG TO HEAR TRACKS FROM THE ALBUM






radio

FAQ zur Rundfunkreform, “Ruptly” macht weiter, Wenn KI Radio macht

1. Wie die Öffentlich-Rechtlichen aus der Krise kommen sollen (taz.de, Ann-Kathrin Leclère) Ann-Kathrin Leclère hat die wichtigsten Fragen und Antworten zur Rundfunkreform zusammengestellt, beispielsweise: Warum braucht es Reformen? Wer kümmert sich darum? Was wurde beschlossen? Wer hat Angst vor welchen Änderungen? Und was ist mit dem Rundfunkbeitrag? 2. Wie das insolvente Kreml-Medium Ruptly unter neuem […]



  • 6 vor 9

radio

BBC Radio London team finish swim challenge

BBC Radio London's team of swimmers have completed their part of the 1,000-mile challenge.




radio

Challenges with 177Lu-PSMA-617 Radiopharmaceutical Therapy in Clinical Practice




radio

Pattern of Failure in Patients with Biochemical Recurrence After PSMA Radioguided Surgery

Visual Abstract




radio

Theranostics for Meningioma on the Rise: New EANM/EANO/RANO/SNMMI Guidelines Pave the Way to Improved Patient Outcomes Using Radiolabeled Somatostatin Receptor Ligands




radio

Diagnostic Radiopharmaceuticals: A Sustainable Path to the Improvement of Patient Care




radio

MIRD Pamphlet No. 31: MIRDcell V4--Artificial Intelligence Tools to Formulate Optimized Radiopharmaceutical Cocktails for Therapy

Visual Abstract




radio

Intraarterial Administration of Peptide Receptor Radionuclide Therapy in Patients with Advanced Meningioma: Initial Safety and Efficacy

Visual Abstract




radio

Comparison Between Brain and Cerebellar Autoradiography Using [18F]Flortaucipir, [18F]MK6240, and [18F]PI2620 in Postmortem Human Brain Tissue

Visual Abstract




radio

Feasibility, Tolerability, and Preliminary Clinical Response of Fractionated Radiopharmaceutical Therapy with 213Bi-FAPI-46: Pilot Experience in Patients with End-Stage, Progressive Metastatic Tumors

Visual Abstract




radio

Radiosensitization by Kinase Inhibition Revealed by Phosphoproteomic Analysis of Pancreatic Cancer Cells [Research]

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers and known for its extensive genetic heterogeneity, high therapeutic resistance, and strong variation in intrinsic radiosensitivity. To understand the molecular mechanisms underlying radioresistance, we screened the phenotypic response of 38 PDAC cell lines to ionizing radiation. Subsequent phosphoproteomic analysis of two representative sensitive and resistant lines led to the reproducible identification of 7,800 proteins and 13,000 phosphorylation sites (p-sites). Approximately 700 p-sites on 400 proteins showed abundance changes after radiation in all cell lines regardless of their phenotypic sensitivity. Apart from recapitulating known radiation response phosphorylation markers such as on proteins involved in DNA damage repair, the analysis uncovered many novel members of a radiation-responsive signaling network that was apparent only at the level of protein phosphorylation. These regulated p-sites were enriched in potential ATM substrates and in vitro kinase assays corroborated 10 of these. Comparing the proteomes and phosphoproteomes of radiosensitive and -resistant cells pointed to additional tractable radioresistance mechanisms involving apoptotic proteins. For instance, elevated NADPH quinine oxidoreductase 1 (NQO1) expression in radioresistant cells may aid in clearing harmful reactive oxygen species. Resistant cells also showed elevated phosphorylation levels of proteins involved in cytoskeleton organization including actin dynamics and focal adhesion kinase (FAK) activity and one resistant cell line showed a strong migration phenotype. Pharmacological inhibition of the kinases FAK by Defactinib and of CHEK1 by Rabusertib showed a statistically significant sensitization to radiation in radioresistant PDAC cells. Together, the presented data map a comprehensive molecular network of radiation-induced signaling, improves the understanding of radioresistance and provides avenues for developing radiotherapeutic strategies.




radio

Whole brain radiotherapy for brain metastases




radio

Design, Synthesis, and Preclinical Evaluation of a High-Affinity 18F-Labeled Radioligand for Myocardial Growth Hormone Secretagogue Receptor Before and After Myocardial Infarction

