semi

Navigating semi-autonomous mobile robots

Techniques for navigating semi-autonomous mobile robots are described. A semi-autonomous mobile robot moves within an environment to complete a task. A navigation server communicates with the robot and provides the robot information. The robot includes a navigation map of the environment, interaction information, and a security level. To complete the task, the robot transmits a route reservation request to the navigation server, the route reservation request including a priority for the task, a timeslot, and a route. The navigation server grants the route reservation if the task priority is higher than the task priorities of conflicting route reservation requests from other robots. As the robot moves within the environment, the robot detects an object and attempts to classify the detected object as belonging to an object category. The robot retrieves an interaction profile for the object, and interacts with the object according to the retrieved interaction profile.




semi

Semi-rigid craft, the buoyancy of which is adjustable

A craft includes a rigid hull (1) that consists of a V-shaped bottom (5) and a bridge (4) on which a load can rest. The hull includes plating consisting of compartmentalized pneumatic floats (2), the rear compartments (32) of which are combined with an inflation and deflation system so as to vary the buoyancy of the craft. The craft also includes a submergible hull (1), the central cavity (9) of which is formed between the bottom (5) and the bridge (4) and is open at the rear so as to be automatically filled or emptied, the central cavity (9) containing at least one bag (10) that is combined with an inflation and deflation system enabling the buoyancy to be varied and consequently the level of immersion of the stern (7) to be changed as needed.




semi

Method of applying phase transition materials to semi-porous, flexible substrates used to control gas permeability

Method of applying phase transition substance to impart reduced ignition propensity to a smoking article comprising a tobacco column and a wrapper surrounding the tobacco column and having a porous structure with a base permeability. The method comprising forming a pattern of phase transition material on the wrapper such that, when subjected to the heat of the tobacco column burning firecone, the phase transition material at least partially fills the wrapper porous structure in the vicinity of the burning firecone to form an area on the wrapper having reduced permeability lower than that of the wrapper base permeability. The reduced permeability of the wrapper in the vicinity of the burning firecone imparts reduced ignition propensity such that there is insufficient air flow to sustain combustion of the firecone or insufficient air flow to sustain an intensity of the burning firecone necessary to ignite the substrate.




semi

SEMICONDUCTOR DEVICE AND TRANSMISSION SYSTEM

A low power consumption semiconductor device is provided. The semiconductor device includes a decoder, a signal generation circuit, and a display device. The decoder includes an analysis circuit and an arithmetic circuit. The analysis circuit has a function of determining whether to decode the received first image data using the received data. The signal generation circuit has a function of generating a signal including an instruction on whether to decode the first image data in response to the determination of the analysis circuit. The arithmetic circuit has a function of decoding the first image data in response to the signal. The display device has a function of maintaining a second image displayed on the display device in the case where the first image data is not decoded in the arithmetic circuit.




semi

SEMICONDUCTOR DEVICE, DRIVER IC, AND ELECTRONIC DEVICE

A semiconductor device includes first to fourth terminals, a switch circuit, and an integrating circuit. The integrating circuit includes an amplifier circuit having a (−) terminal, a first (+) terminal, and a second (+) terminal. The integrating circuit is configured to integrate an input signal of the (−) terminal using an average voltage of a voltage of the first (+) terminal and a voltage of the second (+) terminal as a reference voltage. The switch circuit is configured to electrically connect the (−) terminal to the second terminal, the first (+) terminal to the first terminal, the second (+) terminal to the third terminal the (−) terminal to the third terminal, the first (+) terminal to the second terminal, and the second (+) terminal to the fourth terminal. The present semiconductor device is used as a semiconductor device sensing a current flowing through a pixel in a display panel.




semi

SEMICONDUCTOR MEMORY DEVICE

A semiconductor memory device includes first and second memory cells, each of which includes a charge storage layer, a first bit line that is connected to the first memory cell, and a second bit line that is connected to the second memory cell. A writing operation includes multiple loops of a programming operation and a verification operation, and first data is written in the first memory cell, and second data different from the first data is written in the second memory cell through the writing operation. In a first loop of the writing operation, a first voltage is applied to the first bit line and the second bit line is maintained in an electrically floating state during the programming operation, and a verification operation relating to the second data is not performed and a verification operation relating to the first data is performed.




