meth

Something for everyone

In the 1980s, OM organised large summer campaigns with the huge task of covering every town and village in France with Christian literature.




meth

Rohit Asks BCCI, CA To "Manage Something" For India-Australia Test Series

Rohit Sharma is hoping that the BCCI and Cricket Australia will find a solution for the four-match Test series to get underway whenever sports return after the coronavirus pandemic.




meth

Case Study: How to adapt multiple input methods on Intel based hybrid devices

  Trine* 2 from Frozenbyte, Inc. struggled with optimal playability on Intel® processor-based touchscreens and 2 in 1s running Windows* 8. Supporting varied play styles and local multiplayer require...




meth

NASA astronaut Sunita Williams to Indian students stuck in US: Stay home, reflect and be part of something bigger

During a virtual interaction, she compared the Indian students' experience to her being in space in a spacecraft “where you don't get to go, see your family and friends and give them a real hug.”




meth

Free LCI Webinar on 'High Conflict Mediation feat. Scientific Methods!'

Pascal Comvalius is going to discuss with the participants on how to deal with hostile parties on a negotiation table. How to mould the brick into a shape that you are comfortable in! 

  • Date & Timing: 28th April, 2020 @4.30 PM
  • Meeting Link: Click Here




meth

Crystal Meth Worth Almost R4 Million Seized En Route to Cape Town

[News24Wire] Police confiscated drugs worth close to R4 million as they were allegedly being smuggled into Cape Town.




meth

[Women's Basketball] Women's Basketball Falls to Central Methodist University




meth

Verifying Power Intent in Analog and Mixed-Signal Designs Using Formal Methods

Analog and Mixed-signal (AMS) designs are increasingly using active power management to minimize power consumption. Typical mixed-signal design uses several power domains and operate in a dozen or more power modes including multiple functional, standby and test modes. To save power, parts of design not active in a mode are shut down or may operate at reduced supply voltage when high performance is not required. These and other low power techniques are applied on both analog and digital parts of the design. Digital designers capture power intent in standard formats like Common Power Format (CPF), IEEE1801 (aka Unified Power Format or UPF) or Liberty and apply it top-down throughout design, verification and implementation flows. Analog parts are often designed bottom-up in schematic without upfront defined power intent. Verifying that low power intent is implemented correctly in mixed-signal design is very challenging. If not discovered early, errors like wrongly connected power nets, missing level shifters or isolations cells can cause costly rework or even silicon re-spin. 

Mixed-signal designers rely on simulation for functional verification. Although still necessary for electrical and performance verification, running simulation on so many power modes is not an effective verification method to discover low power errors. It would be nice to augment simulation with formal low power verification but a specification of power intent for analog/mixed-signal blocs is missing. So how do we obtain it? Can we “extract” it from already built analog circuit? Fortunately, yes we can, and we will describe an automated way to do so!

Virtuoso Power Manager is new tool released in the Virtuoso IC6.1.8 platform which is capable of managing power intent in an Analog/MS design which is captured in Virtuoso Schematic Editor. In setup phase, the user identifies power and ground nets and registers special devices like level shifters and isolation cells. The user has the option to import power intent into IEEE1801 format, applicable for top level or any of the blocks in design. Virtuoso Power Manager uses this information to traverse the schematic and extract complete power intent for the entire design. In the final stage, Virtuoso Power Manager exports the power intent in IEEE1801 format as an input to the formal verification tool (Cadence Conformal-LP) for static verification of power intent.

Cadence and Infineon have been collaborating on the requirements and validation of the Virtuoso Power Manager tool and Low Power verification solution on real designs. A summary of collaboration results were presented at the DVCon conference in Munich, in October of 2018.  Please look for the paper in the conference proceedings for more details. Alternately, can view our Cadence webinar on Verifying Low-Power Intent in Mixed-Signal Design Using Formal Method for more information.





meth

Dynamic MessageBoxA||W PEB And Import Table Method Shellcode

232 bytes small Dynamic MessageBoxA||W PEB and Import Table Method shellcode.





meth

NTR ActiveX Control Check() Method Buffer Overflow

This Metasploit module exploits a vulnerability found in NTR ActiveX 1.1.8. The vulnerability exists in the Check() method, due to the insecure usage of strcat to build a URL using the bstrParams parameter contents, which leads to code execution under the context of the user visiting a malicious web page. In order to bypass DEP and ASLR on Windows Vista and Windows 7 JRE 6 is needed.




meth

Meterpreter Swaparoo Windows Backdoor Method

Swaparoo - Windows backdoor method for Windows Vista/7/8. This code sneaks a backdoor command shell in place of Sticky Keys prompt or Utilman assistant at login screen.




meth

Back to Black – but not quite yet: Revised methodology agreed but no new EU blacklist before 2020

As the European Council met today to discuss a revised methodology to be used in the creation of a new EU blacklist of ‘high-risk third countries’ with strategic AML and CTF deficiencies, Zia Ullah and Ruth Paley of Eversheds Sutherland ...