The peptide hormone ghrelin is produced in cardiomyocytes and acts through the myocardial growth hormone secretagogue receptor (GHSR) to promote cardiomyocyte survival. Administration of ghrelin may have therapeutic effects on post–myocardial infarction (MI) outcomes. Therefore, there is a need to develop molecular imaging probes that can track the dynamics of GHSR in health and disease to better predict the effectiveness of ghrelin-based therapeutics. We designed a high-affinity GHSR ligand labeled with 18F for imaging by PET and characterized its in vivo properties in a canine model of MI. Methods: We rationally designed and radiolabeled with 18F a quinazolinone derivative ([18F]LCE470) with subnanomolar binding affinity to GHSR. We determined the sensitivity and in vivo and ex vivo specificity of [18F]LCE470 in a canine model of surgically induced MI using PET/MRI, which allowed for anatomic localization of tracer uptake and simultaneous determination of global cardiac function. Uptake of [18F]LCE470 was determined by time–activity curve and SUV analysis in 3 regions of the left ventricle—area of infarct, territory served by the left circumflex coronary artery, and remote myocardium—over a period of 1.5 y. Changes in cardiac perfusion were tracked by [13N]NH3 PET. Results: The receptor binding affinity of LCE470 was measured at 0.33 nM, the highest known receptor binding affinity for a radiolabeled GHSR ligand. In vivo blocking studies in healthy hounds and ex vivo blocking studies in myocardial tissue showed the specificity of [18F]LCE470, and sensitivity was demonstrated by a positive correlation between tracer uptake and GHSR abundance. Post-MI changes in [18F]LCE470 uptake occurred independently of perfusion tracer distributions and changes in global cardiac function. We found that the regional distribution of [18F]LCE470 within the left ventricle diverged significantly within 1 d after MI and remained that way throughout the 1.5-y duration of the study. Conclusion: [18F]LCE470 is a high-affinity PET tracer that can detect changes in the regional distribution of myocardial GHSR after MI. In vivo PET molecular imaging of the global dynamics of GHSR may lead to improved GHSR-based therapeutics in the treatment of post-MI remodeling.




radio

Molecular Imaging of p53 in Mouse Models of Cancer Using a Radiolabeled Antibody TAT Conjugate with SPECT

Mutations of p53 protein occur in over half of all cancers, with profound effects on tumor biology. We present the first—to our knowledge—method for noninvasive visualization of p53 in tumor tissue in vivo, using SPECT, in 3 different models of cancer. Methods: Anti-p53 monoclonal antibodies were conjugated to the cell-penetrating transactivator of transcription (TAT) peptide and a metal ion chelator and then radiolabeled with 111In to allow SPECT imaging. 111In-anti-p53-TAT conjugates were retained longer in cells overexpressing p53-specific than non–p53-specific 111In-mIgG (mouse IgG from murine plasma)-TAT controls, but not in null p53 cells. Results: In vivo SPECT imaging showed enhanced uptake of 111In-anti-p53-TAT, versus 111In-mIgG-TAT, in high-expression p53R175H and medium-expression wild-type p53 but not in null p53 tumor xenografts. The results were confirmed in mice bearing genetically engineered KPC mouse–derived pancreatic ductal adenocarcinoma tumors. Imaging with 111In-anti-p53-TAT was possible in KPC mice bearing spontaneous p53R172H pancreatic ductal adenocarcinoma tumors. Conclusion: We demonstrate the feasibility of noninvasive in vivo molecular imaging of p53 in tumor tissue using a radiolabeled TAT-modified monoclonal antibody.




radio

Theranostic GPA33-Pretargeted Radioimmunotherapy of Human Colorectal Carcinoma with a Bivalent 177Lu-Labeled Radiohapten

