bi

Synthesis and crystal structure of tetra­methyl (E)-4,4'-(ethene-1,2-di­yl)bis­(5-nitro­benzene-1,2-di­carboxyl­ate)

The title compound, C22H18N2O12, was obtained as a by-product during the planned synthesis of 1,2-bis­(2-nitro-4,5-dimethyl phthalate)ethane by oxidative dimerization starting from dimethyl-4-methyl-5-nitro phthalate. To identify this compound unambiguously, a single-crystal structure analysis was performed. The asymmetric unit consists of half a mol­ecule that is located at a centre of inversion. As a result of symmetry restrictions, the mol­ecule shows an E configuration around the double bond. Both phenyl rings are coplanar, whereas the nitro and the two methyl ester groups are rotated out of the ring plane by 32.6 (1), 56.5 (2) and 49.5 (2)°, respectively. In the crystal, mol­ecules are connected into chains extending parallel to the a axis by pairs of C—H⋯O hydrogen bonds that are connected into a tri-periodic network by additional C—H⋯O hydrogen-bonding inter­actions.




bi

Crystal structure and Hirshfeld surface analysis of dimethyl 4'-bromo-3-oxo-5-(thio­phen-2-yl)-3,4,5,6-tetra­hydro-[1,1'-biphen­yl]-2,4-di­carboxyl­ate

In the title compound, C20H17BrO5S, mol­ecules are connected by inter­molecular C—H⋯S hydrogen bonds with R22(10) ring motifs, forming ribbons along the b-axis direction. C—H⋯π inter­actions consolidate the ribbon structure while van der Waals forces between the ribbons ensure the cohesion of the crystal structure. According to a Hirshfeld surface analysis, H⋯H (40.5%), O⋯H/H⋯O (27.0%), C⋯H/H⋯C (13.9%) and Br⋯H/H⋯Br (11.7%) inter­actions are the most significant contributors to the crystal packing. The thio­phene ring and its adjacent di­carboxyl­ate group and the three adjacent carbon atoms of the central hexene ring to which they are attached were refined as disordered over two sets of sites having occupancies of 0.8378 (15) and 0.1622 (15). The thio­phene group is disordered by a rotation of 180° around one bond.




bi

Bis[tris­(diiso­butyl­dithio­carbamato)-μ3-sulfido-tri-μ2-di­sulfido-trimolybdenum(IV)] sulfide tetra­hydro­furan monosolvate

The title compound, [Mo3(C9H18NS2)3(S2)3S]2S, crystallizes on a general position in the monoclinic space group P21/n (No. 14). The cationic [Mo3S7(S2CNiBu2)3]+ fragments are joined by a mono­sulfide dianion that forms close S⋯S contacts to each of the di­sulfide ligands on the side of the Mo3 plane opposite the μ32− ligand. The two Mo3 planes are inclined at an angle of 40.637 (15)°, which gives the assembly an open clamshell-like appearance. One μ6-S2−⋯S22− contact, at 2.4849 (14) Å, is appreciably shorter than the remaining five, which are in the range 2.7252 (13)–2.8077 (14) Å.




bi

Synthesis, crystal structure and properties of the trigonal–bipyramidal complex tris­(2-methyl­pyridine N-oxide-κO)bis­(thio­cyanato-κN)cobalt(II)

Reaction of Co(NCS)2 with 2-methyl­pyridine N-oxide in a 1:3 ratio in n-butanol leads to the formation of crystals of tris­(2-methyl­pyridine N-oxide-κO)bis­(thio­cyanato-κN)cobalt(II), [Co(NCS)2(C6H7NO)3]. The asymmetric unit of the title compound consists of one CoII cation two thio­cyanate anions and three crystallographically independent 2-methyl­pyridine N-oxide coligands in general positions. The CoII cations are trigonal–bipyramidally coordinated by two terminal N-bonding thio­cyanate anions in the trans-positions and three 2-methyl­pyridine N-oxide coligands into discrete complexes. These complexes are linked by inter­molecular C–H⋯S inter­actions into double chains that elongate in the c-axis direction. Powder X-ray diffraction (PXRD) measurements prove that all batches are always contaminated with an additional and unknown crystalline phase. Thermogravimetry and differential analysis of crystals selected by hand reveal that the title compound decomposes at about 229°C in an exothermic reaction. At about 113°C a small endothermic signal is observed that, according to differential scanning calorimetry (DSC) measurements, is irreversible. PXRD measurements of the residue prove that a poorly crystalline and unknown phase has formed and thermomicroscopy indicates that some phase transition occurs that is accompanied with a color change of the title compound.




bi

Synthesis, crystal structure and thermal properties of the dinuclear complex bis­(μ-4-methylpyridine N-oxide-κ2O:O)bis­[(methanol-κO)(4-methylpyridine N-oxide-κO)bis­(thio­cyanato-κN)cobalt(II)]

Reaction of Co(NCS)2 with 4-methyl­pyridine N-oxide in methanol leads to the formation of crystals of the title compound, [Co2(NCS)4(C6H7NO)4(CH4O)2] or Co2(NCS)4(4-methyl­pyridine N-oxide)4(methanol)2. The asymmetric unit consist of one CoII cation, two thio­cyanate anions, two 4-methyl­pyridine N-oxide coligands and one methanol mol­ecule in general positions. The H atoms of one of the methyl groups are disordered and were refined using a split model. The CoII cations octa­hedrally coordinate two terminal N-bonded thio­cyanate anions, three 4-methyl­pyridine N-oxide coligands and one methanol mol­ecule. Each two CoII cations are linked by pairs of μ-1,1(O,O)-bridging 4-methyl­pyridine N-oxide coligands into dinuclear units that are located on centers of inversion. Powder X-ray diffraction (PXRD) investigations prove that the title compound is contaminated with a small amount of Co(NCS)2(4-meth­yl­pyridine N-oxide)3. Thermogravimetric investigations reveal that the methanol mol­ecules are removed in the beginning, leading to a compound with the composition Co(NCS)2(4-methyl­pyridine N-oxide), which has been reported in the literature and which is of poor crystallinity.




bi

Structure of the five-coordinate CoII complex (1H-imidazole){tris­[(1-benzyl­triazol-4-yl-κN3)meth­yl]amine-κN}cobalt(II) bis­(tetra­fluoro­borate)

The title compound, [Co(C3H4N2)(C30H30N10)](BF4)2, is a five-coordinate CoII complex based on the neutral ligands tris­[(1-benzyl­triazol-4-yl)meth­yl]amine (tbta) and imidazole. It exhibits a distorted trigonal bipyramidal geometry in which the equatorial positions are occupied by the three N-atom donors from the triazole rings of the tripodal tbta ligand. The apical amine N-atom donor of tbta and the N-atom donor of the imidazole ligand occupy the axial positions of the coordination sphere. Two tetra­fluoro­borate anions provide charge balance in the crystal.




