high

Musical road markings appear on Russian highway

Russia's first musical marking appeared on a section of the M-11 Neva Highway (connects Moscow and St. Petersburg). When driving along the 653rd kilometer of the highway at the permitted speed, motorists can hear a fragment of the world-famous Kalinka Malinka song. Musical markings will prevent drivers from falling asleep at the wheel. They will encourage them to concentrate on the road when approaching an accident-prone section, for instance. The musical markings will serve an important purpose to reduce the number of car accidents. Such markings have not been used on Russian roads before, the press service of Avtodor (Russian Highways) said.




high

Moscow Patriot Park director and high-ranking defense official arrested for fraud

Vyacheslav Akhmedov, director of Moscow's Patriot Park, was arrested as part of the investigation into fraudulent activities. Deputy head of the Main Directorate for Innovative Development of the Russian Ministry of Defense, Major General Vladimir Shesterov, was detained as well, the Investigative Committee of Russia said on its Telegram channel. The arrested individuals, together with their accomplices, are responsible for the theft of funds allocated for the operation of the Patriot Park. Army-2024 international military and technical forum was supposed to be held in the Patriot Park in August 2024. Now the event has been put into question.




high

Gold prices set new all time high record

Gold prices rose to a record high on the Chicago Mercantile Exchange (CME) on April 1, RBC reports with reference to data from the trading platform. June contracts for the supply of gold rose in price by 2.14 percent, to $2,286 per ounce. The price neared the level of $2,300 and reached a new all-time high. Gold is rising in price amid expectations for the US Federal Reserve to cut the rate in June, Warren Patterson, head of commodity strategy at ING Groep NV said.




high

Highly competitive landscape for new POS software projects

Competition between vendors to provide POS software remains fierce, with more than 125 suppliers working with major retail and hospitality chains, according to Global POS Software 2023, the latest study from strategic research and consulting firm RBR Data Services, a division of Datos Insights.




high

Compact high-performance embedded computer for kiosk and robotics applications

Advantech, provider of AIoT platforms and services, has launched ARK-3533, a compact fanless edge computer tailored for kiosk and robotics applications.




high

Storm Shadow to blow up Moscow, Sochi, headquarters and highways

The Armed Forces of Ukraine plan to strike important targets in Russia with 600-km Storm Shadow cruise missiles, sources at US intelligence services say. The selected targets allegedly include: the fleet in Novorossiysk; the presidential residence in Sochi; the air defense system in Sevastopol; defense and gunpowder factories; headquarters located from the south of Russia to Moscow; Moscow and St. Petersburg; transport interchanges used for the traffic of military equipment and fuel for the Russian army. It was earlier reported that Paris discussed a possibility to allow the Armed Forces of Ukraine to strike Vladimir Putin's residence in Sochi, as well as military facilities deep in Russia. Earlier, The Telegraph and The Guardian also reported that the UK authorized Storm Shadow strikes on Russian territory without official public approval.




high

How video technology is transforming casinos and high-end resorts

Casinos and high-end resorts are constantly challenged to provide a personalized and engaging guest experience while maximizing revenue and operational efficiency.The growing demand for immersive, tailored experiences means that traditional analog video systems are no longer sufficient.




high

First Case of Highly Pathogenic AI This Fall Confirmed in Gangwon Province

[Domestic] :
The nation has confirmed its first case of highly pathogenic avian influenza so far this fall season at a poultry farm in Gangwon Province.  Quarantine authorities said Wednesday that the birds at the farm in Donghae had the highly pathogenic H5N1 strain of the virus. The farm, which raises some 700 ...

[more...]




high

This Year's Top 100 Companies See Highest Number of Female Executives

[Domestic] :
The number of female executives in the country's top 100 companies has reached a record high. According to global headhunting firm Unico Search on Monday, the number of female executives in South Korea's top 100 companies reached 463 this year, up five-point-five percent, or 24 from last ...

[more...]




high

JCS: N. Korea Likely Fired ICBM at High Angle

[Inter-Korea] :
South Korea’s Joint Chiefs of Staff(JCS) suspects that North Korea fired an intercontinental ballistic missile(ICBM) toward the East Sea on Thursday morning.  The JCS said it detected the launch from the Pyongyang area around 7:10 a.m., adding the missile was fired at a steep angle and flew about ...

[more...]




high

Freeway vs. Highway: Can You Tell the Difference?

Highways and freeways can both be designed with multiple lanes, entrance and exit ramps and limited traffic control to reduce congestion and improve driver safety. However, some small highway vs. freeway distinctions place them in separate categories.




high

Exhibit to Highlight Calligraphy by Korean Independence Fighter Ahn Jung-geun

[Culture] :
 Calligraphy by the late Korean independence fighter Ahn Jung-geun will soon be on display for the South Korean public. According to the National Museum of Korean Contemporary History, a special exhibition on Ahn’s writings will open Thursday in cooperation with the Ahn Junggeun Memorial Association ...