Radiolabeled small-molecule DOTA-haptens can be combined with antitumor/anti-DOTA bispecific antibodies (BsAbs) for pretargeted radioimmunotherapy (PRIT). For optimized delivery of the theranostic - and β-emitting isotope 177Lu with DOTA-based PRIT (DOTA-PRIT), bivalent Gemini (DOTA-Bn-thiourea-PEG4-thiourea-Bn-DOTA, aka (3,6,9,12-tetraoxatetradecane-1,14-diyl)bis(DOTA-benzyl thiourea)) was developed. Methods: Gemini was synthesized by linking 2 S-2-(4-isothiocyanatobenzyl)-DOTA molecules together via a 1,14-diamino-PEG4 linker. [177Lu]Lu-Gemini was prepared with no-carrier-added 177LuCl3 to a molar-specific activity of 123 GBq/μmol and radiochemical purity of more than 99%. The specificity of BsAb-177Lu-Gemini was verified in vitro. Subsequently, we evaluated biodistribution and whole-body clearance for [177Lu]Lu-Gemini and, for comparison, our gold-standard monovalent [177Lu]Lu-S-2-(4-aminobenzyl)-DOTA ([177Lu]Lu-DOTA-Bn) in naïve (tumor-free) athymic nude mice. For our proof-of-concept system, a 3-step pretargeting approach was performed with an established DOTA-PRIT regimen (anti-GPA33/anti-DOTA IgG-scFv BsAb, a clearing agent, and [177Lu]Lu-Gemini) in mouse models. Results: Initial in vivo studies showed that [177Lu]Lu-Gemini behaved similarly to [177Lu]Lu-DOTA-Bn, with almost identical blood and whole-body clearance kinetics, as well as biodistribution and mouse kidney dosimetry. Pretargeting [177Lu]Lu-Gemini to GPA33-expressing SW1222 human colorectal xenografts was highly effective, leading to absorbed doses of [177Lu]Lu-Gemini for blood, tumor, liver, spleen, and kidneys of 3.99, 455, 6.93, 5.36, and 14.0 cGy/MBq, respectively. Tumor–to–normal tissue absorbed-dose ratios (i.e., therapeutic indices [TIs]) for the blood and kidneys were 114 and 33, respectively. In addition, we demonstrate that the use of bivalent [177Lu]Lu-Gemini in DOTA-PRIT leads to improved TIs and augmented [177Lu]Lu-Gemini tumor uptake and retention in comparison to monovalent [177Lu]Lu-DOTA-Bn. Finally, we established efficacy in SW1222 tumor-bearing mice, demonstrating that a single injection of anti-GPA33 DOTA-PRIT with 44 MBq (1.2 mCi) of [177Lu]Lu-Gemini (estimated tumor-absorbed dose, 200 Gy) induced complete responses in 5 of 5 animals and a histologic cure in 2 of 5 (40%) animals. Moreover, a significant increase in survival compared with nontreated controls was noted (maximum tolerated dose not reached). Conclusion: We have developed a bivalent DOTA-radiohapten, [177Lu]Lu-Gemini, that showed improved radiopharmacology for DOTA-PRIT application. The use of bivalent [177Lu]Lu-Gemini in DOTA-PRIT, as opposed to monovalent [177Lu]Lu-DOTA-Bn, allows curative treatments with considerably less administered 177Lu activity while still achieving high TIs for both the blood (>100) and the kidneys (>30).




radio

Preclinical Evaluation of 177Lu-OncoFAP-23, a Multivalent FAP-Targeted Radiopharmaceutical Therapeutic for Solid Tumors

Fibroblast activation protein (FAP) is abundantly expressed in the stroma of most human solid tumors. Clinical-stage radiolabeled FAP ligands are increasingly used as tools for the detection of various cancer lesions. To unleash the full therapeutic potential of FAP-targeting agents, ligands need to remain at the tumor site for several days after administration. We recently described the discovery of OncoFAP, a high-affinity small organic ligand of FAP with a rapid accumulation in tumors and low uptake in healthy tissues in cancer patients. Trimerization of OncoFAP provided a derivative (named TriOncoFAP, or OncoFAP-23) with improved FAP affinity. In this work, we evaluated the tissue biodistribution profile and the therapeutic performance of OncoFAP-23 in tumor-bearing mice. Methods: OncoFAP-23 was radiolabeled with the theranostic radionuclide 177Lu. Preclinical experiments were conducted on mice bearing SK-RC-52.hFAP (BALB/c nude mice) or CT-26.hFAP (BALB/c mice) tumors. 177Lu-OncoFAP and 177Lu-FAP-2286 were included in the biodistribution study as controls. Toxicologic evaluation was performed on Wistar rats and CD1 mice by injecting high doses of OncoFAP-23 or its cold-labeled counterpart, respectively. Results: 177Lu-OncoFAP-23 emerged for its best-in-class biodistribution profile, high and prolonged tumor uptake (i.e., ~16 percentage injected dose/g at 96 h), and low accumulation in healthy organs, which correlates well with its potent single-agent anticancer activity at low levels of administered radioactivity. Combination treatment with the tumor-targeted interleukin 2 (L19-IL2, a clinical-stage immunocytokine) further expands the therapeutic window of 177Lu-OncoFAP-23 by potentiating its in vivo antitumor activity. Proteomics studies revealed a potent tumor-directed immune response on treatment with the combination. OncoFAP-23 and natLu-OncoFAP-23 exhibited a favorable toxicologic profile, without showing any side effects or signs of toxicity. Conclusion: OncoFAP-23 presents enhanced tumor uptake and tumor retention and low accumulation in healthy organs, findings that correspond to a strongly improved in vivo antitumor efficacy. The data presented in this work support the clinical development of 177Lu-OncoFAP-23 for the treatment of FAP-positive solid tumors.