bi

Synthesis and crystal structures of 5,17-di­bromo-26,28-dihy­droxy-25,27-dipropynyloxycalix[4]arene, 5,17-di­bromo-26,28-dipropoxy-25,27-dipropynyloxycalix[4]arene and 25,27-bis­(2-azido­eth­oxy)-5,17-di­bromo-26,28-di&#

The calixarenes, 5,17-di­bromo-26,28-dihy­droxy-25,27-dipropynyloxycalix[4]arene (C34H26Br2O4, 1), 5,17-di­bromo-26,28-dipropoxy-25,27-dipropynyloxycalix[4]arene (C40H38Br2O4, 2) and 25,27-bis­(2-azido­eth­oxy)-5,17-di­bromo-26,28-di­hydroxy­calix[4]arene (C32H28Br2N6O4, 3) possess a pinched cone mol­ecular shape for 1 and 3, and a 1,3-alternate shape for compound 2. In calixarenes 1 and 3, the cone conformations are additionally stabilized by intra­molecular O—H⋯O hydrogen bonds, while in calixarene 2 intra­molecular Br⋯Br inter­actions consolidate the 1,3-alternate mol­ecular conformation. The dense crystal packing of the cone dialkyne 1 is a consequence of π–π, C—H⋯π and C—H⋯O inter­actions. In the crystal of the diazide 3, there are large channels extending parallel to the c axis, which are filled by highly disordered CH2Cl2 solvent mol­ecules. Their contribution to the intensity data was removed by the SQUEEZE procedure that showed an accessible void volume of 585 Å3 where there is room for 4.5 CH2Cl2 solvent mol­ecules per unit cell. Rigid mol­ecules of the 1,3-alternate calixarene 2 form a columnar head-to-tail packing parallel to [010] via van der Waals inter­actions, and the resulting columns are held together by weak C—H⋯π contacts.




bi

Crystal structure of bis­{2-[5-(3,4,5-tri­meth­oxyphenyl)-4H-1,2,4-triazol-3-yl]pyridine}palladium(II) bis­(tri­fluoro­acetate) tri­fluoro­acetic acid disolvate

The new palladium(II) complex, [Pd(C16H16N4O3)2](CF3COO)2·2CF3COOH, crystallizes in the triclinic space group Poverline{1} with the asymmetric unit containing half the cation (PdII site symmetry Ci), one tri­fluoro­actetate anion and one co-crystallized tri­fluoro­acetic acid mol­ecule. Two neutral chelating 2-[5-(3,4,5-tri­meth­oxy­phen­yl)-4H-1,2,4-triazol-3-yl]pyridine ligands coordinate to the PdII ion through the triazole-N and pyridine-N atoms in a distorted trans-PdN4 square-planar configuration [Pd—N 1.991 (2), 2.037 (2) Å; cis N—Pd—N 79.65 (8), 100.35 (8)°]. The complex cation is quite planar, except for the methoxo groups (δ = 0.117 Å for one of the C atoms). The planar configuration is supported by two intra­molecular C—H⋯N hydrogen bonds. In the crystal, the π–π-stacked cations are arranged in sheets parallel to the ab plane that are flanked on both sides by the tri­fluoro­acetic acid–tri­fluoro­acetate anion pairs. Apart from classical N/O—H⋯O hydrogen-bonding inter­actions, weak C—H⋯F/N/O contacts consolidate the three-dimensional architecture. Both tri­fluoro­acetic moieties were found to be disordered over two resolvable positions with a refined occupancy ratio of 0.587 (1):0.413 (17) and 0.530 (6):0.470 (6) for the protonated and deprotonated forms, respectively.




bi

Bis(2-chloro-N,N-di­methyl­ethan-1-aminium) tetra­chlorido­cobaltate(II) and tetra­chlorido­zincate(II)

The few examples of structures containing the 2-chloro-N,N-di­methyl­ethan-1-aminium or 3-chloro-N,N-di­methyl­propan-1-aminium cations show a compet­ition between gauche and anti conformations for the chloro­alkyl chain. To explore further the conformational landscape of these cations, and their possible use as mol­ecular switches, the title salts, (C4H11ClN)2[CoCl4] and (C4H11ClN)2[ZnCl4], were prepared and structurally characterized. Details of both structures are in close agreement. The inorganic complex exhibits a slightly flattened tetra­hedral geometry that likely arises from bifurcated N—H hydrogen bonds from the organic cations. The alkyl chain of the cation is disordered between gauche and anti conformations with the gauche conformation occupancy refined to 0.707 (2) for the cobaltate. The gauche conformation places the terminal Cl atom at a tetra­hedral face of the inorganic complex with a contact distance of 3.7576 (9) Å to the Co2+ center. The anti conformation places the terminal Cl atom at a contact distance to a neighboring anti conformation terminal Cl atom that is ∼1 Å less than the sum of the van der Waals radii. Thus, if the anti conformation is present at a site, then the nearest neighbor must be gauche. DFT geometry optimizations indicate the gauche conformation is more stable in vacuo by 0.226 eV, which reduces to 0.0584 eV when calculated in a uniform dielectric. DFT geometry optimizations for the unprotonated mol­ecule indicate the anti conformation is stabilized by 0.0428 eV in vacuo, with no strongly preferred conformation in uniform dielectric, to provide support to the notion that this cation could function as a mol­ecular switch via deprotonation.




bi

Synthesis, crystal structure and properties of poly[di-μ3-chlorido-di-μ2-chlorido-bis­[4-methyl-N-(pyridin-2-yl­methyl­idene)aniline]dicadmium(II)]

The title coordination polymer with the 4-methyl-N-(pyridin-2-yl­methyl­idene)aniline Schiff base ligand (L, C13H12N2), [Cd2Cl4(C13H12N2)]n (1), exhibits a columnar structure extending parallel to [100]. The columns are aligned in parallel and are decorated with chelating L ligands on both sides. They are elongated into a supra­molecular sheet extending parallel to (01overline{1}) through π–π stacking inter­actions involving L ligands of neighbouring columns. Adjacent sheets are packed into the tri-periodic supra­molecular network through weak C—H⋯Cl hydrogen-bonding inter­actions that involve the phenyl CH groups and chlorido ligands. The thermal stability and photoluminescent properties of (1) have also been examined.




bi

Crystal structure and Hirshfeld surface analysis of 3,3'-[ethane-1,2-diylbis(­oxy)]bis­(5,5-di­methyl­cyclo­hex-2-en-1-one) including an unknown solvate

The title mol­ecule, C18H26O4, consists of two symmetrical halves related by the inversion centre at the mid-point of the central –C—C– bond. The hexene ring adopts an envelope conformation. In the crystal, the mol­ecules are connected into dimers by C—H⋯O hydrogen bonds with R22(8) ring motifs, forming zigzag ribbons along the b-axis direction. According to a Hirshfeld surface analysis, H⋯H (68.2%) and O⋯H/H⋯O (25.9%) inter­actions are the most significant contributors to the crystal packing. The contribution of some disordered solvent to the scattering was removed using the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] in PLATON. The solvent contribution was not included in the reported mol­ecular weight and density.