meth

Man involved in Hawke's Bay $2.5 million meth bust gets prison sentence dropped

A man involved in a $2.5 million meth bust in Hawke's Bay has had his three and a half year prison sentence dropped to 12 months of home detention.Uriah Whetu Monty Wirihana received a prison sentence of three years and seven months...




meth

Amendments to food labelling regulations: More information requirements for labels and new methods of presentation

Starting 13 December 2014, businesses will be required to comply with the great majority of the rules set forth in the EU’s Food Information Regulation (1169/2011). The Regulation went into force on 12 December 2011 but provided for a long, 3-...




meth

Competition Tribunal adopts “structured methodological approach” to penalties

Introducing Hong Kong’s four-step fining framework… On 29 April 2020, Justice Godfrey Lam, President of the Competition Tribunal, handed down judgment in relation to the fines to be imposed on the parties in the W. Hing and Others case....




meth

If Scripture Is Sufficient, Why Are So Many Professing Believers Looking for Something More?

Today the shelves of Christian bookstores sag under the weight of devotionals, guidebooks, and manuals purporting to help you hear and understand what God has to say to you personally. Wildly popular books like Experiencing God and Jesus Calling encourage believers to look beyond the confines of Scripture for fresh words from God.

READ MORE




meth

Two Hong Kong police officers arrested for possessing HK$12 million in drugs, which the force believes were stolen from record crystal meth haul a week earlier

Two police officers have been arrested for possessing more than HK$12 million (US$1.9 million) worth of drugs, which the force believes were stolen from the record haul of crystal meth seized last week.One of the two policemen detained, a 41-year-old station sergeant, who is attached to the Kowloon West anti-triad squad, was caught with 2kg of Ice in the Royal Garden Hotel in Tsim Sha Tsui East on Thursday, police said, just days after being part of a team that seized 296kg of the drug in a…




meth

Hong Kong police sergeant may have stolen 25kg in crystal meth from scene of record-breaking bust he supervised, sources say

A Hong Kong police officer arrested in connection with the seizure of 25kg of drugs worth HK$12 million is believed to have orchestrated its theft from the scene of a bust he was personally in charge of last week, according to police sources.If true, it would mean the announced record seizure of 296kg of Ice, a form of methamphetamine, actually involved 321kg.Sources said the station sergeant, who was arrested along with a constable in connection with the missing drugs, was in charge of the…




meth

Anand Gandhi wishes he 'had created something with' Irrfan Khan before his passing

Anand Gandhi revealed that before Irrfan Khan’s demise, he had been discussing a possible collaboration




meth

100kg crystal meth worth around Rs3 billion seized

The Pakistan Navy in a joint raid with the Anti-Narcotics Force seized 100 kilogrammes of crystal meth worth around Rs3 billion.A Navy spokesman said that in an intelligence-based joint operation with the ANF, they seized 100 kilogrammes of crystal myth off Pasni, Balochistan. The drug was valued...




meth

Scientists chasing waterfalls discovered something they aren't used to

We often think waterfalls indicate ancient tectonic or glacial activity – but it turns out they can form all by themselves without these external influences




meth

Fracking wells in the US are leaking loads of planet-warming methane

Satellites have revealed the fracking heartland of the US is leaking methane, a powerful greenhouse gas, at a record-breaking rate.




meth

methimazole, Tapazole

Title: methimazole, Tapazole
Category: Medications
Created: 2/24/2001 12:00:00 AM
Last Editorial Review: 10/15/2019 12:00:00 AM




meth

Not Just Opioids: Deaths Tied to Cocaine, Meth Are Soaring, Too

Title: Not Just Opioids: Deaths Tied to Cocaine, Meth Are Soaring, Too
Category: Health News
Created: 5/2/2019 12:00:00 AM
Last Editorial Review: 5/3/2019 12:00:00 AM




meth

Residents Perspectives on and Application of Dental Public Health Competencies Using Case-Based Methods

The aims of this study were to qualitatively assess dental public health (DPH) residents’ perspectives on teaching methods for DPH competencies and to develop and implement a case-based simulation to address those competencies, constructed on the basis of the qualitative assessment. Focus group discussions were conducted with 18 DPH residents enrolled in two university-based DPH programs. Topic areas discussed in the two focus groups were perceived value of DPH competencies, ways to acquire new DPH skills/abilities, and additional skills/abilities needed by DPH residents. The focus groups’ responses showed that the residents felt competent in the analytical thinking competencies such as research methodology and critiquing literature. They emphasized the importance of learning leadership skills and reported feeling somewhat uncertain about their mastery of the policy and advocacy and system evaluation competencies. Of the two distinct categories of DPH skills and competencies— analytical/critical thinking and practical competencies—these residents reported that a greater proportion of time needed to be devoted to integrating the practical competencies into their education. Based on the residents’ feedback, the authors developed a structured seminar series taking a case-based approach to simulate real-world DPH problems, using real and semi-hypothetical planning projects to meet the residents’ perceived needs and covering gaps between didactic learning and practice.