radio

[68Ga]Ga-RAYZ-8009: A Glypican-3-Targeted Diagnostic Radiopharmaceutical for Hepatocellular Carcinoma Molecular Imaging--A First-in-Human Case Series

To date, the imaging and diagnosis of hepatocellular carcinoma (HCC) rely on CT/MRI, which have well-known limitations. Glypican-3 (GPC3) is a cell surface receptor highly expressed by HCC but not by normal or cirrhotic liver tissue. Here we report initial clinical results of GPC3-targeted PET imaging with [68Ga]Ga-DOTA-RYZ-GPC3 (RAYZ-8009), a peptide-based GPC3 ligand in patients with known or suspected HCC. Methods: [68Ga]Ga-RAYZ-8009 was obtained after labeling the peptide precursor with 68Ga from a 68Ge/68Ga generator and heating at 90°C for 10 min followed by sterile filtration. After administration of [68Ga]Ga-RAYZ-8009, a dynamic or static PET/CT scan was acquired between 45 min and 4 h after administration. Radiotracer uptake was measured by SUVs for the following tissues: suspected or actual HCC or hepatoblastoma lesions, non–tumor-bearing liver, renal cortex, blood pool in the left ventricle, and gastric fundus. Additionally, tumor–to–healthy-liver ratios (TLRs) were calculated. Results: Twenty-four patients (5 patients in the dynamic protocol; 19 patients in the static protocol) were scanned. No adverse events occurred. Two patients had no lesion detected and did not have HCC during follow-up. In total, 50 lesions were detected and analyzed. The mean SUVmax of these lesions was 19.6 (range, 2.7–95.3), and the mean SUVmean was 10.1 (range, 1.0–49.2) at approximately 60 min after administration. Uptake in non–tumor-bearing liver and blood pool rapidly decreased over time and became negligible 45 min after administration (mean SUVmean, <1.6), with a continuous decline to 4 h after administration (mean SUVmean, 1.0). The opposite was observed for HCC lesions, for which SUVs and TLRs continuously increased for up to 4 h after administration. In individual lesion analysis, TLR was the highest between 60 and 120 min after administration. Uptake in the gastric fundus gradually increased for up to 45 min (to an SUVmax of 31.3) and decreased gradually afterward. Conclusion: [68Ga]Ga-RAYZ-8009 is safe and allows for high-contrast imaging of GPC3-positive HCC, with rapid clearance from most normal organs. Thereby, [68Ga]Ga-RAYZ-8009 is promising for HCC diagnosis and staging. Further research is warranted.




radio

Optimizing the Therapeutic Index of sdAb-Based Radiopharmaceuticals Using Pretargeting

Single-domain antibodies (sdAbs) demonstrate favorable pharmacokinetic profiles for molecular imaging applications. However, their renal excretion and retention are obstacles for applications in targeted radionuclide therapy (TRT). Methods: Using a click-chemistry–based pretargeting approach, we aimed to reduce kidney retention of a fibroblast activation protein α (FAP)–targeted sdAb, 4AH29, for 177Lu-TRT. Key pretargeting parameters (sdAb-injected mass and lag time) were optimized in healthy mice and U87MG (FAP+) xenografts. A TRT study in a pancreatic ductal adenocarcinoma (PDAC) patient-derived xenograft (PDX) model was performed as a pilot study for sdAb-based pretargeting applications. Results: Modification of 4AH29 with trans-cyclooctene (TCO) moieties did not modify the sdAb pharmacokinetic profile. A 200-µg injected mass of 4AH29-TCO and an 8-h lag time for the injection of [177Lu]Lu-DOTA-PEG7-tetrazine resulted in the highest kidney therapeutic index (2.0 ± 0.4), which was 5-fold higher than that of [177Lu]Lu-DOTA-4AH29 (0.4 ± 0.1). FAP expression in the tumor microenvironment was validated in a PDAC PDX model with both immunohistochemistry and PET/CT imaging. Mice treated with the pretargeting high-activity approach (4AH29-TCO + [177Lu]Lu-DOTA-PEG7-tetrazine; 3 x 88 MBq, 1 injection per week for 3 wk) demonstrated prolonged survival compared with the vehicle control and conventionally treated ([177Lu]Lu-DOTA-4AH29; 3 x 37 MBq, 1 injection per week for 3 wk) mice. Mesangial expansion was reported in 7 of 10 mice in the conventional cohort, suggesting treatment-related kidney morphologic changes, but was not observed in the pretargeting cohort. Conclusion: This study validates pretargeting to mitigate sdAbs’ kidney retention with no observation of morphologic changes on therapy regimen at early time points. Clinical translation of click-chemistry–based pre-TRT is warranted on the basis of its ability to alleviate toxicities related to biovectors’ intrinsic pharmacokinetic profiles. The absence of representative animal models with extensive stroma and high FAP expression on cancer-associated fibroblasts led to a low mean tumor-absorbed dose even with high injected activity and consequently to modest survival benefit in this PDAC PDX.