[more...]




high

Bitcoin Soars Past $88,000 to New High

[Economy] :
The price of Bitcoin has crossed the 80-thousand-dollar mark for the first time, just days after Donald Trump’s reelection to the U.S. presidency.    According to the U.S. cryptocurrency exchange platform Coinbase, the world’s most popular cryptocurrency was trading at 88-thousand-413 U.S. dollars at ...

[more...]




high

Structural transformations and stability of benzo[a]pyrene under high pressure

This study explores the high-pressure behavior of benzo[a]pyrene, revealing two previously unknown polymorphs at 4.8 and 7.1 GPa. These findings enhance our understanding of the structural dynamics and stability of polycyclic aromatic hydro­carbons under extreme conditions.




high

Crystal structure of the incommensurate modulated high-pressure phase of the potassium guaninate monohydrate

Incommensurate phase of potassium guaninate monohydrate is the first example of a modulation in purine derivatives and of a high-pressure incommensurate crystal structure to be solved for an organic compound.




high

Crystal structure and compressibility of magnesium chloride heptahydrate found under high pressure

In-situ diffraction measurements reveal that magnesium chloride forms a unique high-pressure phase, a heptahydrate, above 2 GPa. The hydrogen-bonding structure appears to contain orientational disorder.




high

Crystal structure and compressibility of magnesium chloride heptahydrate found under high pressure

The odd hydration number has so far been missing in the water-rich magnesium chloride hydrate series (MgCl2·nH2O). In this study, magnesium chloride heptahydrate, MgCl2·7H2O (or MgCl2·7D2O), which forms at high pressures above 2 GPa and high temperatures above 300 K, has been identified. Its structure has been determined by a combination of in-situ single-crystal X-ray diffraction at 2.5 GPa and 298 K and powder neutron diffraction at 3.1 GPa and 300 K. The single-crystal specimen was grown by mixing alcohols to prevent nucleation of undesired crystalline phases. The results show orientational disorder of water molecules, which was also examined using density functional theory calculations. The disorder involves the reconnection of hydrogen bonds, which differs from those in water ice phases and known disordered salt hydrates. Shrinkage by compression occurs mainly in one direction. In the plane perpendicular to this most compressible direction, oxygen and chlorine atoms are in a hexagonal-like arrangement.




high

Crystal structure of the incommensurate modulated high-pressure phase of the potassium guaninate monohydrate

The crystal structure of the incommensurate modulated phase of potassium guaninate monohydrate has been solved on the basis of high-pressure single-crystal X-ray diffraction data. The modulated structure was described as a `mosaic' sequence of three different local configurations of two neighbouring guaninate rings. In contrast to known examples of incommensurate modulated organic compounds, the modulation functions of all atoms are discontinuous. This is the first example of the experimental detection of an incommensurate modulated crystal structure that can be modelled using the special `soliton mode' modulation function proposed by Aramburu et al. [(1995), J. Phys. Condens. Matter, 7, 6187–6196].




high

High-resolution double vision of the allosteric phosphatase PTP1B

Protein tyrosine phosphatase 1B (PTP1B) plays important roles in cellular homeostasis and is a highly validated therapeutic target for multiple human ailments, including diabetes, obesity and breast cancer. However, much remains to be learned about how conformational changes may convey information through the structure of PTP1B to enable allosteric regulation by ligands or functional responses to mutations. High-resolution X-ray crystallography can offer unique windows into protein conformational ensembles, but comparison of even high-resolution structures is often complicated by differences between data sets, including non-isomorphism. Here, the highest resolution crystal structure of apo wild-type (WT) PTP1B to date is presented out of a total of ∼350 PTP1B structures in the PDB. This structure is in a crystal form that is rare for PTP1B, with two unique copies of the protein that exhibit distinct patterns of conformational heterogeneity, allowing a controlled comparison of local disorder across the two chains within the same asymmetric unit. The conformational differences between these chains are interrogated in the apo structure and between several recently reported high-resolution ligand-bound structures. Electron-density maps in a high-resolution structure of a recently reported activating double mutant are also examined, and unmodeled alternate conformations in the mutant structure are discovered that coincide with regions of enhanced conformational heterogeneity in the new WT structure. These results validate the notion that these mutations operate by enhancing local dynamics, and suggest a latent susceptibility to such changes in the WT enzyme. Together, these new data and analysis provide a detailed view of the conformational ensemble of PTP1B and highlight the utility of high-resolution crystallography for elucidating conformational heterogeneity with potential relevance for function.




high

Grazing-incidence small-angle neutron scattering at high pressure (HP-GISANS): a soft matter feasibility study on grafted brush films

We present a demonstration of high-pressure grazing-incidence small-angle neutron scattering for soft matter thin films. The results suggest changes in water reorganization at different pressures.




high

Characterization and calibration of DECTRIS PILATUS3 X CdTe 2M high-Z hybrid pixel detector for high-precision powder diffraction measurements

The performance of a high-Z photon-counting detector for powder diffraction measurements at high (>50 keV) energies is characterized, and the appropriate corrections are described in order to obtain data of higher quality than have previously been obtained from 2D detectors in these energy ranges.