meth

Tracking a Global Threat: a New Genotyping Method for Candida auris

ABSTRACT

Over the past decade, Candida auris has emerged as an urgent threat to public health. Initially reported from cases of ear infections in Japan and Korea, C. auris has since been detected around the world. While whole-genome sequencing has been extensively used to trace the genetic relationships of the global emergence and local outbreaks, a recent report in mBio describes a targeted genotyping method as a rapid and inexpensive method for classifying C. auris isolates (T. de Groot, Y. Puts, I. Berrio, A. Chowdhary, and J. F. Meis, mBio 11:e02971-19, https://doi.org/10.1128/mBio.02971-19, 2020).




meth

A Solution to Antifolate Resistance in Group B Streptococcus: Untargeted Metabolomics Identifies Human Milk Oligosaccharide-Induced Perturbations That Result in Potentiation of Trimethoprim

ABSTRACT

Adjuvants can be used to potentiate the function of antibiotics whose efficacy has been reduced by acquired or intrinsic resistance. In the present study, we discovered that human milk oligosaccharides (HMOs) sensitize strains of group B Streptococcus (GBS) to trimethoprim (TMP), an antibiotic to which GBS is intrinsically resistant. Reductions in the MIC of TMP reached as high as 512-fold across a diverse panel of isolates. To better understand HMOs’ mechanism of action, we characterized the metabolic response of GBS to HMO treatment using ultrahigh-performance liquid chromatography–high-resolution tandem mass spectrometry (UPLC-HRMS/MS) analysis. These data showed that when challenged by HMOs, GBS undergoes significant perturbations in metabolic pathways related to the biosynthesis and incorporation of macromolecules involved in membrane construction. This study represents reports the metabolic characterization of a cell that is perturbed by HMOs.

IMPORTANCE Group B Streptococcus is an important human pathogen that causes serious infections during pregnancy which can lead to chorioamnionitis, funisitis, premature rupture of gestational membranes, preterm birth, neonatal sepsis, and death. GBS is evolving antimicrobial resistance mechanisms, and the work presented in this paper provides evidence that prebiotics such as human milk oligosaccharides can act as adjuvants to restore the utility of antibiotics.




meth

Dimethylsulfoniopropionate Sulfur and Methyl Carbon Assimilation in Ruegeria Species

ABSTRACT

Dimethylsulfoniopropionate (DMSP) is abundant in marine environments and an important source of reduced carbon and sulfur for marine bacteria. While both Ruegeria pomeroyi and Ruegeria lacuscaerulensis possessed genes encoding the DMSP demethylation and cleavage pathways, their responses to DMSP differed. A glucose-fed, chemostat culture of R. pomeroyi consumed 99% of the DMSP even when fed a high concentration of 5 mM. At the same time, cultures released 19% and 7.1% of the DMSP as dimethylsulfide (DMS) and methanethiol, respectively. Under the same conditions, R. lacuscaerulensis consumed only 28% of the DMSP and formed one-third of the amount of gases. To examine the pathways of sulfur and methyl C assimilation, glucose-fed chemostats of both species were fed 100 μM mixtures of unlabeled and doubly labeled [dimethyl-13C, 34S]DMSP. Both species derived nearly all of their sulfur from DMSP despite high sulfate availability. In addition, only 33% and 50% of the methionine was biosynthesized from the direct capture of methanethiol in R. pomeroyi and R. lacuscaerulensis, respectively. The remaining methionine was biosynthesized by the random assembly of free sulfide and methyl-tetrahydrofolate derived from DMSP. Thus, although the two species possessed similar genes encoding DMSP metabolism, their growth responses were very different.

IMPORTANCE Dimethylsulfoniopropionate (DMSP) is abundant in marine environments and an important source of reduced carbon and sulfur for marine bacteria. DMSP is the precursor for the majority of atmospheric dimethylsulfide (DMS), a climatically active gas that connects the marine and terrestrial sulfur cycles. Although research into the assimilation of DMSP has been conducted for over 20 years, the fate of DMSP in microbial biomass is not well understood. In particular, the biosynthesis of methionine from DMSP has been a focal point, and it has been widely believed that most methionine was synthesized via the direct capture of methanethiol. Using an isotopic labeling strategy, we have demonstrated that the direct capture of methanethiol is not the primary pathway used for methionine biosynthesis in two Ruegeria species, a genus comprised primarily of globally abundant marine bacteria. Furthermore, although the catabolism of DMSP by these species varied greatly, the anabolic pathways were highly conserved.




meth

X-Linked RNA-Binding Motif Protein Modulates HIV-1 Infection of CD4+ T Cells by Maintaining the Trimethylation of Histone H3 Lysine 9 at the Downstream Region of the 5' Long Terminal Repeat of HIV Proviral DNA

