radiopharm Challenges with 177Lu-PSMA-617 Radiopharmaceutical Therapy in Clinical Practice By jnm.snmjournals.org Published On :: 2024-09-19T06:38:07-07:00 Full Article
radiopharm Diagnostic Radiopharmaceuticals: A Sustainable Path to the Improvement of Patient Care By jnm.snmjournals.org Published On :: 2024-10-10T08:33:38-07:00 Full Article
radiopharm MIRD Pamphlet No. 31: MIRDcell V4--Artificial Intelligence Tools to Formulate Optimized Radiopharmaceutical Cocktails for Therapy By jnm.snmjournals.org Published On :: 2024-10-24T11:58:49-07:00 Visual Abstract Full Article
radiopharm Feasibility, Tolerability, and Preliminary Clinical Response of Fractionated Radiopharmaceutical Therapy with 213Bi-FAPI-46: Pilot Experience in Patients with End-Stage, Progressive Metastatic Tumors By jnm.snmjournals.org Published On :: 2024-10-30T08:04:15-07:00 Visual Abstract Full Article
radiopharm Preclinical Evaluation of 177Lu-OncoFAP-23, a Multivalent FAP-Targeted Radiopharmaceutical Therapeutic for Solid Tumors By jnm.snmjournals.org Published On :: 2024-10-01T04:08:08-07:00 Fibroblast activation protein (FAP) is abundantly expressed in the stroma of most human solid tumors. Clinical-stage radiolabeled FAP ligands are increasingly used as tools for the detection of various cancer lesions. To unleash the full therapeutic potential of FAP-targeting agents, ligands need to remain at the tumor site for several days after administration. We recently described the discovery of OncoFAP, a high-affinity small organic ligand of FAP with a rapid accumulation in tumors and low uptake in healthy tissues in cancer patients. Trimerization of OncoFAP provided a derivative (named TriOncoFAP, or OncoFAP-23) with improved FAP affinity. In this work, we evaluated the tissue biodistribution profile and the therapeutic performance of OncoFAP-23 in tumor-bearing mice. Methods: OncoFAP-23 was radiolabeled with the theranostic radionuclide 177Lu. Preclinical experiments were conducted on mice bearing SK-RC-52.hFAP (BALB/c nude mice) or CT-26.hFAP (BALB/c mice) tumors. 177Lu-OncoFAP and 177Lu-FAP-2286 were included in the biodistribution study as controls. Toxicologic evaluation was performed on Wistar rats and CD1 mice by injecting high doses of OncoFAP-23 or its cold-labeled counterpart, respectively. Results: 177Lu-OncoFAP-23 emerged for its best-in-class biodistribution profile, high and prolonged tumor uptake (i.e., ~16 percentage injected dose/g at 96 h), and low accumulation in healthy organs, which correlates well with its potent single-agent anticancer activity at low levels of administered radioactivity. Combination treatment with the tumor-targeted interleukin 2 (L19-IL2, a clinical-stage immunocytokine) further expands the therapeutic window of 177Lu-OncoFAP-23 by potentiating its in vivo antitumor activity. Proteomics studies revealed a potent tumor-directed immune response on treatment with the combination. OncoFAP-23 and natLu-OncoFAP-23 exhibited a favorable toxicologic profile, without showing any side effects or signs of toxicity. Conclusion: OncoFAP-23 presents enhanced tumor uptake and tumor retention and low accumulation in healthy organs, findings that correspond to a strongly improved in vivo antitumor efficacy. The data presented in this work support the clinical development of 177Lu-OncoFAP-23 for the treatment of FAP-positive solid tumors. Full Article
radiopharm [68Ga]Ga-RAYZ-8009: A Glypican-3-Targeted Diagnostic Radiopharmaceutical for Hepatocellular Carcinoma Molecular Imaging--A First-in-Human Case Series By jnm.snmjournals.org Published On :: 2024-10-01T04:08:08-07:00 To date, the imaging and diagnosis of hepatocellular carcinoma (HCC) rely on CT/MRI, which have well-known limitations. Glypican-3 (GPC3) is a cell surface receptor highly expressed by HCC but not by normal or cirrhotic liver tissue. Here we report initial clinical results of GPC3-targeted PET imaging with [68Ga]Ga-DOTA-RYZ-GPC3 (RAYZ-8009), a peptide-based GPC3 ligand in patients with known or suspected HCC. Methods: [68Ga]Ga-RAYZ-8009 was obtained after labeling the peptide precursor with 68Ga from a 68Ge/68Ga generator and heating at 90°C for 10 min followed by sterile filtration. After administration of [68Ga]Ga-RAYZ-8009, a dynamic or static PET/CT scan was acquired between 45 min and 4 h after