semi

TEST METHOD OF SEMICONDUCTOR DEVICE

The semiconductor device includes a bit line, a transistor, a retention node, and a capacitor. The transistor has a function of charging or discharging the retention node. The capacitor has a function of retaining a potential of the retention node. A voltage greater than the sum of a writing voltage and a threshold voltage is applied to a gate of the transistor. When the transistor is turned on, a first potential is supplied to the bit line with a reference potential in a floating state. A voltage less than the sum of the writing voltage and the threshold voltage is applied to the gate of the transistor. When the transistor is turned on, a second potential is supplied to the bit line with a reference potential in a floating state. With use of the first and second potentials, the threshold voltage of the transistor is calculated without being influenced by parasitic capacitance and variations in the storage capacitance of the capacitor.




semi

SIGNAL SHIFTING CIRCUIT, BASE CHIP, AND SEMICONDUCTOR SYSTEM INCLUDING THE SAME

A signal shifting circuit may include a bank selection signal generation unit suitable for generating a bank selection signal synchronized with a first clock in response to a bank address and an internal write signal; and a shifting device suitable for generating a shifted bank selection signal by shifting the bank selection signal by a number of times according to latency information and for advancing a phase of the shifted bank selection signal whenever shifting the bank selection signal once or more so that the shifted bank selection signal is synchronized with a second clock having a phase leading a phase of the first clock.




semi

SEMICONDUCTOR DEVICE, ELECTRONIC DEVICE, AND SEMICONDUCTOR WAFER

A semiconductor device capable of stably holding data for a long time is provided. A transistor including a back gate is used as a writing transistor of a memory element. In the case where the transistor is an n-channel transistor, a negative potential is supplied to a back gate in holding memory. The supply of the negative potential is stopped while the negative potential is held in the back gate. In the case where an increase in the potential of the back gate is detected, the negative potential is supplied to the back gate.




semi

SEMICONDUCTOR MEMORY DEVICE

A semiconductor memory device may include: a plurality of memory mats; and a plurality of sense amplifier arrays arranged alternately with the memory mats, each sense amplifier array being suitable for sensing and amplifying data of memory mats adjacent thereto, wherein during a data sensing operation to a memory mat among the plurality of memory mats, in addition to a sense amplifier for the memory mat and sense amplifiers positioned immediately above and below the sense amplifier for the memory mat, at least one additional sense amplifier closest to the sense amplifier for the memory mat is also activated for providing additional amplification.




semi

SEMICONDUCTOR MEMORY DEVICE INCLUDING OUTPUT BUFFER

An apparatus includes a first terminal configured to communicate data with an outside of the apparatus, a second terminal configured to receive a first power source potential, a third terminal configured to receive a second power source potential lower than the first power source potential, a fourth terminal configured to be coupled to a calibration resistor, an output buffer including first to third nodes coupled to the first to third terminals respectively, and a replica circuit including fourth and fifth nodes coupled to the second and third terminals respectively, and sixth node coupled to the fourth terminal.




semi

SEMICONDUCTOR MEMORY DEVICE FOR PERFORMING REFRESH OPERATION AND OPERATING METHOD THEROF

A semiconductor memory device may include: a memory bank comprising a plurality of word lines; a smart command generation unit suitable for generating a smart refresh command, which is enabled at a random cycle, in response to an active command; and a refresh operation control unit suitable for performing a refresh operation to at least one of adjacent word lines of a target word line among the plurality of word lines in response to the smart refresh command.




semi

SEMICONDUCTOR STORAGE APPARATUS AND MEMORY SYSTEM

According to one embodiment, a semiconductor storage apparatus includes a memory cell array and a read circuit. The memory cell array includes a memory cell which is connected to a word line. A threshold voltage of the memory cell corresponds to a data value of multiple bits. The read circuit receives designation of one bit among the multiple bits, applies a first reading voltage and a second reading voltage corresponding to the designated bit to the word line, senses ON or OFF of the memory cell for each reading voltage, and outputs a first sensed value and a second sensed value after performing the sensing for each reading voltage. The first sensed value is a sensing result in a case where the first reading voltage is applied. The second sensed value is a sensing result in a case where the second reading voltage is applied.