ABSTRACT

Reversible repression of HIV-1 5' long terminal repeat (5'-LTR)-mediated transcription represents the main mechanism for HIV-1 to maintain latency. Identification of host factors that modulate LTR activity and viral latency may help develop new antiretroviral therapies. The heterogeneous nuclear ribonucleoproteins (hnRNPs) are known to regulate gene expression and possess multiple physiological functions. hnRNP family members have recently been identified as the sensors for viral nucleic acids to induce antiviral responses, highlighting the crucial roles of hnRNPs in regulating viral infection. A member of the hnRNP family, X-linked RNA-binding motif protein (RBMX), has been identified in this study as a novel HIV-1 restriction factor that modulates HIV-1 5'-LTR-driven transcription of viral genome in CD4+ T cells. Mechanistically, RBMX binds to HIV-1 proviral DNA at the LTR downstream region and maintains the repressive trimethylation of histone H3 lysine 9 (H3K9me3), leading to a blockage of the recruitment of the positive transcription factor phosphorylated RNA polymerase II (RNA pol II) and consequential impediment of transcription elongation. This RBMX-mediated modulation of HIV-1 transcription maintains viral latency by inhibiting viral reactivation from an integrated proviral DNA. Our findings provide a new understanding of how host factors modulate HIV-1 infection and latency and suggest a potential new target for the development of HIV-1 therapies.

IMPORTANCE HIV-1 latency featuring silence of transcription from HIV-1 proviral DNA represents a major obstacle for HIV-1 eradication. Reversible repression of HIV-1 5'-LTR-mediated transcription represents the main mechanism for HIV-1 to maintain latency. The 5'-LTR-driven HIV gene transcription can be modulated by multiple host factors and mechanisms. The hnRNPs are known to regulate gene expression. A member of the hnRNP family, RBMX, has been identified in this study as a novel HIV-1 restriction factor that modulates HIV-1 5'-LTR-driven transcription of viral genome in CD4+ T cells and maintains viral latency. These findings provide a new understanding of how host factors modulate HIV-1 infection and latency and suggest a potential new target for the development of HIV-1 therapies.




meth

A Simple, Cost-Effective, and Robust Method for rRNA Depletion in RNA-Sequencing Studies

ABSTRACT

The profiling of gene expression by RNA sequencing (RNA-seq) has enabled powerful studies of global transcriptional patterns in all organisms, including bacteria. Because the vast majority of RNA in bacteria is rRNA, it is standard practice to deplete the rRNA from a total RNA sample such that the reads in an RNA-seq experiment derive predominantly from mRNA. One of the most commonly used commercial kits for rRNA depletion, the Ribo-Zero kit from Illumina, was recently discontinued abruptly and for an extended period of time. Here, we report the development of a simple, cost-effective, and robust method for depleting rRNA that can be easily implemented by any lab or facility. We first developed an algorithm for designing biotinylated oligonucleotides that will hybridize tightly and specifically to the 23S, 16S, and 5S rRNAs from any species of interest. Precipitation of these oligonucleotides bound to rRNA by magnetic streptavidin-coated beads then depletes rRNA from a complex, total RNA sample such that ~75 to 80% of reads in a typical RNA-seq experiment derive from mRNA. Importantly, we demonstrate a high correlation of RNA abundance or fold change measurements in RNA-seq experiments between our method and the Ribo-Zero kit. Complete details on the methodology are provided, including open-source software for designing oligonucleotides optimized for any bacterial species or community of interest.

IMPORTANCE The ability to examine global patterns of gene expression in microbes through RNA sequencing has fundamentally transformed microbiology. However, RNA-seq depends critically on the removal of rRNA from total RNA samples. Otherwise, rRNA would comprise upward of 90% of the reads in a typical RNA-seq experiment, limiting the reads coming from mRNA or requiring high total read depth. A commonly used kit for rRNA subtraction from Illumina was recently unavailable for an extended period of time, disrupting routine rRNA depletion. Here, we report the development of a "do-it-yourself" kit for rapid, cost-effective, and robust depletion of rRNA from total RNA. We present an algorithm for designing biotinylated oligonucleotides that will hybridize to the rRNAs from a target set of species. We then demonstrate that the designed oligonucleotides enable sufficient rRNA depletion to produce RNA-seq data with 75 to 80% of reads coming from mRNA. The methodology presented should enable RNA-seq studies on any species or metagenomic sample of interest.




meth

Transcription Factors BLH2 and BLH4 Regulate Demethylesterification of Homogalacturonan in Seed Mucilage

The polysaccharide pectin is a major component of the plant cell wall. The pectic glycan homogalacturonan (HG) is a proportionally small but important component of a specialized seed cell wall called mucilage. HG is synthesized in a highly methylesterified form, and, following secretion, is de-methylesterified by pectin methylesterases (PMEs). The degree of methylesterification of HG determines the structural and functional properties of pectin, but how methylesterification is regulated remains largely unknown. Here, we identified two BEL1-Like homeodomain (BLH) transcription factors, BLH2 and BLH4, as positive regulators of HG de-methylesterification in Arabidopsis (Arabidopsis thaliana) seed coat mucilage. BLH2 and BLH4 were significantly expressed in mucilage secretory cells during seed mucilage production. BLH2 and BLH4 single mutants exhibited no obvious mucilage phenotype, but the blh2 blh4 double mutant displayed significantly reduced mucilage adherence to the seed. Reduced mucilage adherence in blh2 blh4 was caused by decreased PME activity in the seed coat, which increased the degree of methylesterification of HG in mucilage. The expression of several PME metabolism-related genes, including PME58, PECTIN METHYLESTERASE INHIBITOR6, SEEDSTICK, and MYB52 was significantly altered in blh2 blh4 seeds. BLH2 and BLH4 directly activated PME58 expression by binding to its TGACAGGT cis-element. Moreover, pme58 mutants exhibited reduced mucilage adherence similar to that of blh2 blh4, and the blh2 blh4 pme58 triple mutant exhibited no additional mucilage adherence defects. Furthermore, overexpression of PME58 in blh2 blh4 rescued the mucilage adherence defect. Together, these results demonstrate that BLH2 and BLH4 redundantly regulate de-methylesterification of HG in seed mucilage by directly activating PME58.