high

Modulating phase segregation during spin-casting of fullerene-based polymer solar-cell thin films upon minor addition of a high-boiling co-solvent

Combined 100 ms resolved grazing-incidence small/wide-angle X-ray scattering and optical interferometry reveal that the additive diiodooctane can significantly double the solvent evaporation rate, thereby effectively suppressing the rapid spinodal decomposition process in the early stage of spin-coasting, favouring slow phase segregation kinetics with nucleation and growth.




high

Optimal operation guidelines for direct recovery of high-purity precursor from spent lithium-ion batteries: hybrid operation model of population balance equation and data-driven classifier

This study proposes an operation optimization framework for impurity-free recycling of spent lithium-ion batteries. Using a hybrid population balance equation integrated with a data-driven condition classifier, the study firstly identifies the optimal batch and semi-batch operation conditions that significantly reduce the operation time with 100% purity of product; detailed guidelines are given for industrial applications.




high

High accuracy, high resolution measurements of fluorescence in manganese using extended-range high-energy-resolution fluorescence detection

We explain analysis of RIXS, HERFD and XR-HERFD data to discover new physical processes in manganese and manganese-containing materials, by applying our new technique XR-HERFD, developed from high resolution RIXS and HERFD.




high

Grazing-incidence small-angle neutron scattering at high pressure (HP-GISANS): a soft matter feasibility study on grafted brush films

Grazing-incidence small-angle neutron scattering (GISANS) under pressure (HP-GISANS) at the solid (Si)–liquid (D2O) interface is demonstrated for the pressure-induced lateral morphological characterization of the nanostructure in thin (<100 nm) soft matter films. We demonstrate feasibility by investigating a hydrophobic {poly[(2,2,3,3,4,4,5,5-octafluoro)pentyl methacrylate]} (POFPMA)–hydrophilic {poly[2-(dimethylamino)ethyl methacrylate]} (PDMAEMA) brush mixture of strong incompatibility between the homopolymers, anchored on Si, at T = 45°C for two pressures, P = 1 bar and P = 800 bar. Our GISANS results reveal nanostructural rearrangements with increasing P, underlining P-induced effects in tethered polymer brush layers swollen with bulk solvent.




high

In situ/operando plug-flow fixed-bed cell for synchrotron PXRD and XAFS investigations at high temperature, pressure, controlled gas atmosphere and ultra-fast heating

A plug-flow fixed-bed cell for synchrotron powder X-ray diffraction (PXRD) and X-ray absorption fine structure (XAFS) idoneous for the study of heterogeneous catalysts at high temperature, pressure and under gas flow is designed, constructed and demonstrated. The operating conditions up to 1000°C and 50 bar are ensured by a set of mass flow controllers, pressure regulators and two infra-red lamps that constitute a robust and ultra-fast heating and cooling method. The performance of the system and cell for carbon dioxide hydrogenation reactions under specified temperatures, gas flows and pressures is demonstrated both for PXRD and XAFS at the P02.1 (PXRD) and the P64 (XAFS) beamlines of the Deutsches Elektronen-Synchrotron (DESY).




high

A method with ultra-high angular resolution for X-ray diffraction experiments

In X-ray diffraction measurements, the angular resolution has a detection limit due to the receiving size of the detector. In many cases this detection limit is too large and must be breached to obtain the desired information. A novel method is proposed here by making the detector simultaneously measuring and moving. Using the deconvolution algorithm to remove the convolution effect, the pixel size limitation is finally broken. The algorithm used is not a common one, and suppresses signals at high frequencies, ensuring the reliability of the peak shape after restoration. The feasibility of this method is verified by successfully measuring the crystal truncation rod signal of SrTiO3 single crystal, and the resolution is nearly ten times higher than that of a single pixel. Moreover, this method greatly reduces the noise and improves the signal-to-noise ratio.




high

Efficient boundary-guided scanning for high-resolution X-ray ptychography

In the realm of X-ray ptychography experiments, a considerable amount of ptychography scans are typically performed within a field of view encompassing the target sample. While it is crucial to obtain overlapping scans in small increments over the region of interest for achieving high-resolution sample reconstruction, a significant number of these scans often redundantly measure the empty background within the wide field of view. To address this inefficiency, an innovative algorithm is proposed that introduces automatic guidance for data acquisition. The algorithm first directs the scan point to actively search for the object of interest within the field of view. Subsequently, it intelligently scans along the perimeter of the sample, strategically acquiring measurements exclusively within the boundary of the region of interest. By employing this approach, a reduction in the number of measurements required to obtain high-resolution reconstruction images is demonstrated, as compared with conventional raster scanning methods. Furthermore, the automatic guidance provided by the algorithm offers the added advantage of saving valuable time during the reconstruction process. Through practical implementation on real experiments, these findings showcase the efficacy of the proposed algorithm in enhancing the efficiency and accuracy of X-ray ptychography experiments. This novel approach holds immense potential for advancing sample analysis and imaging techniques in various scientific disciplines.