administration. Radiotracer uptake was measured by SUVs for the following tissues: suspected or actual HCC or hepatoblastoma lesions, non–tumor-bearing liver, renal cortex, blood pool in the left ventricle, and gastric fundus. Additionally, tumor–to–healthy-liver ratios (TLRs) were calculated. Results: Twenty-four patients (5 patients in the dynamic protocol; 19 patients in the static protocol) were scanned. No adverse events occurred. Two patients had no lesion detected and did not have HCC during follow-up. In total, 50 lesions were detected and analyzed. The mean SUVmax of these lesions was 19.6 (range, 2.7–95.3), and the mean SUVmean was 10.1 (range, 1.0–49.2) at approximately 60 min after administration. Uptake in non–tumor-bearing liver and blood pool rapidly decreased over time and became negligible 45 min after administration (mean SUVmean, <1.6), with a continuous decline to 4 h after administration (mean SUVmean, 1.0). The opposite was observed for HCC lesions, for which SUVs and TLRs continuously increased for up to 4 h after administration. In individual lesion analysis, TLR was the highest between 60 and 120 min after administration. Uptake in the gastric fundus gradually increased for up to 45 min (to an SUVmax of 31.3) and decreased gradually afterward. Conclusion: [68Ga]Ga-RAYZ-8009 is safe and allows for high-contrast imaging of GPC3-positive HCC, with rapid clearance from most normal organs. Thereby, [68Ga]Ga-RAYZ-8009 is promising for HCC diagnosis and staging. Further research is warranted. Full Article
radiopharm Optimizing the Therapeutic Index of sdAb-Based Radiopharmaceuticals Using Pretargeting By jnm.snmjournals.org Published On :: 2024-10-01T04:08:08-07:00 Single-domain antibodies (sdAbs) demonstrate favorable pharmacokinetic profiles for molecular imaging applications. However, their renal excretion and retention are obstacles for applications in targeted radionuclide therapy (TRT). Methods: Using a click-chemistry–based pretargeting approach, we aimed to reduce kidney retention of a fibroblast activation protein α (FAP)–targeted sdAb, 4AH29, for 177Lu-TRT. Key pretargeting parameters (sdAb-injected mass and lag time) were optimized in healthy mice and U87MG (FAP+) xenografts. A TRT study in a pancreatic ductal adenocarcinoma (PDAC) patient-derived xenograft (PDX) model was performed as a pilot study for sdAb-based pretargeting applications. Results: Modification of 4AH29 with trans-cyclooctene (TCO) moieties did not modify the sdAb pharmacokinetic profile. A 200-µg injected mass of 4AH29-TCO and an 8-h lag time for the injection of [177Lu]Lu-DOTA-PEG7-tetrazine resulted in the highest kidney therapeutic index (2.0 ± 0.4), which was 5-fold higher than that of [177Lu]Lu-DOTA-4AH29 (0.4 ± 0.1). FAP expression in the tumor microenvironment was validated in a PDAC PDX model with both immunohistochemistry and PET/CT imaging. Mice treated with the pretargeting high-activity approach (4AH29-TCO + [177Lu]Lu-DOTA-PEG7-tetrazine; 3 x 88 MBq, 1 injection per week for 3 wk) demonstrated prolonged survival compared with the vehicle control and conventionally treated ([177Lu]Lu-DOTA-4AH29; 3 x 37 MBq, 1 injection per week for 3 wk) mice. Mesangial expansion was reported in 7 of 10 mice in the conventional cohort, suggesting treatment-related kidney morphologic changes, but was not observed in the pretargeting cohort. Conclusion: This study validates pretargeting to mitigate sdAbs’ kidney retention with no observation of morphologic changes on therapy regimen at early time points. Clinical translation of click-chemistry–based pre-TRT is warranted on the basis of its ability to alleviate toxicities related to biovectors’ intrinsic pharmacokinetic profiles. The absence of representative animal models with extensive stroma and high FAP expression on cancer-associated fibroblasts led to a low mean tumor-absorbed dose even with high injected activity and consequently to modest survival benefit in this PDAC PDX. Full Article