bi

Crystal structures of 1,1'-bis­(carb­oxy­meth­yl)-4,4'-bipyridinium derivatives

The crystal structures of 2-[1'-(carb­oxy­meth­yl)-4,4'-bi­pyridine-1,1'-diium-1-yl]acetate tetra­fluoro­borate, C14H13N2O4+·BF4− or (Hbcbpy)(BF4), and neutral 1,1'-bis­(carboxyl­atometh­yl)-4,4'-bi­pyridine-1,1'-diium (bcbpy), C14H20N2O8, are reported. The asymmetric unit of the (Hbcbpy)(BF4) consists of a Hbcbpy+ monocation, a BF4− anion, and one-half of a water mol­ecule. The BF4− anion is disordered. Two pyridinium rings of the Hbcbpy+ monocation are twisted at a torsion angle of 30.3 (2)° with respect to each other. The Hbcbpy monocation contains a carb­oxy­lic acid group and a deprotonated carboxyl­ate group. Both groups exhibit both a long and a short C—O bond. The cations are linked by inter­molecular hydrogen-bonding inter­actions between the carb­oxy­lic acid and the deprotonated carboxyl­ate group to give one-dimensional zigzag chains. The asymmetric unit of the neutral bcbpy consists of one-half of the bcbpy and two water mol­ecules. In contrast to the Hbcbpy+ monocation, the neutral bcbpy mol­ecule contains two pyridinium rings that are coplanar with each other and a carboxyl­ate group with similar C—O bond lengths. The mol­ecules are connected by inter­molecular hydrogen-bonding inter­actions between water mol­ecules and carboxyl­ate groups, forming a three-dimensional hydrogen-bonding network.




bi

Crystal structure and Hirshfeld surface analysis of 6,6'-dimethyl-2,2'-bi­pyridine-1,1'-diium tetra­chlorido­cobaltate(II)

In the title mol­ecular salt, (C12H14N2)[CoCl4], the dihedral angle between the pyridine rings of the cation is 52.46 (9)° and the N—C—C—N torsion angle is −128.78 (14)°, indicating that the ring nitro­gen atoms are in anti-clinal conformation. The Cl—Co—Cl bond angles in the anion span the range 105.46 (3)–117.91 (2)°. In the extended structure, the cations and anions are linked by cation-to-anion N—H⋯Cl and C—H⋯Cl inter­actions, facilitating the formation of R44(18) and R44(20) ring motifs. Furthermore, the crystal structure features weak anion-to-cation Cl⋯π inter­actions [Cl⋯π = 3.4891 (12) and 3.5465 (12) Å]. Hirshfeld two-dimensional fingerprint plots revealed that the most significant inter­actions are Cl⋯H/H⋯Cl (45.5%), H⋯H (29.0%), Cl⋯C/C⋯Cl (7.8%), Cl⋯N/N⋯Cl (3.5%), Cl⋯Cl (1.4) and Co⋯H (1%) contacts.




bi

Synthesis and crystal structure of bis­(2-aminobenzimidazolium) catena-[metavanadate(V)]

The structure of polymeric catena-poly[2-amino­benzimidazolium [[dioxidovanadium(V)]-μ-oxido]], {(C7H8N3)2[V2O6]}n, has monoclinic symmetry. The title compound is of inter­est with respect to anti­cancer activity. In the crystal structure, infinite linear zigzag vanadate (V2O6)2− chains, constructed from corner-sharing VO4 tetra­hedra and that run parallel to the a axis, are present. Two different protonated 2-amino­benzimidazole mol­ecules are located between the (V2O6)2– chains and form classical N—H⋯O hydrogen bonds with the vanadate oxygen atoms, which contribute to the cohesion of the structure.




bi

Synthesis, spectroscopic analysis and crystal structure of (N-{2-[(2-amino­eth­yl)amino]­eth­yl}-4'-methyl-[1,1'-biphenyl]-4-sulfonamidato)tri­carb­on­ylrhenium(I)

The title compound, [Re(C17H22N3O2S)(CO)3] is a net neutral fac-Re(I)(CO)3 complex of the 4-methyl­biphenyl sulfonamide derivatized di­ethyl­enetri­amine ligand. The NNN-donor monoanionic ligand coordinates with the Re core in tridentate fashion, establishing an inner coordination sphere resulting in a net neutral complex. The complex possesses pseudo-octa­hedral geometry where one face of the octa­hedron is occupied by three carbonyl ligands and the other faces are occupied by one sp2 nitro­gen atom of the sulfonamide group and two sp3 nitro­gen atoms of the dien backbone. The Re—Nsp2 bond distance, 2.173 (4) Å, is shorter than the Re—Nsp3 bond distances, 2.217 (5) and 2.228 (6) Å, and is similar to the range reported for typical Re—Nsp2 bond lengths (2.14 to 2.18 Å).




bi

Rerefinement of the crystal structure of BiF5

The crystal structure of bis­muth penta­fluoride, BiF5, was rerefined from single-crystal data. BiF5 crystallizes in the α-UF5 structure type in the form of colorless needles. In comparison with the previously reported crystal-structure model [Hebecker (1971). Z. Anorg. Allg. Chem. 384, 111–114], the lattice parameters and fractional atomic coordinates were determined to much higher precision and all atoms were refined anisotropically, leading to a significantly improved structure model. The Bi atom (site symmetry 4/m..) is surrounded by six F atoms in a distorted octa­hedral coordination environment. The [BiF6] octa­hedra are corner-linked to form infinite straight chains extending parallel to [001]. Density functional theory (DFT) calculations at the PBE0/TZVP level of theory were performed on the crystal structure of BiF5 to calculate its IR and Raman spectra. These are compared with experimental data.




bi

The crystal structure of a mononuclear PrIII complex with cucurbit[6]uril

A new mononuclear complex, penta­aqua­(cucurbit[6]uril-κ2O,O')(nitrato-κ2O,O')praseodymium(III) dinitrate 9.56-hydrate, [Pr(NO3)(CB6)(H2O)5](NO3)2·9.56H2O (1), was obtained as outcome of the hydro­thermal reaction between the macrocyclic ligand cucurbit[6]uril (CB6, C36H36N24O12) with a tenfold excess of Pr(NO3)3·6H2O. Complex 1 crystallizes in the P21/n space group with two crystallographically independent but chemically identical [Pr(CB6)(NO3)(H2O)5]2+ complex cations, four nitrate counter-anions and 19.12 inter­stitial water mol­ecules per asymmetric unit. The nona­coordinated PrIII in 1 are located in the PrO9 coordination environment formed by two carbonyl O atoms from bidentate cucurbit[6]uril units, two oxygen atoms from the bidentate nitrate anion and five water mol­ecules. Considering the differences in Pr—O bond distances and O—Pr—O angles in the coordination spheres, the coordination polyhedrons of the two PrIII atoms can be described as distorted spherical capped square anti­prismatic and muffin polyhedral.




bi

Synthesis, crystal structure and thermal properties of catena-poly[[bis­(4-methyl­pyridine)­nickel(II)]-di-μ-thio­cyanato], which shows an alternating all-trans and cis–cis–trans-coordination of the NiS2Np2Nt2 octa­hedra (p = 4-me