high

A thermal deformation optimization method for cryogenically cooled silicon crystal monochromators under high heat load

A method to optimize the thermal deformation of an indirectly cryo-cooled silicon crystal monochromator exposed to intense X-rays at a low-emittance diffraction-limited synchrotron radiation source is presented. The thermal-induced slope error of the monochromator crystal has been studied as a function of heat transfer efficiency, crystal temperature distribution and beam footprint size. A partial cooling method is proposed, which flattens the crystal surface profile within the beam footprint by modifying the cooling contact area to optimize the crystal peak temperature. The optimal temperature varies with different photon energies, which is investigated, and a proper cooling strategy is obtained to fulfil the thermal distortion requirements over the entire photon energy range. At an absorbed power up to 300 W with a maximum power density of 44.8 W mm−2 normal incidence beam from an in-vacuum undulator, the crystal thermal distortion does not exceed 0.3 µrad at 8.33 keV. This method will provide references for the monochromator design on diffraction-limited synchrotron radiation or free-electron laser light sources.




high

A new modular framework for high-level application development at HEPS

As a representative of the fourth-generation light sources, the High Energy Photon Source (HEPS) in Beijing, China, utilizes a multi-bend achromat lattice to obtain an approximately 100 times emittance reduction compared with third-generation light sources. New technologies bring new challenges to operate the storage ring. In order to meet the beam commissioning requirements of HEPS, a new framework for the development of high-level applications (HLAs) has been created. The key part of the new framework is a dual-layer physical module to facilitate the seamless fusion of physical simulation models with the real machine, allowing for fast switching between different simulation models to accommodate the various simulation scenarios. As a framework designed for development of physical applications, all variables are based on physical quantities. This allows physicists to analytically assess measurement parameters and optimize machine parameters in a more intuitive manner. To enhance both extensibility and adaptability, a modular design strategy is utilized, partitioning the entire framework into discrete modules in alignment with the requirements of HLA development. This strategy not only facilitates the independent development of each module but also minimizes inter-module coupling, thereby simplifying the maintenance and expansion of the entire framework. To simplify the development complexity, the design of the new framework is implemented using Python and is called Python-based Accelerator Physics Application Set (Pyapas). Taking advantage of Python's flexibility and robust library support, we are able to develop and iterate quickly, while also allowing for seamless integration with other scientific computing applications. HLAs for both the HEPS linac and booster have been successfully developed. During the beam commissioning process at the linac, Pyapas's ease of use and reliability have significantly reduced the time required for the beam commissioning operators. As a development framework for HLA designed for the new-generation light sources, Pyapas has the versatility to be employed with HEPS, as well as with other comparable light sources, due to its adaptability.




high

VerSoX B07-B: a high-throughput XPS and ambient pressure NEXAFS beamline at Diamond Light Source

The beamline optics and endstations at branch B of the Versatile Soft X-ray (VerSoX) beamline B07 at Diamond Light Source are described. B07-B provides medium-flux X-rays in the range 45–2200 eV from a bending magnet source, giving access to local electronic structure for atoms of all elements from Li to Y. It has an endstation for high-throughput X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine-structure (NEXAFS) measurements under ultrahigh-vacuum (UHV) conditions. B07-B has a second endstation dedicated to NEXAFS at pressures from UHV to ambient pressure (1 atm). The combination of these endstations permits studies of a wide range of interfaces and materials. The beamline and endstation designs are discussed in detail, as well as their performance and the commissioning process.




high

High-pressure X-ray photon correlation spectroscopy at fourth-generation synchrotron sources

A new experimental setup combining X-ray photon correlation spectroscopy (XPCS) in the hard X-ray regime and a high-pressure sample environment has been developed to monitor the pressure dependence of the internal motion of complex systems down to the atomic scale in the multi-gigapascal range, from room temperature to 600 K. The high flux of coherent high-energy X-rays at fourth-generation synchrotron sources solves the problems caused by the absorption of diamond anvil cells used to generate high pressure, enabling the measurement of the intermediate scattering function over six orders of magnitude in time, from 10−3 s to 103 s. The constraints posed by the high-pressure generation such as the preservation of X-ray coherence, as well as the sample, pressure and temperature stability, are discussed, and the feasibility of high-pressure XPCS is demonstrated through results obtained on metallic glasses.




high

Scattered high-energy synchrotron radiation at the KARA visible-light diagnostic beamline

To characterize an electron beam, visible synchrotron light is often used and dedicated beamlines at synchrotron sources are becoming a more common feature as instruments and methods for the diagnostics are, along with the accelerators, further developed. At KARA (Karlsruhe Research Accelerator), such a beamline exists and is based on a typical infrared/visible-light configuration. From experience at such beamlines no significant radiation was expected (dose rates larger than 0.5 µSv h−1). This was found not to be the case and a higher dose was measured which fortunately could be shielded to an acceptable level with 0.3 mm of aluminium foil or 2.0 mm of Pyrex glass. The presence of this radiation led to further investigation by both experiment and calculation. A custom setup using a silicon drift detector for energy-dispersive spectroscopy (Ketek GmbH) and attenuation experiments showed the radiation to be predominantly copper K-shell fluorescence and is confirmed by calculation. The measurement of secondary radiation from scattering of synchrotron and other radiation, and its calculation, is important for radiation protection, and, although a lot of experience exists and methods for radiation protection are well established, changes in machine, beamlines and experiments mean a constant appraisal is needed.