semi

SEMICONDUCTOR MEMORY DEVICE

A memory device includes a first string and a second string. The first string includes first and second transistors and first cell transistors coupled in series between a source line and a bit line. The second string includes third and fourth transistors and second cell transistors coupled in series between the source line and the bit line. During a read, a gate of the fourth transistor is applied with a voltage to turn off the transistor, and after start of application of voltages to the first cell transistors, the gate of the fourth transistor is applied with a voltage substantially the same as a voltage applied to the source line.




semi

SEMICONDUCTOR MEMORY DEVICE CAPABLE OF REDUCING CHIP SIZE

According to one embodiment, a first well of the first conductivity type which is formed in a substrate. a second well of a second conductivity type which is formed in the first well. The plurality of memory cells, the plurality of first bit line select transistors, and the plurality of second bit line select transistors are formed in the second well, and the plurality of first bit line select transistors and the plurality of second bit line select transistors are arranged on a side of the sense amplifier with respect to the plurality of memory cells of the plurality of bit lines.




semi

NON-VOLATILE SEMICONDUCTOR STORAGE DEVICE

According to one embodiment, a semiconductor storage device includes a memory cell array having memory cell capable of holding N-bit data; and a sense amplifier comprising a first latch holding information on a threshold distribution, a second latch holding write data, and a third latch holding lower information of the N-bit data, and supplying a first to a fourth voltages to the memory cell to write the data to the memory cell using the first to fourth voltages. The sense amplifier supplies the first to third voltages to the memory cell based on information in the second and the third latches, and based on a result of transfer of the information held by the first latch to the second latch, supplies the fourth voltage or the first voltage to the memory cell.




semi

SEMICONDUCTOR MEMORY DEVICE

According to one embodiment, a semiconductor memory device includes: first to third pages; first to third word line; and row decoder. In data writing, data is written into the first page before data is written into the second page. The row decoder is configured to apply first to third verify voltages to the gates of the first to third memory cells in a program verify operation.




semi

SEMICONDUCTOR MEMORY DEVICES AND METHODS OF TESTING OPEN FAILURES THEREOF

Semiconductor memory devices are provided. The semiconductor memory device includes an input/output (I/O) drive controller, a data I/O unit and a data transmitter. The input/output (I/O) drive controller generates drive control signals and an input control signal for driving first and second global I/O lines in a first test mode or a second test mode. The data I/O unit drives the first global I/O line in response to an input data when a write operation is executed in the first test mode and to drive the first and second global I/O lines in response to the drive control signals when the write operation is executed in the second test mode. The data transmitter transfers the data on the first global I/O line onto first and second local I/O lines to store the data on the first global I/O line in a memory cell array portion when the write operation is executed in the first test mode. The data transmitter also transfers the data on the first and second global I/O lines onto the first and second local I/O lines to store the data on the first and second global I/O lines in the memory cell array portion when the write operation is executed in the second test mode. Related methods are also provided.




semi

SEMICONDUCTOR DEVICE

Provided is a semiconductor device capable of holding data for a long period. The semiconductor device includes first to third transistors, a capacitor, and a circuit. The third transistor includes a first gate and a second gate. A gate of the first transistor is electrically connected to a first terminal of the capacitor. A first terminal of the first transistor is electrically connected to the second gate. A second terminal of the first transistor is electrically connected to the circuit. A gate of second transistor is electrically connected to a first terminal of the second transistor. A first terminal of the second transistor is electrically connected to the second gate. A second terminal of the second transistor is electrically connected to a first terminal of the capacitor. The circuit is configured to generate a negative potential. A channel formation region of the first transistor preferably includes an oxide semiconductor.




semi

METHOD FOR FABRICATING SEMICONDUCTOR DEVICE AND METHOD FOR OPERATING THE SAME

A method for fabricating a semiconductor device and a method for operating the semiconductor device are provided. The method for fabricating a semiconductor device includes forming a first electrode layer; forming a material layer, including conductive path components, over the first electrode layer; forming a second electrode layer over the material layer; performing a forming operation, which includes initially creating, in the material layer, a conductive path that electrically connects the first electrode layer to the second electrode layer by applying one of a predetermined voltage and a predetermined current between the first and second electrode layers, the conductive path including the conductive path components; and performing a first heat-treatment process at a predetermined temperature that removes some of the conductive path components from the conductive path, wherein a resistance state of the material layer changes based on the creation or dissolution of the conductive paths.