radiopharm Best Patient Care Practices for Administering PSMA-Targeted Radiopharmaceutical Therapy By jnm.snmjournals.org Published On :: 2024-11-01T04:25:31-07:00 Optimal patient management protocols for metastatic castration-resistant prostate cancer (mCRPC) are poorly defined and even further complexified with new therapy approvals, such as radiopharmaceuticals. The prostate-specific membrane antigen (PSMA)–targeted agent 177Lu vipivotide tetraxetan ([177Lu]Lu-PSMA-617), approved after the phase III VISION study, presents physicians with additional aspects of patient management, including specific adverse event (AE) monitoring and management, as well as radiation safety. Drawing on our experience as VISION study investigators, here we provide guidance on best practices for delivering PSMA-targeted radiopharmaceutical therapy (RPT) to patients with mCRPC. After a comprehensive review of published evidence and guidelines on RPT management in prostate cancer, we identified educational gaps in managing the radiation safety and AEs associated with [177Lu]Lu-PSMA-617. Our results showed that providing sufficient education on AEs (e.g., fatigue and dry mouth) and radiation safety principles is key to effective delivery and management of patient expectations. Patient counseling by health care professionals, across disciplines, is a cornerstone of optimal patient management during PSMA-targeted RPT. Multidisciplinary collaboration is crucial, and physicians must adhere to radiation safety protocols and counsel patients on radiation safety considerations. Treatment with [177Lu]Lu-PSMA-617 is generally well tolerated; however, additional interventions may be required, such as dosing modification, medications, or transfusions. Urinary incontinence can be challenging in the context of radiation safety. Multidisciplinary collaboration between medical oncologists and nuclear medicine teams ensures that patients are monitored and managed safely and efficiently. In clinical practice, the benefit-to-risk ratio should always be evaluated on a case-by-case basis. Full Article
radiopharm Mariana Oncology’s Radiopharm Platform Acquired By Novartis By lifescivc.com Published On :: Mon, 06 May 2024 10:42:46 +0000 Novartis recently announced the acquisition of Mariana Oncology, an emerging biotech focused on advancing a radioligand therapeutics platform, for up to $1.75 billion in upfronts and future milestones. The capstone of its three short years of operations, this acquisition represents The post Mariana Oncology’s Radiopharm Platform Acquired By Novartis appeared first on LifeSciVC. Full Article Exits IPOs M&As Leadership Portfolio news Talent #RLT Mariana Oncology Novartis radioligand therapy Radiopharm
radiopharm Radiopharmaceutical pig and transportation apparatus By www.freepatentsonline.com Published On :: Tue, 01 Jul 2003 08:00:00 EDT An apparatus and method for transporting radiopharmaceutical substances. The apparatus comprises a radiation shielding pig having an elongated sidewall that extends between two ends and that defines an elongated, interior chamber. The sidewall is thinner than each of the ends. A radiation shield defines at least one cavity. The shield has two open ends and a central area between the open ends that is thicker than each of the two open ends. Also, a method of assembling and disassembling the apparatus includes, placing a syringe filled with a radiopharmaceutical substance into the pig; placing the pig containing the filled syringe in the radiation shield; placing the pig and the shield into an ammunition can for transporting the radioactive substance contained in the syringe. Full Article
radiopharm Contrast agents III [electronic resource] : radiopharmaceuticals from diagnostics to therapeutics / volume editor, Werner Krause ; with contributions by R. Alberto [and others] By darius.uleth.ca Published On :: Berlin ; New York : Springer-Verlag, [2005] Full Article
radiopharm Radiopharmaceutical chemistry / Jason S. Lewis, Albert D. Windhorst, Brian M. Zeglis, editors By library.mit.edu Published On :: Sun, 19 May 2019 07:20:37 EDT Online Resource Full Article
radiopharm Radiopharmaceuticals: a guide to PET/CT and PET/MRI / Ferdinando Calabria, Orazio Schillaci, editors By library.mit.edu Published On :: Sun, 12 Jan 2020 08:09:51 EST Online Resource Full Article
radiopharm PHD POSITIONS IN MEDICAL PHYSICS AND RADIOPHARMACEUTICAL SCIENCES: German Cancer Research Center (DKFZ) By brightrecruits.com Published On :: Tue, 11 Feb 2020 00:00:00 Z €Attractive: German Cancer Research Center (DKFZ)For more latest jobs and jobs in Germany visit brightrecruits.com Full Article Germany