meth

Machine Learning Techniques for Classifying the Mutagenic Origins of Point Mutations [Methods, Technology, [amp ] Resources]

There is increasing interest in developing diagnostics that discriminate individual mutagenic mechanisms in a range of applications that include identifying population-specific mutagenesis and resolving distinct mutation signatures in cancer samples. Analyses for these applications assume that mutagenic mechanisms have a distinct relationship with neighboring bases that allows them to be distinguished. Direct support for this assumption is limited to a small number of simple cases, e.g., CpG hypermutability. We have evaluated whether the mechanistic origin of a point mutation can be resolved using only sequence context for a more complicated case. We contrasted single nucleotide variants originating from the multitude of mutagenic processes that normally operate in the mouse germline with those induced by the potent mutagen N-ethyl-N-nitrosourea (ENU). The considerable overlap in the mutation spectra of these two samples make this a challenging problem. Employing a new, robust log-linear modeling method, we demonstrate that neighboring bases contain information regarding point mutation direction that differs between the ENU-induced and spontaneous mutation variant classes. A logistic regression classifier exhibited strong performance at discriminating between the different mutation classes. Concordance between the feature set of the best classifier and information content analyses suggest our results can be generalized to other mutation classification problems. We conclude that machine learning can be used to build a practical classification tool to identify the mutation mechanism for individual genetic variants. Software implementing our approach is freely available under an open-source license.




meth

Phosphoflow Protocol for Signaling Studies in Human and Murine B Cell Subpopulations [NOVEL IMMUNOLOGICAL METHODS]

Key Points

  • Method for highly sensitive detection of phosphorylation in B cell subpopulations.

  • B cell subpopulations show different phosphorylation levels upon BCR stimulation.




    meth

    In vitro-virtual-reality: an anatomically explicit musculoskeletal simulation powered by in vitro muscle using closed loop tissue-software interaction [METHODS [amp ] TECHNIQUES]

    Christopher T. Richards and Enrico A. Eberhard

    Muscle force-length dynamics are governed by intrinsic contractile properties, motor stimulation and mechanical load. Although intrinsic properties are well-characterised, physiologists lack in vitro instrumentation accounting for combined effects of limb inertia, musculoskeletal architecture and contractile dynamics. We introduce in vitro virtual-reality (in vitro-VR) which enables in vitro muscle tissue to drive a musculoskeletal jumping simulation. In hardware, muscle force from a frog plantaris was transmitted to a software model where joint torques, inertia and ground reaction forces were computed to advance the simulation at 1 kHz. To close the loop, simulated muscle strain was returned to update in vitro length. We manipulated 1) stimulation timing and, 2) the virtual muscle's anatomical origin. This influenced interactions among muscular, inertial, gravitational and contact forces dictating limb kinematics and jump performance. We propose that in vitro-VR can be used to illustrate how neuromuscular control and musculoskeletal anatomy influence muscle dynamics and biomechanical performance.




    meth

    A fast and effective method for dissecting parasitic spores: myxozoans as an example [METHODS [amp ] TECHNIQUES]

    Qingxiang Guo, Yang Liu, Yanhua Zhai, and Zemao Gu

    Disassembling the parasitic spores and acquiring the main subunits is a prerequisite for deep understanding of the basic biology of parasites. Herein we present a fast and efficient method to dissect the myxospores in a few steps, which mainly involved sonication, sucrose density gradient and Percoll density gradient. We tested our method on three myxozoans species and demonstrated this method allows the dismembering of myxospores, isolation of intact and clean nematocysts and shell valves within 2h by low-cost. This new tool will facilitate subsequent analyses and enable a better understanding of the ecological and evolutionary significance of parasitic spores.




    meth

    The aerodynamic force platform as an ergometer [METHODS [amp ] TECHNIQUES]

    Marc E. Deetjen, Diana D. Chin, and David Lentink

    Animal flight requires aerodynamic power, which is challenging to determine accurately in vivo. Existing methods rely on approximate calculations based on wake flow field measurements, inverse dynamics approaches, or invasive muscle physiological recordings. In contrast, the external mechanical work required for terrestrial locomotion can be determined more directly by using a force platform as an ergometer. Based on an extension of the recent invention of the aerodynamic force platform, we now present a more direct method to determine the in vivo aerodynamic power by taking the dot product of the aerodynamic force vector on the wing with the representative wing velocity vector based on kinematics and morphology. We demonstrate this new method by studying a slowly flying dove, but it can be applied more generally across flying and swimming animals as well as animals that locomote over water surfaces. Finally, our mathematical framework also works for power analyses based on flow field measurements.