radio

Ukraine says it intercepts radio communications from North Korean soldiers in Russia

Ukraine's military intelligence has intercepted what it claims are radio communications between North Korean soldiers in Russia, amid media reports of a massive troop buildup ahead of an attack in the Kursk region.




radio

Voyager 1 Breaks Its Silence With NASA via a Radio Transmitter Not Used Since 1981

The farthest spacecraft in the universe went momentarily rogue, but scientists breathed a sigh of relief when it reconnected at an unexpected radio frequency




radio

Radio Flyer uses SOLIDWORKS software to reintroduce classics

Venerable company refreshes time-honored icons and develops new ones using 3D CAD software




radio

New compact proton radiotherapy device designed with SOLIDWORKS software

Monarch250 to bring affordable cancer treatment option to more cancer centers




radio

Japan's Fukushima Radioactive Debris Reaches Lab After Secret Robot Operation

A small amount of radioactive debris removed by a robot from Japan's stricken Fukushima nuclear plant has arrived at a research lab near Tokyo, the plant operator said Tuesday, after a journey kept secret for safety reasons.




radio

to wire a pioneer radio in a car

to wire a pioneer radio in a car




radio

Financial Incentives May Speed Radiology Test Results

Title: Financial Incentives May Speed Radiology Test Results
Category: Health News
Created: 8/20/2010 2:10:00 PM
Last Editorial Review: 8/23/2010 12:00:00 AM




radio

Accuracy of CAD4TB (Computer-Aided Detection for Tuberculosis) on paediatric chest radiographs

Background

Computer-aided detection (CAD) systems hold promise for improving tuberculosis (TB) detection on digital chest radiographs. However, data on their performance in exclusively paediatric populations are scarce.

Methods

We conducted a retrospective diagnostic accuracy study evaluating the performance of CAD4TBv7 (Computer-Aided Detection for Tuberculosis version 7) using digital chest radiographs from well-characterised cohorts of Gambian children aged <15 years with presumed pulmonary TB. The children were consecutively recruited between 2012 and 2022. We measured CAD4TBv7 performance against a microbiological reference standard (MRS) of confirmed TB, and also performed Bayesian latent class analysis (LCA) to address the inherent limitations of the MRS in children. Diagnostic performance was assessed using the area under the receiver operating characteristic curve (AUROC) and point estimates of sensitivity and specificity.

Results

A total of 724 children were included in the analysis, with confirmed TB in 58 (8%), unconfirmed TB in 145 (20%) and unlikely TB in 521 (72%). Using the MRS, CAD4TBv7 showed an AUROC of 0.70 (95% CI 0.60–0.79), and demonstrated sensitivity and specificity of 19.0% (95% CI 11–31%) and 99.0% (95% CI 98.0–100.0%), respectively. Applying Bayesian LCA with the assumption of conditional independence between tests, sensitivity and specificity estimates for CAD4TBv7 were 42.7% (95% CrI 29.2–57.5%) and 97.9% (95% CrI 96.6–98.8%), respectively. When allowing for conditional dependence between culture and Xpert assay, CAD4TBv7 demonstrated a sensitivity of 50.3% (95% CrI 32.9–70.0%) and specificity of 98.0% (95% CrI 96.7–98.9%).

Conclusion

Although CAD4TBv7 demonstrated high specificity, its suboptimal sensitivity underscores the crucial need for optimisation of CAD4TBv7 for detecting TB in children.




radio

Preclinical Investigation of [212Pb]Pb-DOTAM-GRPR1 for Peptide Receptor Radionuclide Therapy in a Prostate Tumor Model