high

Operando double-edge high-resolution X-ray absorption spectroscopy study of BiVO4 photoanodes

High energy resolution fluorescence detected X-ray absorption spectroscopy is a powerful method for probing the electronic structure of functional materials. The X-ray penetration depth and photon-in/photon-out nature of the method allow operando experiments to be performed, in particular in electrochemical cells. Here, operando high-resolution X-ray absorption measurements of a BiVO4 photoanode are reported, simultaneously probing the local electronic states of both cations. Small but significant variations of the spectral lineshapes induced by the applied potential were observed and an explanation in terms of the occupation of electronic states at or near the band edges is proposed.




high

A closer look at high-energy X-ray-induced bubble formation during soft tissue imaging

Improving the scalability of tissue imaging throughput with bright, coherent X-rays requires identifying and mitigating artifacts resulting from the interactions between X-rays and matter. At synchrotron sources, long-term imaging of soft tissues in solution can result in gas bubble formation or cavitation, which dramatically compromises image quality and integrity of the samples. By combining in-line phase-contrast imaging with gas chromatography in real time, we were able to track the onset and evolution of high-energy X-ray-induced gas bubbles in ethanol-embedded soft tissue samples for tens of minutes (two to three times the typical scan times). We demonstrate quantitatively that vacuum degassing of the sample during preparation can significantly delay bubble formation, offering up to a twofold improvement in dose tolerance, depending on the tissue type. However, once nucleated, bubble growth is faster in degassed than undegassed samples, indicating their distinct metastable states at bubble onset. Gas chromatography analysis shows increased solvent vaporization concurrent with bubble formation, yet the quantities of dissolved gasses remain unchanged. By coupling features extracted from the radiographs with computational analysis of bubble characteristics, we uncover dose-controlled kinetics and nucleation site-specific growth. These hallmark signatures provide quantitative constraints on the driving mechanisms of bubble formation and growth. Overall, the observations highlight bubble formation as a critical yet often overlooked hurdle in upscaling X-ray imaging for biological tissues and soft materials and we offer an empirical foundation for their understanding and imaging protocol optimization. More importantly, our approaches establish a top-down scheme to decipher the complex, multiscale radiation–matter interactions in these applications.




high

Laminography as a tool for imaging large-size samples with high resolution

Despite the increased brilliance of the new generation synchrotron sources, there is still a challenge with high-resolution scanning of very thick and absorbing samples, such as a whole mouse brain stained with heavy elements, and, extending further, brains of primates. Samples are typically cut into smaller parts, to ensure a sufficient X-ray transmission, and scanned separately. Compared with the standard tomography setup where the sample would be cut into many pillars, the laminographic geometry operates with slab-shaped sections significantly reducing the number of sample parts to be prepared, the cutting damage and data stitching problems. In this work, a laminography pipeline for imaging large samples (>1 cm) at micrometre resolution is presented. The implementation includes a low-cost instrument setup installed at the 2-BM micro-CT beamline of the Advanced Photon Source. Additionally, sample mounting, scanning techniques, data stitching procedures, a fast reconstruction algorithm with low computational complexity, and accelerated reconstruction on multi-GPU systems for processing large-scale datasets are presented. The applicability of the whole laminography pipeline was demonstrated by imaging four sequential slabs throughout an entire mouse brain sample stained with osmium, in total generating approximately 12 TB of raw data for reconstruction.




high

In situ XAFS–XRD study of the Zr–Y2O3 interaction at extra-high temperatures

The in situ measurement technique for a metal/metal-oxide mixture at extra-high temperature above 2000 K has been desired in the field of nuclear safety engineering. In the present study, we succeeded in simultaneous XAFS–XRD measurements of the Zr oxidation [Zr + O → Zr(O) + ZrO2] up to 1952 K and ZrO2–Y2O3 reaction from 1952 to 2519 K. The chemical shift during Zr oxidation was observed in the absorption spectra around the Zr K-edge, and the interatomic cation–cation and cation–oxygen distances obtained by the fitting analysis of EXAFS during the Y2O3–ZrO2 reaction are explained. Also, the temperature dependency of the anharmonic effect was investigated by comparing the fitted second- and third-order cumulants with the theoretical ones in which the Morse potential was applied as an interatomic potential, giving a good explanation about the local structure dynamics. Finally, the applicability of the developed system to investigation of nuclear fuel materials, such as UO2–Zr, is discussed.




high

High-throughput and high-resolution powder X-ray diffractometer consisting of six sets of 2D CdTe detectors with variable sample-to-detector distance and innovative automation system