The title compound, [Ni(NCS)2(C6H7N)2]n, was prepared by the reaction of Ni(NCS)2 with 4-methyl­pyridine in water. Its asymmetric unit consists of two crystallographically independent NiII cations, of which one is located on a twofold rotational axis whereas the second occupies a center of inversion, two independent thio­cyanate anions and two independent 4-methyl­pyridine co­ligands in general positions. Each NiII cation is octa­hedrally coordinated by two 4-methyl­pyridine coligands as well as two N- and two S-bonded thio­cyanate anions. One of the cations shows an all-trans, the other a cis–cis–trans configuration. The metal centers are linked by pairs of μ-1,3-bridging thio­cyanate anions into [101] chains. X-ray powder diffraction shows that a pure crystalline phase has been obtained and thermogravimetry coupled to differential thermoanalysis reveals that the title compound loses half of the 4-methyl­pyridine coligands and transforms into Ni(NCS)2(C6H7N). Nearly pure samples of this compound can be obtained by thermal annealing and a Rietveld refinement demonstrated that it is isotypic to its recently reported Cd analog [Neumann et al., (2020). CrystEngComm. 22, 184–194] In its crystal structure, the metal cations are linked by one μ-1,3(N,S)- and one μ-1,3,3(N,S,S)-bridging thio­cyanate anion into single chains that condense via the μ-1,3,3(N,S,S)-bridging anionic ligands into double chains.




bi

Crystal structure of polymeric bis­(3-amino-1H-pyrazole)­cadmium diiodide

The reaction of cadmium iodide with 3-amino­pyrazole (3-apz) in ethano­lic solution leads to tautomerization of the ligand and the formation of crystals of the title compound, catena-poly[[di­iodido­cadmium(II)]-bis­(μ-3-amino-1H-pyrazole)-κ2N2:N3;κ2N3:N2], [CdI2(C3H5N3)2]n or [CdI2(3-apz)2]n. Its asymmetric unit consists of a half of a Cd2+ cation, an iodide anion and a 3-apz mol­ecule. The Cd2+ cations are coordinated by two iodide anions and two 3-apz ligands, generating trans-CdN4I2 octa­hedra, which are linked into chains by pairs of the bridging ligands. In the crystal, the ligand mol­ecules and iodide anions of neighboring chains are linked through inter­chain hydrogen bonds into a di-periodic network. The inter­molecular contacts were qu­anti­fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative qu­anti­tative contributions of the weak inter­molecular contacts.




bi

Crystal and mol­ecular structure of 2-methyl-1,4-phenyl­ene bis­(3,5-di­bromo­benzoate)

The aryl diester compound, 2-methyl-1,4-phenyl­ene bis­(3,5-di­bromo­benzoate), C21H12Br4O4, was synthesized by esterification of methyl hydro­quinone with 3,5-di­bromo­benzoic acid. A crystalline sample was obtained by cooling a sample of the melt (m.p. = 502 K/DSC) to room temperature. The mol­ecular structure consists of a central benzene ring with anti-3,5-di­bromo­benzoate groups symmetrically attached at the 1 and 4 positions and a methyl group attached at the 2 position of the central ring. In the crystal structure (space group Poverline{1}), mol­ecules of the title aryl diester are located on inversion centers imposing disorder of the methyl group and H atom across the central benzene ring. The crystal structure is consolidated by a network of C—H⋯Br hydrogen bonds in addition to weaker and offset π–π inter­actions involving the central benzene rings as well as the rings of the attached 3,5-di­bromo­benzoate groups.




bi

Synthesis, mol­ecular and crystal structures of 4-amino-3,5-di­fluoro­benzo­nitrile, ethyl 4-amino-3,5-di­fluoro­benzoate, and diethyl 4,4'-(diazene-1,2-di­yl)bis­(3,5-di­fluoro­benzoate)

The crystal structures of two inter­mediates, 4-amino-3,5-di­fluoro­benzo­nitrile, C7H4F2N2 (I), and ethyl 4-amino-3,5-di­fluoro­benzoate, C9H9F2NO2 (II), along with a visible-light-responsive azo­benzene derivative, diethyl 4,4'-(diazene-1,2-di­yl)bis­(3,5-di­fluoro­benzoate), C18H14F4N2O4 (III), obtained by four-step synthetic procedure, were studied using single-crystal X-ray diffraction. The mol­ecules of I and II demonstrate the quinoid character of phenyl rings accompanied by the distortion of bond angles related to the presence of fluorine substituents in the 3 and 5 (ortho) positions. In the crystals of I and II, the mol­ecules are connected by N—H⋯N, N—H⋯F and N—H⋯O hydrogen bonds, C—H⋯F short contacts, and π-stacking inter­actions. In crystal of III, only stacking inter­actions between the mol­ecules are found.




bi

Crystal structure of bis­[(η5-tert-butyl­cyclo­pentadien­yl)tri­carbonyl­molybdenum(I)](Mo—Mo)

The dinuclear mol­ecule of the title compound, [Mo2(C9H13)2(CO)6] or [Mo(tBuCp)(CO)3]2 where tBu and Cp are tert-butyl and cyclo­penta­dienyl, is centrosymmetric and is characterized by an Mo—Mo bond length of 3.2323 (3) Å. Imposed by inversion symmetry, the tBuCp and the carbonyl ligands are in a transoid arrangement to each other. In the crystal, inter­molecular C—H⋯O contacts lead to the formation of layers parallel to the bc plane.




bi

[SnF(bipy)(H2O)]2[SnF6], a mixed-valent inorganic tin(II)–tin(IV) compound

In the title compound, bis­[aqua­(2,2'-bi­pyridine)­fluorido­tin(II)] hexa­fluorido­tin(IV), [SnF(C10H8N2)(H2O)]2[SnF6], an ionic mixed-valent tin(II)–tin(IV) compound, the bivalent tin atom is the center atom of the cation and the tetra­valent tin atom is the center atom of the anion. With respect to the first coordination sphere, the cation is monomeric, with the tin(II) atom having a fourfold seesaw coordination with a fluorine atom in an equatorial position, a water mol­ecule in an axial position and the two nitro­gen atoms of the chelating 2,2'-bi­pyridine ligand in the remaining axial and equatorial positions. The bond lengths and angles of this hypervalent first coordination sphere are described by 2c–2e and 3c–4e bonds, respectively, all of which are based on the orthogonal 5p orbitals of the tin atom. In the second coordination sphere, which is based on an additional, very long tin–fluorine bond that leads to dimerization of the cation, the tin atom is trapezoidal–pyramidally coordinated. The tetra­valent tin atom of the centrosymmetric anion has an octa­hedral coordination. The differences in its tin–fluorine bond lengths are attributed to hydrogen bonding, as the two of the four fluorine atoms are each involved in two hydrogen bonds, linking anions and cations together to form strands.




bi

Synthesis and crystal structure of 1,3-bis­(acet­oxymeth­yl)-5-{[(4,6-di­methyl­pyridin-2-yl)amino]­methyl}-2,4,6-tri­ethyl­benzene