    meth

    Correction: Histone demethylase KDM6B promotes epithelial-mesenchymal transition. [Additions and Corrections]

    VOLUME 287 (2012) PAGES 44508–44517In Fig. 1A, the wrong image for the control group was presented. The authors inadvertently cropped the control images in Fig. 1, A and E, from the same raw image. Fig. 1A has now been corrected and does not affect the results or conclusions of the work. The authors sincerely apologize for their mistake during figure preparation and for any inconvenience this may have caused readers.jbc;295/19/6781/F1F1F1Figure 1A.




    meth

    Tracking isotopically labeled oxidants using boronate-based redox probes [Methods and Resources]

    Reactive oxygen and nitrogen species have been implicated in many biological processes and diseases, including immune responses, cardiovascular dysfunction, neurodegeneration, and cancer. These chemical species are short-lived in biological settings, and detecting them in these conditions and diseases requires the use of molecular probes that form stable, easily detectable, products. The chemical mechanisms and limitations of many of the currently used probes are not well-understood, hampering their effective applications. Boronates have emerged as a class of probes for the detection of nucleophilic two-electron oxidants. Here, we report the results of an oxygen-18–labeling MS study to identify the origin of oxygen atoms in the oxidation products of phenylboronate targeted to mitochondria. We demonstrate that boronate oxidation by hydrogen peroxide, peroxymonocarbonate, hypochlorite, or peroxynitrite involves the incorporation of oxygen atoms from these oxidants. We therefore conclude that boronates can be used as probes to track isotopically labeled oxidants. This suggests that the detection of specific products formed from these redox probes could enable precise identification of oxidants formed in biological systems. We discuss the implications of these results for understanding the mechanism of conversion of the boronate-based redox probes to oxidant-specific products.




    meth

    Genetic lineage tracing with multiple DNA recombinases: A user's guide for conducting more precise cell fate mapping studies [Methods and Resources]

    Site-specific recombinases, such as Cre, are a widely used tool for genetic lineage tracing in the fields of developmental biology, neural science, stem cell biology, and regenerative medicine. However, nonspecific cell labeling by some genetic Cre tools remains a technical limitation of this recombination system, which has resulted in data misinterpretation and led to many controversies in the scientific community. In the past decade, to enhance the specificity and precision of genetic targeting, researchers have used two or more orthogonal recombinases simultaneously for labeling cell lineages. Here, we review the history of cell-tracing strategies and then elaborate on the working principle and application of a recently developed dual genetic lineage-tracing approach for cell fate studies. We place an emphasis on discussing the technical strengths and caveats of different methods, with the goal to develop more specific and efficient tracing technologies for cell fate mapping. Our review also provides several examples for how to use different types of DNA recombinase–mediated lineage-tracing strategies to improve the resolution of the cell fate mapping in order to probe and explore cell fate–related biological phenomena in the life sciences.




    meth

    Dimethyl fumarate suppresses granulocyte macrophage colony-stimulating factor-producing Th1 cells in CNS neuroinflammation

    Objective

    To study the immunomodulatory effect of dimethyl fumarate (DF) on granulocyte macrophage colony-stimulating factor (GM-CSF) production in CD4+ T cells in experimental autoimmune encephalomyelitis (EAE) and human peripheral blood mononuclear cells (PBMCs).

    Methods

    We collected splenocytes and CD4+ T cells from C57BL/6 wild-type and interferon (IFN)-–deficient mice. For human PBMCs, venous blood was collected from healthy donors, and PBMCs were collected using the Percoll gradient method. Cells were cultured with anti-CD3/28 in the presence/absence of DF for 3 to 5 days. Cells were stained and analyzed by flow cytometry. Cytokines were measured by ELISA in cell supernatants. For in vivo experiments, EAE was induced by myelin oligodendrocyte glycoprotein35–55 and mice were treated with oral DF or vehicle daily.

    Results

    DF acts directly on CD4+ T cells and suppresses GM-CSF–producing Th1 not Th17 or single GM-CSF+ T cells in EAE. In addition, GM-CSF suppression depends on the IFN- pathway. We also show that DF specifically suppresses Th1 and GM-CSF–producing Th1 cells in PBMCs from healthy donors.

    Conclusions

    We suggest that DF exclusively suppresses GM-CSF–producing Th1 cells in both animal and human CD4+ T cells through an IFN-–dependent pathway. These findings indicate that DF has a better therapeutic effect on patients with Th1-dominant immunophenotype. However, future longitudinal study to validate this finding in MS is needed.




    meth

    Geospatial assessment methods for geotechnical asset management of legacy railway embankments

    Most British railway embankments were constructed between 120 and 180 years ago without the benefit of modern design and construction methods. This can result in undesirable load-deformation characteristics and consequent disruption to present-day railway operations, for which there is unprecedented demand. Annual rail passenger kilometres have approximately doubled in the last 20 years and freight has increased by 60% over the same period. Whereas elements such as rails or bridges can be refurbished or replaced to meet increasing demand, the same is not usually feasible for embankments. Development of techniques to assess embankment performance risks posed by operational capacity enhancements is therefore of increasing significance to railway geotechnical asset management. The two case studies presented in this paper demonstrate how geospatial analysis and data management techniques may be applied to this challenge at both strategic (regional or national) and tactical (site-specific) scales for embankments incorporating plastic clay fill. The case studies also demonstrate, in a world of ever more abundant data, the growing need for engineering geologists and geotechnical engineers to augment their traditional knowledge with comprehensive data management and geospatial analysis skills, these being essential for modern infrastructure asset management.