semi

TWO-DIMENSIONAL MATERIAL SEMICONDUCTOR DEVICE

A semiconductor device comprises a two-dimensional (2D) material layer, the 2D material layer comprising a channel region in between a source region and a drain region; a first gate stack and a second gate stack in contact with the 2D material layer, the first and second gate stack being spaced apart over a distance; the first gate stack located on the channel region of the 2D material layer and in between the source region and the second gate stack, the first gate stack arranged to control the injection of carriers from the source region to the channel region and the second gate stack located on the channel region of the 2D material layer; the second gate stack arranged to control the conduction of the channel region.




semi

INTERNAL POWER SUPPLY CIRCUIT AND SEMICONDUCTOR DEVICE

A control switch is connected to a power supply voltage and turns on based on a control signal to output a current. A clamp circuit is connected to a load and performs clamp control of the output voltage of the control switch. A current control element conducts or shuts off a current based on the output voltage to be clamp-controlled. A selector switch group includes switches, and performs switching based on a voltage varying with the current control by the current control element, thereby switching between paths for generating an internal power supply. The switch circuit connects or disconnects the coupling between the clamp circuit and the selector switch group.




semi

SEMICONDUCTOR DEVICE AND CIRCUIT PROTECTING METHOD

A semiconductor device includes a first transistor and a clamping circuit. The first transistor is arranged to generate an output signal according to a control signal. The clamping circuit is arranged to generate the control signal according to an input signal, and to clamp the control signal to a predetermined signal level when the input signal exceeds the predetermined signal level.




semi

SEMICONDUCTOR INTEGRATED CIRCUIT AND HIGH FREQUENCY ANTENNA SWITCH

An integrated circuit includes a drive circuit with a first inverter circuit with a first transistor of a first conductivity type and a second transistor of a second conductivity type. The drains of the first and second transistors are connected. An output circuit is provided having a third transistor of the second conductivity with a gate connected to the drains of the first and second transistors. A capacitor is connected between the gate and a drain of the third transistor and has a capacitance greater than 0.5 pF and less than or equal to 3.0 pF. A gate width of the first transistor when divided by a gate width of the third transistor has a value of less than 1/100. The output circuit is configured to output a transmission signal from the drain of the third transistor.




semi

CLOCK GENERATION CIRCUIT AND SEMICONDUCTOR APPARATUS AND ELECTRONIC SYSTEM USING THE SAME

A clock generation circuit may include a reference clock generator configured to generate a pair of first reference clocks in an offset code generation mode, a correction code generator configured to generate a reference correction code according to a duty detection signal based on a phase difference between the pair of first reference clocks, and an offset code generator configured to generate an offset code based on the reference correction code and a preset reference code.




semi

SYSTEMS AND METHODS FOR CONTROLLING A PLURALITY OF POWER SEMICONDUCTOR DEVICES

A power conversion system may include a plurality of power devices and a sensor operably coupled to at least one of the plurality of power devices and configured to detect a voltage, current, or electromagnetic signature signal associated with the plurality of power devices. The power converter may also include circuitry operably coupled to the plurality of power devices and the sensor. The circuitry may send a respective gate signal to each respective power device of the plurality of power devices, such that each respective gate signal is delayed by a respective compensation delay that is determined for the respective power device based on a respective time delay of the respective power device and a maximum time delay of the plurality of power devices.




semi

DEVICE AND METHOD FOR PRODUCING A DYNAMIC REFERENCE SIGNAL FOR A DRIVER CIRCUIT FOR A SEMICONDUCTOR POWER SWITCH

A device (442) for producing a dynamic reference signal (UREF) for a control circuit for a power semiconductor switch comprises a reference signal generator (442) for providing a dynamic reference signal (UREF), which has a stationary signal level after elapse of a predefined time following a switching process of the power semiconductor switch, a passive charging circuit (450) which is configured to increase a signal level of the dynamic reference signal in reaction to a switching of a control signal of the power semiconductor switch from an OFF state to ON state for at least one part of the predefined time above the stationary signal level, in order to produce the dynamic reference signal and an output (A) for tapping the dynamic reference signal (UREF).




semi

SEMICONDUCTOR APPARATUS

A semiconductor apparatus may include a noise determination circuit, a strobe signal control circuit, and a reception circuit. The noise determination circuit may sense and determine noise of a reference voltage, and generate an up control signal and a down control signal. The strobe signal control circuit may adjust a transition timing of a strobe signal in response to the up control signal and the down control signal, and output a control strobe signal. The reception circuit may generate internal data signal in response to external data signal, the reference voltage, and the control strobe signal.