In the crystal structure of the title compound, C26H36N2O4, the tripodal mol­ecule exists in a conformation in which the substituents attached to the central arene ring are arranged in an alternating order above and below the ring plane. The heterocyclic unit is inclined at an angle of 79.6 (1)° with respect to the plane of the benzene ring. In the crystal, the mol­ecules are connected via N—H⋯O bonds, forming infinite supra­molecular strands. Inter­strand association involves weak C—H⋯O and C—H⋯π inter­actions, with the pyridine ring acting as an acceptor in the latter case.




bi

Synthesis and crystal structure of (2E)-1-[3,5-bis­(benz­yloxy)phen­yl]-3-(4-eth­oxy­phen­yl)prop-2-en-1-one

In the title compound, C31H28O4, the phenyl rings of the chalcone unit subtend a dihedral angle of 26.43 (10)°. The phenyl rings of the pendant benz­yloxy groups are orientated at 75.57 (13) and 75.70 (10)° with respect to their attached ring. In the crystal, weak C—H⋯O and C—H⋯π inter­actions link the mol­ecules. The inter­molecular inter­actions were qu­anti­fied and analysed using Hirshfeld surface analysis, which showed a breakdown into H⋯H (49.8%), H⋯C/C⋯H (33.8%) and H⋯O/O⋯H (13.6%) inter­actions with other types making negligible contributions.




bi

Crystal structure of bis­(β-alaninium) tetra­bromidoplumbate

The title compound, poly[bis­(β-alaninium) [[di­bromido­plumbate]-di-μ-di­bromido]] {(C2H8NO2)2[PbBr4]}n or (β-AlaH)2PbBr4, crystallizes in the monoclinic space group P21/n. The (PbBr4)2− anion is located on a general position and has a two-dimensional polymeric structure. The Pb center is holodirected. The supra­molecular network is mainly based on O—H⋯Br, N—H⋯Br and N—H⋯O hydrogen bonds.




bi

Crystal structure of (1,4,7,10,13,16-hexa­oxa­cycloocta­decane-κ6O)potassium-μ-oxalato-tri­phenylstannate(IV), the first reported 18-crown-6-stabilized potassium salt of tri­phenyl­oxalatostannate

The title complex, (1,4,7,10,13,16-hexa­oxa­cyclo­octa­decane-1κ6O)(μ-oxalato-1κ2O1,O2:2κ2O1',O2')triphenyl-2κ3C-potassium(I)tin(IV), [KSn(C6H5)3(C2O4)(C12H24O6)] or K[18-Crown-6][(C6H5)3SnO4C2], was synthesized. The complex consists of a potassium cation coordinated to the six oxygen atoms of a crown ether mol­ecule and the two oxygen atoms of the oxalatotri­phenyl­stannate anion. It crystallizes in the monoclinic crystal system within the space group P21. The tin atom is coordinated by one chelating oxalate ligand and three phenyl groups, forming a cis-trigonal–bipyramidal geometry around the tin atom. The cations and anions form ion pairs, linked through carbonyl coordination to the potassium atoms. The crystal structure features C—H⋯O hydrogen bonds between the oxygen atoms of the oxalate group and the hydrogen atoms of the phenyl groups, resulting in an infinite chain structure extending along a-axis direction. The primary inter-chain inter­actions are van der Waals forces.




bi

Crystal structure, Hirshfeld surface analysis, DFT and the mol­ecular docking studies of 3-(2-chloro­acet­yl)-2,4,6,8-tetra­phenyl-3,7-di­azabicyclo­[3.3.1]nonan-9-one

In the title compound, C33H29ClN2O2, the two piperidine rings of the di­aza­bicyclo moiety adopt distorted-chair conformations. Inter­molecular C—H⋯π inter­actions are mainly responsible for the crystal packing. The inter­molecular inter­actions were qu­anti­fied and analysed using Hirshfeld surface analysis, revealing that H⋯H inter­actions contribute most to the crystal packing (52.3%). The mol­ecular structure was further optimized by density functional theory (DFT) at the B3LYP/6–31 G(d,p) level and is compared with the experimentally determined mol­ecular structure in the solid state.




bi

Three-dimensional alkaline earth metal–organic framework poly[[μ-aqua-aqua­bis­(μ3-carba­moyl­cyano­nitro­somethanido)barium] monohydrate] and its thermal decomposition

In the structure of the title salt, {[Ba(μ3-C3H2N3O2)2(μ-H2O)(H2O)]·H2O}n, the barium ion and all three oxygen atoms of the water mol­ecules reside on a mirror plane. The hydrogen atoms of the bridging water and the solvate water mol­ecules are arranged across a mirror plane whereas all atoms of the monodentate aqua ligand are situated on this mirror plane. The distorted ninefold coord­ination of the Ba ions is completed with four nitroso-, two carbonyl- and three aqua-O atoms at the distances of 2.763 (3)–2.961 (4) Å and it is best described as tricapped trigonal prism. The three-dimensional framework structure is formed by face-sharing of the trigonal prisms, via μ-nitroso- and μ-aqua-O atoms, and also by the bridging coordination of the anions via carbonyl-O atoms occupying two out of the three cap positions. The solvate water mol­ecules populate the crystal channels and facilitate a set of four directional hydrogen bonds. The principal Ba–carbamoyl­cyano­nitro­somethanido linkage reveals a rare example of the inherently polar binodal six- and three-coordinated bipartite topology (three-letter notation sit). It suggests that small resonance-stabilized cyano­nitroso anions can be utilized as bridging ligands for the supra­molecular synthesis of MOF solids. Such an outcome may be anti­cipated for a broader range of hard Lewis acidic alkaline earth metal ions, which perfectly match the coordination preferences of highly nucleophilic nitroso-O atoms. Thermal analysis reveals two-stage dehydration of the title compound (383 and 473 K) followed by decomposition with release of CO2, HCN and H2O at 558 K.




bi

Crystal structure, Hirshfeld surface analysis, DFT optimized mol­ecular structure and the mol­ecular docking studies of 1-[2-(cyano­sulfan­yl)acet­yl]-3-methyl-2,6-bis­(4-methyl­phen­yl)piperidin-4-one

The two mol­ecules in the asymmetric unit of the title compound, C23H24N2O2S, have a structural overlap with an r.m.s. deviation of 0.82 Å. The piperidine rings adopt a distorted boat conformation. Intra- and inter­molecular C—H⋯O hydrogen bonds are responsible for the cohesion of the crystal packing. The inter­molecular inter­actions were qu­anti­fied and analysed using Hirshfeld surface analysis. The mol­ecular structure optimized by density functional theory (DFT) at the B3LYP/6–311++G(d,p)level is compared with the experimentally determined mol­ecular structure in the solid state.




bi

Synthesis, crystal structure and Hirshfeld surface analysis of 4'-cyano-[1,1'-biphen­yl]-4-yl 3-(benz­yloxy)benzoate