The role of gastrin-releasing peptide receptor (GRPR) in various diseases, including cancer, has been extensively studied and has emerged as a promising therapeutic target. In this study, we successfully achieved the use of [212Pb]Pb-DOTAM-GRPR1, comprising the α-particle generator, 212Pb, combined with a GRPR-targeting peptide, GRPR1, in a prostate cancer model. Methods: Pharmacokinetics, toxicity, radiation dosimetry, and efficacy were assessed in GRPR-positive prostate tumor–bearing mice after intravenous administration of [212Pb]Pb-DOTAM-GRPR1 (where DOTAM is 1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane). Results: Preclinical studies have shown tumor targeting of up to 5 percent injected dose per gram over 24 h, and optimization of the drug formulation and quantity has led to minimized oxidation and off-target binding, respectively. Particularly, an increase in peptide amount from 28 to 280 ng was shown to reduce off-target uptake, especially at the level of the pancreas, by about 30%. Furthermore, dosimetry studies confirmed the kidney as the dose-limiting organ, and toxicity studies revealed that a nontoxic dose of up to 1,665 kBq could be injected into mice. Efficacy studies indicated a median survival time of 9 wk in the control group, which received only a buffer solution, compared with 19 wk in the group that received 4 injections of 370 kBq at 3-wk intervals. Conclusion: Taken together, these combined data demonstrate the safety, tolerability, and efficacy of [212Pb]Pb-DOTAM-GRPR1, thus warranting further exploration in clinical trials.




radio

Reimagining Biologically Adapted Somatostatin Receptor-Targeted Radionuclide Therapy: Perspectives Based on Personal Experience and Observations on Recent Trials




radio

Best Patient Care Practices for Administering PSMA-Targeted Radiopharmaceutical Therapy

Optimal patient management protocols for metastatic castration-resistant prostate cancer (mCRPC) are poorly defined and even further complexified with new therapy approvals, such as radiopharmaceuticals. The prostate-specific membrane antigen (PSMA)–targeted agent 177Lu vipivotide tetraxetan ([177Lu]Lu-PSMA-617), approved after the phase III VISION study, presents physicians with additional aspects of patient management, including specific adverse event (AE) monitoring and management, as well as radiation safety. Drawing on our experience as VISION study investigators, here we provide guidance on best practices for delivering PSMA-targeted radiopharmaceutical therapy (RPT) to patients with mCRPC. After a comprehensive review of published evidence and guidelines on RPT management in prostate cancer, we identified educational gaps in managing the radiation safety and AEs associated with [177Lu]Lu-PSMA-617. Our results showed that providing sufficient education on AEs (e.g., fatigue and dry mouth) and radiation safety principles is key to effective delivery and management of patient expectations. Patient counseling by health care professionals, across disciplines, is a cornerstone of optimal patient management during PSMA-targeted RPT. Multidisciplinary collaboration is crucial, and physicians must adhere to radiation safety protocols and counsel patients on radiation safety considerations. Treatment with [177Lu]Lu-PSMA-617 is generally well tolerated; however, additional interventions may be required, such as dosing modification, medications, or transfusions. Urinary incontinence can be challenging in the context of radiation safety. Multidisciplinary collaboration between medical oncologists and nuclear medicine teams ensures that patients are monitored and managed safely and efficiently. In clinical practice, the benefit-to-risk ratio should always be evaluated on a case-by-case basis.




radio

Automated Volumetric Software in Dementia: Help or Hindrance to the Neuroradiologist? [RESEARCH]

BACKGROUND AND PURPOSE:

Brain atrophy occurs in the late stage of dementia, yet structural MRI is widely used in the work-up. Atrophy patterns can suggest a diagnosis of Alzheimer disease (AD) or frontotemporal dementia (FTD) but are difficult to assess visually. We hypothesized that the availability of a quantitative volumetric brain MRI report would increase neuroradiologists’ accuracy in diagnosing AD, FTD, or healthy controls compared with visual assessment.

MATERIALS AND METHODS:

Twenty-two patients with AD, 17 with FTD, and 21 cognitively healthy patients were identified from the electronic health systems record and a behavioral neurology clinic. Four neuroradiologists evaluated T1-weighted anatomic MRI studies with and without a volumetric report. Outcome measures were the proportion of correct diagnoses of neurodegenerative disease versus normal aging ("rough accuracy") and AD versus FTD ("exact accuracy"). Generalized linear mixed models were fit to assess whether the use of a volumetric report was associated with higher accuracy, accounting for random effects of within-rater and within-subject variability. Post hoc within-group analysis was performed with multiple comparisons correction. Residualized volumes were tested for an association with the diagnosis using ANOVA.

RESULTS:

There was no statistically significant effect of the report on overall correct diagnoses. The proportion of "exact" correct diagnoses was higher with the report versus without the report for AD (0.52 versus 0.38) and FTD (0.49 versus 0.32) and lower for cognitively healthy (0.75 versus 0.89). The proportion of "rough" correct diagnoses of neurodegenerative disease was higher with the report than without the report within the AD group (0.59 versus 0.41), and it was similar within the FTD group (0.66 versus 0.63). Post hoc within-group analysis suggested that the report increased the accuracy in AD (OR = 2.77) and decreased the accuracy in cognitively healthy (OR = 0.25). Residualized hippocampal volumes were smaller in AD (mean difference –1.8; multiple comparisons correction, –2.8 to –0.8; P < .001) and FTD (mean difference –1.2; multiple comparisons correction, –2.2 to –0.1; P = .02) compared with cognitively healthy.