semi

Predicting Knowledge Types In A Search Query Using Word Co-Occurrence And Semi/Unstructured Free Text

A system provides search results in response to a search query. The system includes a query understanding module configured to receive the search query and output a processed search query based on the search query. The search query includes one or more words and the processed search query selectively includes tags assigned to the one or more words. The system includes a fuzzy knowledge module configured to receive the processed search query, generate a set of candidate tags for selected ones of the words in the search query, and selectively validate the candidate tags. The system is configured to provide the search results to a user device based in part on the candidate tags generated and validated by the fuzzy knowledge module.




semi

Semiconductor Device and Method of Forming Ultra High Density Embedded Semiconductor Die Package

A semiconductor device has a plurality of semiconductor die. A first prefabricated insulating film is disposed over the semiconductor die. A conductive layer is formed over the first prefabricated insulating film. An interconnect structure is formed over the semiconductor die and first prefabricated insulating film. The first prefabricated insulating film is laminated over the semiconductor die. The first prefabricated insulating film includes glass cloth, glass fiber, or glass fillers. The semiconductor die is embedded within the first prefabricated insulating film with the first prefabricated insulating film covering first and side surfaces of the semiconductor die. The interconnect structure is formed over a second surface of the semiconductor die opposite the first surface. A portion of the first prefabricated insulating film is removed after disposing the first prefabricated insulating film over the semiconductor die. A second prefabricated insulating film is disposed over the first prefabricated insulating film.




semi

METHOD OF MARKING A SEMICONDUCTOR PACKAGE

A method of making a semiconductor device can include providing a wafer comprising a plurality of semiconductor die, wherein each semiconductor die comprises an active surface and a backside opposite the active surface. A photosensitive layer can be formed over the wafer and on a backside of each of the plurality of semiconductor die within the wafer with a coating machine. An identifying mark can be formed within the photosensitive layer for each of the plurality of semiconductor die with a digital exposure machine and a developer, wherein a thickness of the identifying mark is less than or equal to 50 percent of a thickness of the photosensitive layer. The photosensitive layer can be cured. The wafer can be singulated into a plurality of semiconductor devices.




semi

FABRICATION METHOD OF SEMICONDUCTOR PACKAGE

A semiconductor package is provided, including: an insulating base body having a first surface with an opening and a second surface opposite to the first surface; an insulating extending body extending outward from an edge of the first surface of the insulating base body, wherein the insulating extending body is less in thickness than the insulating base body; an electronic element having opposite active and inactive surfaces and disposed in the opening with its inactive surface facing the insulating base body; a dielectric layer formed in the opening of the insulating base body and on the first surface of the insulating base body, the insulating extending body and the active surface of the electronic element; and a circuit layer formed on the dielectric layer and electrically connected to the electronic element. The configuration of the insulating layer of the invention facilitates to enhance the overall structural rigidity of the package.




semi

METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE HAVING MOISTURE-RESISTANT RINGS BEING FORMED IN A PERIPHERAL REGION

A semiconductor device includes a first moisture-resistant ring disposed in a peripheral region surrounding a circuit region on a semiconductor substrate in such a way as to surround the circuit region and a second moisture-resistant ring disposed in the peripheral region in such a way as to surround the first moisture-resistant ring.




semi

SEMICONDUCTOR MOUNTING APPARATUS, HEAD THEREOF, AND METHOD FOR MANUFACTURING LAMINATED CHIP

A semiconductor mounting apparatus includes a storing unit that stores a liquid or a gas, a contact unit that comes into contact with a semiconductor chip when the storing unit is filled with the liquid or the gas, and a sucking unit that sucks up the semiconductor chip to bring the semiconductor chip into close contact with the contact unit.




semi

SYSTEMS AND PROCESSES FOR MEASURING THICKNESS VALUES OF SEMICONDUCTOR SUBSTRATES

A system for determining thickness variation values of a semiconductor substrate comprises a substrate vacuumed to a pedestal that defines a reference plane for measuring the substrate. A measurement probe assembly determines substrate CTV and BTV values, and defines a substrate slope angle. A thermal bonding assembly attaches a die to the substrate at a bonding angle congruent with the substrate slope angle. A plurality of substrates are measured using the same reference plane on the pedestal. Associated methods and processes are disclosed.