In the title compound, C27H19O3N, the dihedral angle between the aromatic rings of the biphenyl unit is 38.14 (2)° and the C—O—C—C torsion angle in the benz­yloxy benzene fragment is 179.1 (2)°. In the crystal, the mol­ecules are linked by weak C—H⋯O inter­actions forming S(9) chains propagating along [010]. The most important contributions to the Hirshfeld surface arise from H⋯H (32.4%) and C⋯H/H⋯C (37.0%) contacts.




bi

Crystal structure of bis­(μ2-5-nona­noylquinolin-8-olato)bis­[aqua­dichlorido­indium(III)]

Crystallization of 5-nona­noyl-8-hy­droxy­quinoline in the presence of InCl3 in aceto­nitrile yields a dinuclear InIII complex crystallizing in the space group Poverline{1}. In this complex, [In2(C18H22NO2)2Cl4(H2O)2], each indium ion is sixfold coordinated by two chloride ions, one water mol­ecule and two 8-quinolino­late ions. The crystal of the title complex is composed of two-dimensional supra­molecular aggregates, resulting from the linkage of the Owater—H⋯O=C and Owater—H⋯Cl hydrogen bonds as well as bifurcated Carene—H⋯Cl contacts.




bi

Synthesis, crystal structure and Hirshfeld surface analysis of (2-amino-1-methyl­benzimidazole-κN3)aqua­bis­(4-oxopent-2-en-2-olato-κ2O,O')nickel(II) ethanol monosolvate

The mol­ecule of the title compound, [Ni(C5H7O2)2(C8H9N3)(H2O)]·C2H5OH, has triclinic (Poverline{1}) symmetry. This compound is of inter­est for its anti­microbial properties. The asymmetric unit comprises two independent complex mol­ecules, which are linked by N—H⋯O and O—H⋯O hydrogen bonds along [111]. Hirshfeld surface analysis indicates that 71.7% of inter­mol­ecular inter­actions come from H⋯H contacts, 17.7% from C⋯H/H⋯C contacts and 7.6% from O⋯H/H⋯O contacts, with the remaining contribution coming from N⋯H/H⋯N, C⋯N/N⋯C, C⋯C and O⋯O contacts.




bi

Synthesis, non-spherical structure refinement and Hirshfeld surface analysis of racemic 2,2'-diisobut­oxy-1,1'-bi­naphthalene

In the racemic title compound, C28H30O2, the naphthyl ring systems subtend a dihedral angle of 68.59 (1)° and the mol­ecular conformation is consolidated by a pair of intra­molecular C—H⋯π contacts. The crystal packing features a weak C—H⋯π contact and van der Waals forces. A Hirshfeld surface analysis of the crystal structure reveals that the most significant contributions are from H⋯H (73.2%) and C⋯H/H⋯C (21.2%) contacts.




bi

Crystal structure and Hirshfeld surface analysis of {2-[bis­(pyridin-2-ylmeth­yl)amino]­ethane-1-thiol­ato}­chlorido­cadmium(II)

The title compound, [Cd(C14H16N3S)Cl] or [CdLCl] (1), where LH = 2-[bis­(pyridin-2-ylmeth­yl)amino]­ethane-1-thiol, was prepared and structurally characterized. The Cd2+ complex crystallizes in P21/c with a distorted trigonal–bipyramidal metal coordination geometry. Supra­molecular inter­actions in 1 include parallel offset face-to-face inter­actions between inversion-related pyridyl rings and potential hydrogen bonds with chlorine or sulfur as the acceptor. Additional cooperative pyrid­yl–pyridyl inter­actions with roughly 45° tilt angles and centroid–centroid distances of less than 5.5 Å likely also contribute to the overall solid-state stability. Hirshfeld surface analysis indicates that H⋯H (51.2%), Cl⋯H/H⋯Cl (13.9%), C⋯H/H⋯C (12.3%) and S⋯H/H⋯S (11.8%) inter­actions are dominant in the solid state.




bi

Synthesis, crystal structure and properties of μ-tetra­thio­anti­monato-bis­[(cyclam)zinc(II)] perchlorate 0.8-hydrate

The reaction of Zn(ClO4)2·6H2O with Na3SbS4·9H2O in a water/aceto­nitrile mixture leads to the formation of the title compound, (μ-tetra­thio­anti­monato-κ2S:S')bis­[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N)zinc(II)] perchlorate 0.8-hydrate, [Zn2(SbS4)(C10H24N4)2]ClO4·0.8H2O or [(Zn-cyclam)2(SbS4)]+[ClO4]−·0.8H2O. The asymmetric unit consists of two crystallographically independent [SbS4]3– anions, two independent perchlorate anions and two independent water mol­ecules as well as four crystallographically independent Zn(cyclam)2+ cations that are located in general positions. Both perchlorate anions and one cyclam ligand are disordered and were refined with a split mode using restraints. The water mol­ecules are partially occupied. Two Zn(cyclam)2+ cations are linked via the [SbS4]3– anions into [Zn2(cyclam)2SbS4]+ cations that are charged-balanced by the [ClO4]− anions. The water mol­ecules of crystallization are hydrogen bonded to the [SbS4]3– anions. The cations, anions and water mol­ecules are linked by N—H⋯O, N—H⋯S and O—H⋯S hydrogen bonds into a three-dimensional network. Powder X-ray diffraction proves that a pure sample had been obtained that was additionally investigated for its spectroscopic properties.




bi

Synthesis and crystal structure of sodium (ethane-1,2-di­yl)bis­[(3-meth­oxy­prop­yl)phosphinodi­thiol­ate] octa­hydrate

The title compound, catena-poly[[tri­aqua­sodium]-di-μ-aqua-[tri­aqua­sodium]-μ-(ethane-1,2-di­yl)bis­[(3-meth­oxy­prop­yl)phosphinodi­thiol­ato]], [Na2(C10H22O2P2S4)(H2O)8]n, crystallizes in the triclinic space group P1. The dianionic [CH3O(CH2)3P(=S)(S—)CH2CH2P(=S)(S—)(CH2)3OCH3]2− ligand fragments are joined by a dicationic [Na2(H2O)8]2+ cluster that includes the oxygen of the meth­oxy­propyl unit of the ligand to form infinite chains.




bi

Triclinic polymorph of bis­[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] tetra­chloridocadmium(II)

The crystal structure of the title organic–inorganic hybrid salt, (C13H12N3)2[CdCl4], (I), has been reported with four mol­ecules in the asymmetric unit in a monoclinic cell [Vassilyeva et al. (2021). RSC Advances, 11, 7713–7722]. While using two different aldehydes in the oxidative cyclization–condensation involving CH3NH2·HCl to prepare a new monovalent cation with the imidazo[1,5-a]pyridinium skeleton, a new polymorph was obtained for (I) in space group P1 and a unit cell with approximately half the volume of the monoclinic form. The structural configurations of the two crystallographically non-equivalent organic cations as well as the geometry of the moderately distorted tetra­hedral CdCl42– dianion show minor changes. In the crystal, identically stacked cations and tetra­chloro­cadmate anions form separate columns parallel to the a axis. The loose packing of the anions leads to a minimal separation of approximately 9.53 Å between the metal atoms in the triclinic form versus 7.51 Å in the monoclinic one, indicating that the latter is packed slightly more densely. The two forms also differ by aromatic stacking motifs. Similar to the monoclinic polymorph, the triclinic one excited at 364 nm shows an intense unsymmetrical photoluminescent band with maximum at 403 nm and a full width at half maximum of 51 nm in the solid state.