The demand for powder X-ray diffraction analysis continues to increase in a variety of scientific fields, as the excellent beam quality of high-brightness synchrotron light sources enables the acquisition of high-quality measurement data with high intensity and angular resolution. Synchrotron powder diffraction has enabled the rapid measurement of many samples and various in situ/operando experiments in nonambient sample environments. To meet the demands for even higher throughput measurements using high-energy X-rays at SPring-8, a high-throughput and high-resolution powder diffraction system has been developed. This system is combined with six sets of two-dimensional (2D) CdTe detectors for high-energy X-rays, and various automation systems, including a system for automatic switching among large sample environmental equipment, have been developed in the third experimental hutch of the insertion device beamline BL13XU at SPring-8. In this diffractometer system, high-brilliance and high-energy X-rays ranging from 16 to 72 keV are available. The powder diffraction data measured under ambient and various nonambient conditions can be analysed using Rietveld refinement and the pair distribution function. Using the 2D CdTe detectors with variable sample-to-detector distance, three types of scan modes have been established: standard, single-step and high-resolution. A major feature is the ability to measure a whole powder pattern with millisecond resolution. Equally important, this system can measure powder diffraction data with high Q exceeding 30 Å−1 within several tens of seconds. This capability is expected to contribute significantly to new research avenues using machine learning and artificial intelligence by utilizing the large amount of data obtained from high-throughput measurements.




high

High-angular-sensitivity X-ray phase-contrast microtomography of soft tissue through a two-directional beam-tracking synchrotron set-up

Two-directional beam-tracking (2DBT) is a method for phase-contrast imaging and tomography that uses an intensity modulator to structure the X-ray beam into an array of independent circular beamlets that are resolved by a high-resolution detector. It features isotropic spatial resolution, provides two-dimensional phase sensitivity, and enables the three-dimensional reconstructions of the refractive index decrement, δ, and the attenuation coefficient, μ. In this work, the angular sensitivity and the spatial resolution of 2DBT images in a synchrotron-based implementation is reported. In its best configuration, angular sensitivities of ∼20 nrad and spatial resolution of at least 6.25 µm in phase-contrast images were obtained. Exemplar application to the three-dimensional imaging of soft tissue samples, including a mouse liver and a decellularized porcine dermis, is also demonstrated.




high

Development of a high-performance and cost-effective in-vacuum undulator

In-vacuum undulators (IVUs), which have become an essential tool in synchrotron radiation facilities, have two technical challenges toward further advancement: one is a strong attractive force between top and bottom magnetic arrays, and the other is a stringent requirement on magnetic materials to avoid demagnetization. The former imposes a complicated design on mechanical and vacuum structures, while the latter limits the possibility of using high-performance permanent magnets. To solve these issues, a number of technical developments have been made, such as force cancellation and modularization of magnetic arrays, and enhancement of resistance against demagnetization by means of a special magnetic circuit. The performance of a new IVU built upon these technologies has revealed their effectiveness for constructing high-performance IVUs in a cost-effective manner.




high

Indirect detector for ultra-high-speed X-ray micro-imaging with increased sensitivity to near-ultraviolet scintillator emission

Ultra-high-speed synchrotron-based hard X-ray (i.e. above 10 keV) imaging is gaining a growing interest in a number of scientific domains for tracking non-repeatable dynamic phenomena at spatio-temporal microscales. This work describes an optimized indirect X-ray imaging microscope designed to achieve high performance at micrometre pixel size and megahertz acquisition speed. The entire detector optical arrangement has an improved sensitivity within the near-ultraviolet (NUV) part of the emitted spectrum (i.e. 310–430 nm wavelength). When combined with a single-crystal fast-decay scintillator, such as LYSO:Ce (Lu2−xYxSiO5:Ce), it exploits the potential of the NUV light-emitting scintillators. The indirect arrangement of the detector makes it suitable for high-dose applications that require high-energy illumination. This allows for synchrotron single-bunch hard X-ray imaging to be performed with improved true spatial resolution, as herein exemplified through pulsed wire explosion and superheated near-nozzle gasoline injection experiments at a pixel size of 3.2 µm, acquisition rates up to 1.4 MHz and effective exposure time down to 60 ps.




high

Using synchrotron high-resolution powder X-ray diffraction for the structure determination of a new cocrystal formed by two active principle ingredients

The crystal structure of a new 1:1 cocrystal of carbamazepine and S-naproxen (C15H12N2O·C14H14O3) was solved from powder X-ray diffraction (PXRD). The PXRD pattern was measured at the high-resolution beamline CRISTAL at synchrotron SOLEIL (France). The structure was solved using Monte Carlo simulated annealing, then refined with Rietveld refinement. The positions of the H atoms were obtained from density functional theory (DFT) ground-state calculations. The symmetry is ortho­rhom­bic with the space group P212121 (No. 19) and the following lattice parameters: a = 33.5486 (9), b = 26.4223 (6), c = 5.3651 (10) Å and V = 4755.83 (19) Å3.




high

Borotropic shifting of the hydro­tris­[3-(2-furyl)pyrazol-1-yl]borate ligand in high-coordinate lan­tha­nide com­plexes