semi

SYSTEMS AND METHODS FOR BONDING SEMICONDUCTOR ELEMENTS

A method of ultrasonically bonding semiconductor elements includes the steps of: (a) aligning surfaces of a plurality of first conductive structures of a first semiconductor element to respective surfaces of a plurality of second conductive structures of a second semiconductor element; (b) ultrasonically forming tack bonds between ones of the first conductive structures and respective ones of the second conductive structures; and (c) forming completed bonds between the first conductive structures and the second conductive structures.




semi

SEMICONDUCTOR DEVICE HAVING BURIED GATE STRUCTURE AND METHOD FOR MANUFACTURING THE SAME, MEMORY CELL HAVING THE SAME AND ELECTRONIC DEVICE HAVING THE SAME

A semiconductor device includes a substrate comprising a trench; a gate dielectric layer formed over a surface of the trench; a gate electrode positioned at a level lower than a top surface of the substrate, and comprising a lower buried portion embedded in a lower portion of the trench over the gate dielectric layer and an upper buried portion positioned over the lower buried portion; and a dielectric work function adjusting liner positioned between the lower buried portion and the gate dielectric layer; and a dipole formed between the dielectric work function adjusting liner and the gate dielectric layer.




semi

METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE

Embodiments of the inventive concepts provide a method for manufacturing a semiconductor device. The method includes forming a stack structure including insulating layers and sacrificial layers which are alternately and repeatedly stacked on a substrate. A first photoresist pattern is formed on the stack structure. A first part of the stack structure is etched to form a stepwise structure using the first photoresist pattern as an etch mask. The first photoresist pattern includes a copolymer including a plurality of units represented by at least one of the following chemical formulas 1 to 3, wherein “R1”, “R2”, “R3”, “p”, “q” and “r” are the same as defined in the description.




semi

METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE

A performance of a semiconductor device is improved. A film, which is made of silicon, is formed in a resistance element formation region on a semiconductor substrate, and an impurity, which is at least one type of elements selected from a group including a group 14 element and a group 18 element, is ion-implanted into the film, and a film portion which is formed of the film of a portion into which the impurity is ion-implanted is formed. Next, an insulating film with a charge storage portion therein is formed in a memory formation region on the semiconductor substrate, and a conductive film is formed on the insulating film.




semi

METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE

A method of manufacturing a semiconductor device according to one embodiment includes forming a first film including a first metal above a processing target member. The method includes forming a second film including two or more types of element out of a second metal, carbon, and boron above the first film. The method includes forming a third film including the first metal above the second film. The method includes forming a mask film by providing an opening part to a stacked film including the first film, the second film and the third film. The method includes processing the processing target member by performing etching using the mask film as a mask.




semi

METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE

Embodiments of the inventive concept provide a method for manufacturing a semiconductor device. The method includes forming a stack structure by alternately and repeatedly stacking insulating layers and sacrificial layers on a substrate, sequentially forming a first lower layer and a first photoresist pattern on the stack structure, etching the first lower layer using the first photoresist pattern as an etch mask to form a first lower pattern. A first part of the stack structure is etched to form a stepwise structure using the first lower pattern as an etch mask. The first lower layer includes a novolac-based organic polymer, and the first photoresist pattern includes a polymer including silicon.




semi

METHOD OF FORMING A SEMICONDUCTOR DEVICE

A method of forming a semiconductor device is provided such that a trench is formed in a semiconductor body at a first surface of the semiconductor body. Dopants are introduced into a first region at a bottom side of the trench by ion implantation. A filling material is formed in the trench. Dopants are introduced into a second region at a top side of the filling material. Thermal processing of the semiconductor body is carried out and is configured to intermix dopants from the first and the second regions by a diffusion process along a vertical direction perpendicular to the first surface.




semi

SEMICONDUCTOR DEVICE INCLUDING NANOWIRE TRANSISTORS WITH HYBRID CHANNELS

A semiconductor device is provided that includes an n-type field effect transistor including a plurality of vertically stacked silicon-containing nanowires located in one region of a semiconductor substrate, and a p-type field effect transistor including a plurality of vertically stacked silicon germanium alloy nanowires located in another region of a semiconductor substrate. Each vertically stacked silicon-containing nanowire of the n-type field effect transistor has a different shape than the shape of each vertically stacked silicon germanium alloy nanowire of the p-type field effect transistor.