bi

Crystal structure of a hydrogen-bonded 2:1 co-crystal of 4-nitro­phenol and 4,4'-bi­pyridine

In the title compound, C10H8N2·2C6H5NO3, 4-nitro­phenol and 4,4'-bi­pyridine crystallized together in a 2:1 ratio in the space group P21/n. There is a hydrogen-bonding inter­action between the nitro­gen atoms on the 4,4'-bi­pyridine mol­ecule and the hydrogen atom on the hydroxyl group on the 4-nitro­phenol, resulting in trimolecular units. This structure is a polymorph of a previously reported structure [Nayak & Pedireddi (2016). Cryst. Growth Des. 16, 5966–5975], which differs mainly due to a twist in the 4,4'-bi­pyridine mol­ecule.




bi

Crystal structure of (μ2-7-{[bis­(pyridin-2-ylmeth­yl)amino-1κ3N,N',N'']meth­yl}-5-chloro­quinolin-8-olato-2κN;1:2κ2O)tri­chlorido-1κCl,2κ2Cl-dizinc(II)

The title compound, [Zn2(C22H18ClN4O)Cl3], is a dinuclear zinc(II) complex with three chlorido ligands and one penta­dentate ligand containing quinolin-8-olato and bis­(pyridin-2-ylmeth­yl)amine groups. One of the two ZnII atom adopts a tetra­hedral geometry and coordinates two chlorido ligands with chelate coord­ination of the N and O atoms of the quinolin-8-olato group in the ligand. The other ZnII atom adopts a distorted trigonal–bipyramidal geometry, and coordinates one chlorido-O atom of the quinolin-8-olato group and three N atoms of the bis­(pyridin-2-ylmeth­yl)amine unit. In the crystal, two mol­ecules are associated through a pair of inter­molecular C—H⋯Cl hydrogen bonds, forming a dimer with an R22(12) ring motif. Another inter­molecular C—H⋯Cl hydrogen bond forms a spiral C(8) chain running parallel to the [010] direction. The dimers are linked by these two inter­molecular C—H⋯Cl hydrogen bonds, generating a ribbon sheet structure in ac plane. Two other inter­molecular C—H⋯Cl hydrogen bonds form a C(7) chain along the c-axis direction and another C(7) chain generated by a d-glide plane. The mol­ecules are cross-linked through the four inter­molecular C—H⋯Cl hydrogen bonds to form a three-dimensional network.




bi

Structural multiplicity in a solvated hydrate of the anti­retroviral protease inhibitor Lopinavir

Lopinavir is a potent protease inhibitor that is used as a first-line pharmaceutical drug for the treatment of HIV. The multi-component solvated Lopinavir crystal, systematic name (2S)-N-[(2S,4S,5S)-5-[2-(2,6-di­methyl­phen­oxy)acetamido]-4-hy­droxy-1,6-di­phenyl­hexan-2-yl]-3-methyl-2-(2-oxo-1,3-diazinan-1-yl)butanamide–ethane-1,2-diol–water (8/3/7) 8C37H48N4O5·3C2H6O2·7H2O, was prepared using evaporative methods. The crystalline material obtained from this experimental synthesis was characterized and elucidated by single-crystal X-ray diffraction (SC-XRD). The crystal structure is unusual in that the unit cell contains 18 mol­ecules. The stoichiometric ratio of this crystal is eight Lopinavir mol­ecules [8(C37H48N4O5)], three ethane-1,2-diol mol­ecules [3(C2H6O2)] and seven water mol­ecules [7(H2O)]. The crystal packing features both bi- and trifurcated hydrogen bonds between atoms.




bi

Crystal structure of bis­{5-(4-chloro­phen­yl)-3-[6-(1H-pyrazol-1-yl)pyridin-2-yl]-1H-1,2,4-triazol-1-ido}nickel(II) methanol disolvate

The unit cell of the title compound, [Ni(C16H10ClN6)2]·2CH3OH, consists of a neutral complex and two methanol mol­ecules. In the complex, the two tridentate 2-(3-(4-chloro­phen­yl)-1H-1,2,4-triazol-5-yl)-6-(1H-pyrazol-1-yl)pyridine ligands coordinate to the central NiII ion through the N atoms of the pyrazole, pyridine and triazole groups, forming a pseudo­octa­hedral coordination sphere. Neighbouring tapered mol­ecules are linked through weak C—H(pz)⋯π(ph) inter­actions into monoperiodic chains, which are further linked through weak C—H⋯N/C inter­actions into diperiodic layers. The inter­molecular contacts were qu­anti­fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H 32.8%, C⋯H/H⋯C 27.5%, N⋯H/H⋯N 15.1%, and Cl⋯H/H⋯Cl 14.0%. The average Ni—N bond distance is 2.095 Å. Energy framework analysis at the HF/3–21 G theory level was performed to qu­antify the inter­action energies in the crystal structure.




bi

Crystal structure and Hirshfeld surface analysis of bis­(benzoyl­acetonato)(ethanol)dioxidouranium(VI)

A new uranium metal–organic complex salt, [U(C10H9O2)2O2(C2H6O)], with benzoyl acetone, namely, bis­(benzoyl­acetonato)(ethanol)dioxidouranium(VI), was synthesized. The compound has monoclinic P21/n symmetry. The geometry of the seven-coordinate U atom is penta­gonal bipyramidal, with the uranyl oxygen atoms in apical positions. In the complex, the ligands bind to the metal through oxygen atoms. Additional weak O—H⋯O contacts between the cations and anions consolidate the three-dimensional arrangement of the structure. On the Hirshfeld surface, the largest contributions come from the short contacts such as van der Waals forces, including H⋯H, O⋯H and C⋯H. Inter­actions including C⋯C and O⋯C contacts were also observed; however, their contribution to the overall cohesion of the crystal structure is minor. A packing analysis was performed to check the strength of the crystal packing.




bi

BioXTAS RAW 2: new developments for a free open-source program for small-angle scattering data reduction and analysis

BioXTAS RAW is a free open-source program for reduction, analysis and modelling of biological small-angle scattering data. Here, the new developments in RAW version 2 are described. These include improved data reduction using pyFAI; updated automated Guinier fitting and Dmax finding algorithms; automated series (e.g. size-exclusion chromatography coupled small-angle X-ray scattering or SEC-SAXS) buffer- and sample-region finding algorithms; linear and integral baseline correction for series; deconvolution of series data using regularized alternating least squares (REGALS); creation of electron-density reconstructions using electron density via solution scattering (DENSS); a comparison window showing residuals, ratios and statistical comparisons between profiles; and generation of PDF reports with summary plots and tables for all analysis. Furthermore, there is now a RAW API, which can be used without the graphical user interface (GUI), providing full access to all of the functionality found in the GUI. In addition to these new capabilities, RAW has undergone significant technical updates, such as adding Python 3 compatibility, and has entirely new documentation available both online and in the program.