The coordination of hydro­tris­[3-(2-furyl)pyrazol-1-yl]borate (Tp2-Fu, C21H16BN6O3) to lan­tha­nide(III) ions is achieved for the first time with the com­plex [Ln(Tp2-Fu)2](BPh4)·xCH2Cl2 (1-Ln has Ln = Ce and x = 2; 1-Dy has Ln = Dy and x = 1). This was accom­plished via both hydrous (Ln = Ce) and anhydrous methods (Ln = Dy). When isolating the dysprosium analogue, the filtrate produced a second crop of crystals which were revealed to be the 1,2-borotropic-shifted product [Dy(κ4-Tp2-Fu)(κ5-Tp2-Fu*)](BPh4) (2) {Tp2-Fu* = hydro­bis­[3-(2-furyl)pyrazol-1-yl][5-(2-furyl)pyrazol-1-yl]borate}. We con­clude that the pres­ence of a strong Lewis acid and a sterically crowded coordination environment are contributing factors for the 1,2-borotropic shifting of scorpionate ligands in conjunction with the size of the conical angle with the scorpionate ligand.




high

TAAM refinement on high-resolution experimental and simulated 3D ED/MicroED data for organic mol­ecules

3D electron diffraction (3D ED), or microcrystal electron diffraction (MicroED), has become an alternative technique for determining the high-resolution crystal structures of compounds from sub-micron-sized crystals. Here, we considered l-alanine, α-glycine and urea, which are known to form good-quality crystals, and collected high-resolution 3D ED data on our in-house TEM instrument. In this study, we present a comparison of independent atom model (IAM) and transferable aspherical atom model (TAAM) kinematical refinement against experimental and simulated data. TAAM refinement on both experimental and simulated data clearly improves the model fitting statistics (R factors and residual electrostatic potential) compared to IAM refinement. This shows that TAAM better represents the experimental electrostatic potential of organic crystals than IAM. Furthermore, we compared the geometrical parameters and atomic displacement parameters (ADPs) resulting from the experimental refinements with the simulated refinements, with the periodic density functional theory (DFT) calculations and with published X-ray and neutron crystal structures. The TAAM refinements on the 3D ED data did not improve the accuracy of the bond lengths between the non-H atoms. The experimental 3D ED data provided more accurate H-atom positions than the IAM refinements on the X-ray diffraction data. The IAM refinements against 3D ED data had a tendency to lead to slightly longer X—H bond lengths than TAAM, but the difference was statistically insignificant. Atomic displacement parameters were too large by tens of percent for l-alanine and α-glycine. Most probably, other unmodelled effects were causing this behaviour, such as radiation damage or dynamical scattering.




high

Crystal clear: the impact of crystal structure in the development of high-performance organic semiconductors

 




high

The High-Pressure Freezing Laboratory for Macromolecular Crystallography (HPMX), an ancillary tool for the macromolecular crystallography beamlines at the ESRF

This article describes the High-Pressure Freezing Laboratory for Macromolecular Crystallography (HPMX) at the ESRF, and highlights new and complementary research opportunities that can be explored using this facility. The laboratory is dedicated to investigating interactions between macromolecules and gases in crystallo, and finds applications in many fields of research, including fundamental biology, biochemistry, and environmental and medical science. At present, the HPMX laboratory offers the use of different high-pressure cells adapted for helium, argon, krypton, xenon, nitrogen, oxygen, carbon dioxide and methane. Important scientific applications of high pressure to macromolecules at the HPMX include noble-gas derivatization of crystals to detect and map the internal architecture of proteins (pockets, tunnels and channels) that allows the storage and diffusion of ligands or substrates/products, the investigation of the catalytic mechanisms of gas-employing enzymes (using oxygen, carbon dioxide or methane as substrates) to possibly decipher intermediates, and studies of the conformational fluctuations or structure modifications that are necessary for proteins to function. Additionally, cryo-cooling protein crystals under high pressure (helium or argon at 2000 bar) enables the addition of cryo-protectant to be avoided and noble gases can be employed to produce derivatives for structure resolution. The high-pressure systems are designed to process crystals along a well defined pathway in the phase diagram (pressure–temperature) of the gas to cryo-cool the samples according to the three-step `soak-and-freeze method'. Firstly, crystals are soaked in a pressurized pure gas atmosphere (at 294 K) to introduce the gas and facilitate its inter­actions within the macromolecules. Samples are then flash-cooled (at 100 K) while still under pressure to cryo-trap macromolecule–gas complexation states or pressure-induced protein modifications. Finally, the samples are recovered after depressurization at cryo-temperatures. The final section of this publication presents a selection of different typical high-pressure experiments carried out at the HPMX, showing that this technique has already answered a wide range of scientific questions. It is shown that the use of different gases and pressure conditions can be used to probe various effects, such as mapping the functional internal architectures of enzymes (tunnels in the haloalkane dehalogenase DhaA) and allosteric sites on membrane-protein surfaces, the interaction of non-inert gases with proteins (oxygen in the hydrogenase ReMBH) and pressure-induced structural changes of proteins (tetramer dissociation in urate oxidase). The technique is versatile and the provision of pressure cells and their application at the HPMX is gradually being extended to address new scientific questions.