CONCLUSIONS:

The availability of a brain volumetric report did not improve neuroradiologists’ accuracy over visual assessment in diagnosing AD or FTD in this limited sample. Post hoc analysis suggested that the report may have biased readers incorrectly toward a diagnosis of neurodegeneration in cognitively healthy adults.




radio

Distribution and Disparities of Industry Payments to Neuroradiologists [CLINICAL PRACTICE]

BACKGROUND AND PURPOSE:

Physician-industry relationships can be useful for driving innovation and technologic progress, though little is known about the scale or impact of industry involvement in neuroradiology. The purpose of this study was to assess the trends and distributions of industry payments to neuroradiologists.

MATERIALS AND METHODS:

Neuroradiologists were identified using a previously-validated method based on Work Relative Value Units and Neiman Imaging Types of Service classification. Data on payments from industry were obtained from the Open Payments database from the Centers for Medicare & Medicaid Services, from 2016 to 2021. Payments were grouped into 7 categories, including consulting fees, education, gifts, medical supplies, research, royalties/ownership, and speaker fees. Descriptive statistics were calculated.

RESULTS:

A total of 3019 neuroradiologists were identified in this study. Between 2016 and 2021, 48% (1440/3019) received at least 1 payment from industry, amounting to a total number of 21,967 payments. Each year, among those receiving payments from industry, each unique neuroradiologist received between a mean of 5.49–7.42 payments and a median of 2 payments, indicating a strong rightward skew to the distribution of payments. Gifts were the most frequent payment type made (60%, 13,285/21,967) but accounted for only 4.1% ($689,859/$17,010,546) of payment value. The greatest aggregate payment value came from speaker fees, which made up 36% ($6,127,484/$17,010,546) of the total payment value. The top 5% highest paid neuroradiologists received 42% (9133/21,967) of payments, which accounted for 84% ($14,284,120/$17,010,546) of the total dollar value. Since the start of the coronavirus 2019 (COVID-19) pandemic, the number of neuroradiologists receiving industry payments decreased from a mean of 671 neuroradiologists per year prepandemic (2016–2019) to 411 in the postpandemic (2020–2021) era (P = .030). The total number of payments to neuroradiologists decreased from 4177 per year prepandemic versus 2631 per year postpandemic (P = .011).

CONCLUSIONS:

Industry payments to neuroradiologists are highly concentrated among top earners, particularly among the top 5% of payment recipients. The number of payments decreased during the COVID-19 pandemic, though the dollar value of payments was offset by coincidental increases in royalty payments. Further investigation is needed in subsequent years to determine if the postpandemic changes in industry payment trends continue.




radio

Academic Neuroradiology: 2023 Update on Turnaround Time, Financial Recruitment, and Retention Strategies [CLINICAL PRACTICE]

SUMMARY:

The ASNR Neuroradiology Division Chief Working Group's 2023 survey, with responses from 62 division chiefs, provides insights into turnaround times, faculty recruitment, moonlighting opportunities, and academic funds. In emergency cases, 61% aim for a turnaround time of less than 45–60 minutes, with two-thirds meeting this expectation more than 75% of the time. For inpatient CT and MR imaging scans, 54% achieve a turnaround time of 4–8 hours, with three-quarters meeting this expectation at least 50% of the time. Outpatient scans have an expected turnaround time of 24–48 hours, which is met in 50% of cases. Faculty recruitment strategies included 35% offering sign-on bonuses, with a median of $30,000. Additionally, 23% provided bonuses to fellows during fellowship to retain them in the practice upon completion of their fellowship. Internal moonlighting opportunities for faculty were offered by 70% of divisions, with a median pay of $250 per hour. The median annual academic fund for a full-time neuroradiology faculty member was $6000, typically excluding license fees but including American College of Radiology and American Board of Radiology membership, leaving $4000 for professional expenses. This survey calls for further dialogue on adapting and innovating academic institutions to meet evolving needs in neuroradiology.




radio

Spinal CSF Leaks: The Neuroradiologist Transforming Care [SPINE IMAGING AND SPINE IMAGE-GUIDED INTERVENTIONS]