bi

A note on the Hendrickson–Lattman phase probability distribution and its equivalence to the generalized von Mises distribution

Hendrickson & Lattman [Acta Cryst. (1970), B26, 136–143] introduced a method for representing crystallographic phase probabilities defined on the unit circle. Their approach could model the bimodal phase probability distributions that can result from experimental phase determination procedures. It also provided simple and highly effective means to combine independent sources of phase information. The present work discusses the equivalence of the Hendrickson–Lattman distribution and the generalized von Mises distribution of order two, which has been studied in the statistical literature. Recognizing this connection allows the Hendrickson–Lattman distribution to be expressed in an alternative form which is easier to interpret, as it involves the location and concentration parameters of the component von Mises distributions. It also allows clarification of the conditions for bimodality and access to a simplified analytical method for evaluating the trigonometric moments of the distribution, the first of which is required for computing the best Fourier synthesis in the presence of phase, but not amplitude, uncertainty.




bi

From solution to structure: empowering inclusive cryo-EM with a pre-characterization pipeline for biological samples

In addressing the challenges faced by laboratories and universities with limited (or no) cryo-electron microscopy (cryo-EM) infrastructure, the ESRF, in collaboration with the Grenoble Institute for Structural Biology (IBS), has implemented the cryo-EM Solution-to-Structure (SOS) pipeline. This inclusive process, spanning grid preparation to high-resolution data collection, covers single-particle analysis and cryo-electron tomography (cryo-ET). Accessible through a rolling access route, proposals undergo scientific merit and technical feasibility evaluations. Stringent feasibility criteria demand robust evidence of sample homogeneity. Two distinct entry points are offered: users can either submit purified protein samples for comprehensive processing or initiate the pipeline with already vitrified cryo-EM grids. The SOS pipeline integrates negative stain imaging (exclusive to protein samples) as a first quality step, followed by cryo-EM grid preparation, grid screening and preliminary data collection for single-particle analysis, or only the first two steps for cryo-ET. In both cases, if the screening steps are successfully completed, high-resolution data collection will be carried out using a Titan Krios microscope equipped with a latest-generation direct electron counting detector coupled to an energy filter. The SOS pipeline thus emerges as a comprehensive and efficient solution, further democratizing access to cryo-EM research.




bi

Design and fabrication of 3D-printed in situ crystallization plates for probing microcrystals in an external electric field

X-ray crystallography is an established tool to probe the structure of macromolecules with atomic resolution. Compared with alternative techniques such as single-particle cryo-electron microscopy and micro-electron diffraction, X-ray crystallography is uniquely suited to room-temperature studies and for obtaining a detailed picture of macromolecules subjected to an external electric field (EEF). The impact of an EEF on proteins has been extensively explored through single-crystal X-ray crystallography, which works well with larger high-quality protein crystals. This article introduces a novel design for a 3D-printed in situ crystallization plate that serves a dual purpose: fostering crystal growth and allowing the concurrent examination of the effects of an EEF on crystals of varying sizes. The plate's compatibility with established X-ray crystallography techniques is evaluated.




bi

A study of stress, composition and grain interaction gradients in energy-dispersive X-ray stress analysis on materials with cubic symmetry

The influence of various combinations of residual stress, composition and grain interaction gradients in polycrystalline materials with cubic symmetry on energy-dispersive X-ray stress analysis is theoretically investigated. For the evaluation of the simulated sin2ψ distributions, two different strategies are compared with regard to their suitability for separating the individual gradients. It is shown that the separation of depth gradients of the strain-free lattice parameter a0(z) from residual stress gradients σ(z) is only possible if the data analysis is carried out in section planes parallel to the surface. The impact of a surface layer z* that is characterized by a direction-dependent grain interaction model in contrast to the volume of the material is quantified by comparing a ferritic and an austenitic steel, which feature different elastic anisotropy. It is shown to be of minor influence on the resulting residual stress depth profiles if the data evaluation is restricted to reflections hkl with orientation factors Γhkl close to the model-independent orientation Γ*. Finally, a method is proposed that allows the thickness of the anisotropic surface layer z* to be estimated on the basis of an optimization procedure.




bi

A simple protocol for determining the zone axis direction from selected-area electron diffraction spot patterns of cubic materials

Using the well known Rn ratio method, a protocol has been elaborated for determining the lattice direction for the 15 most common cubic zone axis spot patterns. The method makes use of the lengths of the three shortest reciprocal-lattice vectors in each pattern and the angles between them. No prior pattern calibration is required for the method to work, as the Rn ratio method is based entirely on geometric relationships. In the first step the pattern is assigned to one of three possible pattern types according to the angles that are measured between the three reciprocal-lattice vectors. The lattice direction [uvw] and possible Bravais type(s) and Laue indices of the corresponding reflections can then be determined by using lookup tables. In addition to determining the lattice direction, this simple geometric analysis allows one to distinguish between the P, I and F Bravais lattices for spot patterns aligned along [013], [112], [114] and [233]. Moreover, the F lattice can always be uniquely identified from the [011] and [123] patterns.




bi

Quality assessment of the wide-angle detection option planned at the high-intensity/extended Q-range SANS diffractometer KWS-2 combining experiments and McStas simulations

For a reliable characterization of materials and systems featuring multiple structural levels, a broad length scale from a few ångström to hundreds of nanometres must be analyzed and an extended Q range must be covered in X-ray and neutron scattering experiments. For certain samples or effects, it is advantageous to perform such characterization with a single instrument. Neutrons offer the unique advantage of contrast variation and matching by D-labeling, which is of great value in the characterization of natural or synthetic polymers. Some time-of-flight small-angle neutron scattering (TOF-SANS) instruments at neutron spallation sources can cover an extended Q range by using a broad wavelength band and a multitude of detectors. The detectors are arranged to cover a wide range of scattering angles with a resolution that allows both large-scale morphology and crystalline structure to be resolved simultaneously. However, for such analyses, the SANS instruments at steady-state sources operating in conventional monochromatic pinhole mode rely on additional wide-angle neutron scattering (WANS) detectors. The resolution must be tuned via a system of choppers and a TOF data acquisition option to reliably measure the atomic to mesoscale structures. The KWS-2 SANS diffractometer at Jülich Centre for Neutron Science allows the exploration of a wide Q range using conventional pinhole and lens focusing modes and an adjustable resolution Δλ/λ between 2 and 20%. This is achieved through the use of a versatile mechanical velocity selector combined with a variable slit opening and rotation frequency chopper. The installation of WANS detectors planned on the instrument required a detailed analysis of the quality of the data measured over a wide angular range with variable resolution. This article presents an assessment of the WANS performance by comparison with a McStas [Willendrup, Farhi & Lefmann (2004). Physica B, 350, E735–E737] simulation of ideal experimental conditions at the instrument.