semi

METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE

To provide a semiconductor device having improved reliability. After formation of an n+ type semiconductor region for source/drain, a first insulating film is formed on a semiconductor substrate so as to cover a gate electrode and a sidewall spacer. After heat treatment, a second insulating film is formed on the first insulating film and a resist pattern is formed on the second insulating film. Then, these insulating films are etched with the resist pattern as an etching mask. The resist pattern is removed, followed by wet washing treatment. A metal silicide layer is then formed by the salicide process.




semi

METHOD OF FORMING GATE STRUCTURE OF A SEMICONDUCTOR DEVICE

A method of fabricating a semiconductor device includes forming a gate strip including a dummy electrode and a TiN layer. The method includes removing a first portion of the dummy electrode to form a first opening over a P-active region and an isolation region. The method includes performing an oxygen-containing plasma treatment on a first portion of the TiN layer; and filling the first opening with a first metal material. The method includes removing a second portion of the dummy electrode to form a second opening over an N-active region and the isolation region. The method includes performing a nitrogen-containing plasma treatment on a second portion of the TiN layer; and filling the second opening with a second metal material. The second portion of the TiN layer connects to the first portion of the TiN layer over the isolation region.




semi

SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME

The on-state characteristics of a transistor are improved and thus, a semiconductor device capable of high-speed response and high-speed operation is provided. A highly reliable semiconductor device showing stable electric characteristics is made. The semiconductor device includes a transistor including a first oxide layer; an oxide semiconductor layer over the first oxide layer; a source electrode layer and a drain electrode layer in contact with the oxide semiconductor layer; a second oxide layer over the oxide semiconductor layer; a gate insulating layer over the second oxide layer; and a gate electrode layer over the gate insulating layer. An end portion of the second oxide layer and an end portion of the gate insulating layer overlap with the source electrode layer and the drain electrode layer.




semi

Method of Forming a Semiconductor Structure Having Integrated Snubber Resistance

A semiconductor structure is disclosed. The semiconductor structure includes a source trench in a drift region, the source trench having a source trench dielectric liner and a source trench conductive filler surrounded by the source trench dielectric liner, a source region in a body region over the drift region. The semiconductor structure also includes a patterned source trench dielectric cap forming an insulated portion and an exposed portion of the source trench conductive filler, and a source contact layer coupling the source region to the exposed portion of the source trench conductive filler, the insulated portion of the source trench conductive filler increasing resistance between the source contact layer and the source trench conductive filler under the patterned source trench dielectric cap. The source trench is a serpentine source trench having a plurality of parallel portions connected by a plurality of curved portions.




semi

SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME

A semiconductor device includes a substrate comprising a channel region and a recess, wherein the recess is located at both side of the channel region; a gate structure formed over the channel region; a first SiP layer covering bottom corners of the gate structure and the recess; and a second SiP layer formed over the first SiP layer and in the recess, wherein the second SiP layer has a phosphorus concentration higher than that of the first SiP layer.




semi

METHOD OF PRODUCTION OF SEMICONDUCTOR DEVICE

A method of production of a semiconductor device comprising a semiconductor layer forming step of forming a semiconductor layer including an inorganic oxide semiconductor on a board, a passivation film forming step of forming a passivation film comprising an organic material so as to cover the semiconductor layer, a baking step of baking the passivation film, and a cooling step of cooling the passivation film after baking, herein, in the cooling step, a cooling speed from a baking temperature at the time of baking in the baking step to a temperature 50° C. lower than the baking temperature is substantially controlled to 0.5 to 5° C./min in range is provided.




semi

METHODS OF GROWING HETEROEPITAXIAL SINGLE CRYSTAL OR LARGE GRAINED SEMICONDUCTOR FILMS AND DEVICES THEREON

A method is provided for making smooth crystalline semiconductor thin-films and hole and electron transport films for solar cells and other electronic devices. Such semiconductor films have an average roughness of 3.4 nm thus allowing for effective deposition of additional semiconductor film layers such as perovskites for tandem solar cell structures which require extremely smooth surfaces for high quality device fabrication.