high

HEIDI: an experiment-management platform enabling high-throughput fragment and compound screening

The Swiss Light Source facilitates fragment-based drug-discovery campaigns for academic and industrial users through the Fast Fragment and Compound Screening (FFCS) software suite. This framework is further enriched by the option to utilize the Smart Digital User (SDU) software for automated data collection across the PXI, PXII and PXIII beamlines. In this work, the newly developed HEIDI webpage (https://heidi.psi.ch) is introduced: a platform crafted using state-of-the-art software architecture and web technologies for sample management of rotational data experiments. The HEIDI webpage features a data-review tab for enhanced result visualization and provides programmatic access through a representational state transfer application programming interface (REST API). The migration of the local FFCS MongoDB instance to the cloud is highlighted and detailed. This transition ensures secure, encrypted and consistently accessible data through a robust and reliable REST API tailored for the FFCS software suite. Collectively, these advancements not only significantly elevate the user experience, but also pave the way for future expansions and improvements in the capabilities of the system.




high

High-confidence placement of low-occupancy fragments into electron density using the anomalous signal of sulfur and halogen atoms

Fragment-based drug design using X-ray crystallography is a powerful technique to enable the development of new lead compounds, or probe molecules, against biological targets. This study addresses the need to determine fragment binding orientations for low-occupancy fragments with incomplete electron density, an essential step before further development of the molecule. Halogen atoms play multiple roles in drug discovery due to their unique combination of electronegativity, steric effects and hydrophobic properties. Fragments incorporating halogen atoms serve as promising starting points in hit-to-lead development as they often establish halogen bonds with target proteins, potentially enhancing binding affinity and selectivity, as well as counteracting drug resistance. Here, the aim was to unambiguously identify the binding orientations of fragment hits for SARS-CoV-2 nonstructural protein 1 (nsp1) which contain a combination of sulfur and/or chlorine, bromine and iodine substituents. The binding orientations of carefully selected nsp1 analogue hits were focused on by employing their anomalous scattering combined with Pan-Dataset Density Analysis (PanDDA). Anomalous difference Fourier maps derived from the diffraction data collected at both standard and long-wavelength X-rays were compared. The discrepancies observed in the maps of iodine-containing fragments collected at different energies were attributed to site-specific radiation-damage stemming from the strong X-ray absorption of I atoms, which is likely to cause cleavage of the C—I bond. A reliable and effective data-collection strategy to unambiguously determine the binding orientations of low-occupancy fragments containing sulfur and/or halogen atoms while mitigating radiation damage is presented.




high

Cryo2RT: a high-throughput method for room-temperature macromolecular crystallography from cryo-cooled crystals

Advances in structural biology have relied heavily on synchrotron cryo-crystallography and cryogenic electron microscopy to elucidate biological processes and for drug discovery. However, disparities between cryogenic and room-temperature (RT) crystal structures pose challenges. Here, Cryo2RT, a high-throughput RT data-collection method from cryo-cooled crystals that leverages the cryo-crystallography workflow, is introduced. Tested on endothiapepsin crystals with four soaked fragments, thaumatin and SARS-CoV-2 3CLpro, Cryo2RT reveals unique ligand-binding poses, offers a comparable throughput to cryo-crystallography and eases the exploration of structural dynamics at various temperatures.




high

Microcrystal electron diffraction structure of Toll-like receptor 2 TIR-domain-nucleated MyD88 TIR-domain higher-order assembly

Eukaryotic TIR (Toll/interleukin-1 receptor protein) domains signal via TIR–TIR interactions, either by self-association or by interaction with other TIR domains. In mammals, TIR domains are found in Toll-like receptors (TLRs) and cytoplasmic adaptor proteins involved in pro-inflammatory signaling. Previous work revealed that the MAL TIR domain (MALTIR) nucleates the assembly of MyD88TIR into crystalline arrays in vitro. A microcrystal electron diffraction (MicroED) structure of the MyD88TIR assembly has previously been solved, revealing a two-stranded higher-order assembly of TIR domains. In this work, it is demonstrated that the TIR domain of TLR2, which is reported to signal as a heterodimer with either TLR1 or TLR6, induces the formation of crystalline higher-order assemblies of MyD88TIR in vitro, whereas TLR1TIR and TLR6TIR do not. Using an improved data-collection protocol, the MicroED structure of TLR2TIR-induced MyD88TIR microcrystals was determined at a higher resolution (2.85 Å) and with higher completeness (89%) compared with the previous structure of the MALTIR-induced MyD88TIR assembly. Both assemblies exhibit conformational differences in several areas that are important for signaling (for example the BB loop and CD loop) compared with their monomeric structures. These data suggest that TLR2TIR and MALTIR interact with MyD88 in an analogous manner during signaling, nucleating MyD88TIR assemblies uni­directionally.