    Thematic collection: This article is part of the ‘Ground-related risk to transportation infrastructure’ collection available at: https://www.lyellcollection.org/cc/Ground-related-risk-to-transportation-infrastructure




    meth

    Differentiation of Community-Associated and Livestock-Associated Methicillin-Resistant Staphylococcus aureus Isolates and Identification of spa Types by Use of PCR and High-Resolution Melt Curve Analysis [Clinical Veterinary Microbiology]

    Infections due to methicillin-resistant Staphylococcus aureus (MRSA) are present worldwide and represent a major public health concern. The capability of PCR followed by high-resolution melt (HRM) curve analysis for the detection of community-associated and livestock-associated MRSA strains and the identification of staphylococcal protein A (spa) locus was evaluated in 74 MRSA samples which were isolated from the environment, humans, and pigs on a single piggery. PCR-HRM curve analysis identified four spa types among MRSA samples and differentiated MRSA strains accordingly. A nonsubjective differentiation model was developed according to genetic confidence percentage values produced by tested samples, which did not require visual interpretation of HRM curve results. The test was carried out at different settings, and result data were reanalyzed and confirmed with DNA sequencing. PCR-HRM curve analysis proved to be a robust and reliable test for spa typing and can be used as a tool in epidemiological studies.




    meth

    Transcriptome reconstruction and functional analysis of eukaryotic marine plankton communities via high-throughput metagenomics and metatranscriptomics [METHOD]

    Large-scale metagenomic and metatranscriptomic data analyses are often restricted by their gene-centric approach, limiting the ability to understand organismal and community biology. De novo assembly of large and mosaic eukaryotic genomes from complex meta-omics data remains a challenging task, especially in comparison with more straightforward bacterial and archaeal systems. Here, we use a transcriptome reconstruction method based on clustering co-abundant genes across a series of metagenomic samples. We investigated the co-abundance patterns of ~37 million eukaryotic unigenes across 365 metagenomic samples collected during the Tara Oceans expeditions to assess the diversity and functional profiles of marine plankton. We identified ~12,000 co-abundant gene groups (CAGs), encompassing ~7 million unigenes, including 924 metagenomics-based transcriptomes (MGTs, CAGs larger than 500 unigenes). We demonstrated the biological validity of the MGT collection by comparing individual MGTs with available references. We identified several key eukaryotic organisms involved in dimethylsulfoniopropionate (DMSP) biosynthesis and catabolism in different oceanic provinces, thus demonstrating the potential of the MGT collection to provide functional insights on eukaryotic plankton. We established the ability of the MGT approach to capture interspecies associations through the analysis of a nitrogen-fixing haptophyte-cyanobacterial symbiotic association. This MGT collection provides a valuable resource for analyses of eukaryotic plankton in the open ocean by giving access to the genomic content and functional potential of many ecologically relevant eukaryotic species.




    meth

    Inhibition of transcription leads to rewiring of locus-specific chromatin proteomes [METHOD]

    Transcription of a chromatin template involves the concerted interaction of many different proteins and protein complexes. Analyses of specific factors showed that these interactions change during stress and upon developmental switches. However, how the binding of multiple factors at any given locus is coordinated has been technically challenging to investigate. Here we used Epi-Decoder in yeast to systematically decode, at one transcribed locus, the chromatin binding changes of hundreds of proteins in parallel upon perturbation of transcription. By taking advantage of improved Epi-Decoder libraries, we observed broad rewiring of local chromatin proteomes following chemical inhibition of RNA polymerase. Rapid reduction of RNA polymerase II binding was accompanied by reduced binding of many other core transcription proteins and gain of chromatin remodelers. In quiescent cells, where strong transcriptional repression is induced by physiological signals, eviction of the core transcriptional machinery was accompanied by the appearance of quiescent cell–specific repressors and rewiring of the interactions of protein-folding factors and metabolic enzymes. These results show that Epi-Decoder provides a powerful strategy for capturing the temporal binding dynamics of multiple chromatin proteins under varying conditions and cell states. The systematic and comprehensive delineation of dynamic local chromatin proteomes will greatly aid in uncovering protein–protein relationships and protein functions at the chromatin template.




    meth

    Time course regulatory analysis based on paired expression and chromatin accessibility data [METHOD]