Spinal CSF leak care has evolved during the past several years due to pivotal advances in its diagnosis and treatment. To the reader of the American Journal of Neuroradiology (AJNR), it has been impossible to miss the exponential increase in groundbreaking research on spinal CSF leaks and spontaneous intracranial hypotension (SIH). While many clinical specialties have contributed to these successes, the neuroradiologist has been instrumental in driving this transformation due to innovations in noninvasive imaging, novel myelographic techniques, and image-guided therapies. In this editorial, we will delve into the exciting advancements in spinal CSF leak diagnosis and treatment and celebrate the vital role of the neuroradiologist at the forefront of this revolution, with particular attention paid to CSF leak–related work published in the AJNR.




radio

Starlink tests show how to save radio astronomy from satellites

Radio astronomers teamed up with SpaceX to find a promising solution for helping expensive telescopes avoid interference from thousands of Starlink satellites





radio

Radioactive ion beam could target tumours more precisely

A beam of radioactive carbon ions has been used to destroy cancer cells in mice, demonstrating a therapy that may cause less collateral damage than current techniques




radio

How Signal Decoders Are Used in Radio Broadcasting

Signal decoders are vital components in radio broadcasting. Without them, the transmission and reception of clear audio or data would be impossible. They take what is essentially noise and turn it into coherent, useful information. Having worked with radio broadcasting systems for some time, I’ve seen firsthand how essential decoders are to maintaining communication networks. […]

The post How Signal Decoders Are Used in Radio Broadcasting appeared first on Chart Attack.




radio

Sa chanson «Fake Friends» numéro 1 à la radio: «j’ai pleuré de joie» - Billie du Page

La jeune artiste de 20 ans domine les palmarès radio depuis trois semaines.




radio

Mariana Oncology’s Radiopharm Platform Acquired By Novartis

Novartis recently announced the acquisition of Mariana Oncology, an emerging biotech focused on advancing a radioligand therapeutics platform, for up to $1.75 billion in upfronts and future milestones. The capstone of its three short years of operations, this acquisition represents

The post Mariana Oncology’s Radiopharm Platform Acquired By Novartis appeared first on LifeSciVC.




radio

Unlocking the Future of Radioligand Therapy: From Discovery to Delivering at Scale

As radiopharmaceuticals enter a new phase, industry leaders must rethink external services and internal capabilities to master the complexities of delivering advanced therapies.

The post Unlocking the Future of Radioligand Therapy: From Discovery to Delivering at Scale appeared first on MedCity News.




radio

Dynamics of Nuclear and Radiological Terrorism Threats to Post-Soviet Russia

Simon Saradzhyan was invited to publicly brief the National Academy of Sciences (NAS) committee addressing the adequacy of strategies to prevent, counter, and respond to nuclear terrorism, and identify technical, policy, and resource gaps. The consensus study is a congressionally mandated analysis included in the 2021 National Defense Authorization Act (Section 1299I) sponsored by the Office of the Secretary of Defense (Policy).  Nearly 60 stakeholders concerned about this topic from the Department of Defense, US Department of Energy, National Nuclear Security Administration, State Department, National Security Council, US Congress, the National Labs, and many non-governmental organizations were in attendance. The briefings are available at the NAS event website. Video of the presentation can be found here.





radio

SIRIUS XM To Broadcast 'Doctor Radio Reports: The Skinny On Dieting'

SIRIUS XM To Broadcast 'Doctor Radio Reports: The Skinny On Dieting'




radio

How Hip Hop Became Hit Pop : Radio, Rap, and Race [Electronic book] / Amy Coddington.

Berkeley, CA : University of California Press, [2023]




radio

Brachytherapy on-a-chip: a clinically-relevant approach for radiotherapy testing in 3d biology

Lab Chip, 2024, 24,2335-2346
DOI: 10.1039/D4LC00032C, Paper
Rodin Chermat, Elena Refet-Mollof, Yuji Kamio, Jean-François Carrier, Philip Wong, Thomas Gervais
We introduce the first brachytherapy-on-chip device for in vitro testing of brachytherapy on naturally hypoxic tumor spheroids, for translational research and drug development.
The content of this RSS Feed (c) The Royal Society of Chemistry




radio

H2O2-activated mitochondria-targeting photosensitizer for fluorescence imaging-guided combination photodynamic and radiotherapy

J. Mater. Chem. B, 2024, Accepted Manuscript
DOI: 10.1039/D4TB01653J, Paper
Qiufen Tian, Zifan Zhu, Yun Feng, Shirui Zhao, Hui Lin, Wen Zhang, Zhiai Xu
Radiotherapy is a primary modality in cancer treatment but accompanied by severe side effects to healthy tissues and radiation resistance to some extent. To overcome these limitations, we developed a...
The content of this RSS Feed (c) The Royal Society of Chemistry