    A time course experiment is a widely used design in the study of cellular processes such as differentiation or response to stimuli. In this paper, we propose time course regulatory analysis (TimeReg) as a method for the analysis of gene regulatory networks based on paired gene expression and chromatin accessibility data from a time course. TimeReg can be used to prioritize regulatory elements, to extract core regulatory modules at each time point, to identify key regulators driving changes of the cellular state, and to causally connect the modules across different time points. We applied the method to analyze paired chromatin accessibility and gene expression data from a retinoic acid (RA)–induced mouse embryonic stem cells (mESCs) differentiation experiment. The analysis identified 57,048 novel regulatory elements regulating cerebellar development, synapse assembly, and hindbrain morphogenesis, which substantially extended our knowledge of cis-regulatory elements during differentiation. Using single-cell RNA-seq data, we showed that the core regulatory modules can reflect the properties of different subpopulations of cells. Finally, the driver regulators are shown to be important in clarifying the relations between modules across adjacent time points. As a second example, our method on Ascl1-induced direct reprogramming from fibroblast to neuron time course data identified Id1/2 as driver regulators of early stage of reprogramming.




    meth

    Characterizing and inferring quantitative cell cycle phase in single-cell RNA-seq data analysis [METHOD]

    Cellular heterogeneity in gene expression is driven by cellular processes, such as cell cycle and cell-type identity, and cellular environment such as spatial location. The cell cycle, in particular, is thought to be a key driver of cell-to-cell heterogeneity in gene expression, even in otherwise homogeneous cell populations. Recent advances in single-cell RNA-sequencing (scRNA-seq) facilitate detailed characterization of gene expression heterogeneity and can thus shed new light on the processes driving heterogeneity. Here, we combined fluorescence imaging with scRNA-seq to measure cell cycle phase and gene expression levels in human induced pluripotent stem cells (iPSCs). By using these data, we developed a novel approach to characterize cell cycle progression. Although standard methods assign cells to discrete cell cycle stages, our method goes beyond this and quantifies cell cycle progression on a continuum. We found that, on average, scRNA-seq data from only five genes predicted a cell's position on the cell cycle continuum to within 14% of the entire cycle and that using more genes did not improve this accuracy. Our data and predictor of cell cycle phase can directly help future studies to account for cell cycle–related heterogeneity in iPSCs. Our results and methods also provide a foundation for future work to characterize the effects of the cell cycle on expression heterogeneity in other cell types.




    meth

    RETrace: simultaneous retrospective lineage tracing and methylation profiling of single cells [METHOD]

    Retrospective lineage tracing harnesses naturally occurring mutations in cells to elucidate single cell development. Common single-cell phylogenetic fate mapping methods have utilized highly mutable microsatellite loci found within the human genome. Such methods were limited by the introduction of in vitro noise through polymerase slippage inherent in DNA amplification, which we characterized to be approximately 10–100x higher than the in vivo replication mutation rate. Here, we present RETrace, a method for simultaneously capturing both microsatellites and methylation-informative cytosines to characterize both lineage and cell type, respectively, from the same single cell. An important unique feature of RETrace was the introduction of linear amplification of microsatellites in order to reduce in vitro amplification noise. We further coupled microsatellite capture with single-cell reduced representation bisulfite sequencing (scRRBS), to measure the CpG methylation status on the same cell for cell type inference. When compared to existing retrospective lineage tracing methods, RETrace achieved higher accuracy (88% triplet accuracy from an ex vivo HCT116 tree) at a higher cell division resolution (lowering the required number of cell division difference between single cells by approximately 100 divisions). Simultaneously, RETrace demonstrated the ability to capture on average 150,000 unique CpGs per single cell in order to accurately determine cell type. We further formulated additional developments that would allow high-resolution mapping on microsatellite-stable cells or tissues with RETrace. Overall, we present RETrace as a foundation for multi-omics lineage mapping and cell typing of single cells.




    meth

    Complete characterization of the human immune cell transcriptome using accurate full-length cDNA sequencing [METHOD]

    The human immune system relies on highly complex and diverse transcripts and the proteins they encode. These include transcripts encoding human leukocyte antigen (HLA) receptors as well as B cell and T cell receptors (BCR and TCR). Determining which alleles an individual possesses for each HLA gene (high-resolution HLA typing) is essential to establish donor–recipient compatibility in organ and bone marrow transplantations. In turn, the repertoires of millions of unique BCR and TCR transcripts in each individual carry a vast amount of health-relevant information. Both short-read RNA-seq-based HLA typing and BCR/TCR repertoire sequencing (AIRR-seq) currently rely on our incomplete knowledge of the genetic diversity at HLA and BCR/TCR loci. Here, we generated over 10,000,000 full-length cDNA sequences at a median accuracy of 97.9% using our nanopore sequencing-based Rolling Circle Amplification to Concatemeric Consensus (R2C2) protocol. We used this data set to (1) show that deep and accurate full-length cDNA sequencing can be used to provide isoform-level transcriptome analysis for more than 9000 loci, (2) generate accurate sequences of HLA alleles, and (3) extract detailed AIRR data for the analysis of the adaptive immune system. The HLA and AIRR analysis approaches we introduce here are untargeted and therefore do not require prior knowledge of the composition or genetic diversity of HLA and BCR/TCR loci.