bi Solving protein structures by combining structure prediction, molecular replacement and direct-methods-aided model completion By journals.iucr.org Published On :: 2024-01-13 Highly accurate protein structure prediction can generate accurate models of protein and protein–protein complexes in X-ray crystallography. However, the question of how to make more effective use of predicted models for completing structure analysis, and which strategies should be employed for the more challenging cases such as multi-helical structures, multimeric structures and extremely large structures, both in the model preparation and in the completion steps, remains open for discussion. In this paper, a new strategy is proposed based on the framework of direct methods and dual-space iteration, which can greatly simplify the pre-processing steps of predicted models both in normal and in challenging cases. Following this strategy, full-length models or the conservative structural domains could be used directly as the starting model, and the phase error and the model bias between the starting model and the real structure would be modified in the direct-methods-based dual-space iteration. Many challenging cases (from CASP14) have been tested for the general applicability of this constructive strategy, and almost complete models have been generated with reasonable statistics. The hybrid strategy therefore provides a meaningful scheme for X-ray structure determination using a predicted model as the starting point. Full Article text
bi The interoperability of crystallographic data and databases By journals.iucr.org Published On :: 2024-01-01 Interoperability of crystallographic data with other disciplines is essential for the smooth and rapid progress of structure-based science in the computer age. Within crystallography and closely related subject areas, there is already a high level of conformance to the generally accepted FAIR principles (that data be findable, accessible, interoperable and reusable) through the adoption of common information exchange protocols by databases, publishers, instrument vendors, experimental facilities and software authors. Driven by the success within these domains, the IUCr has worked closely with CODATA (the Committee on Data of the International Science Council) to help develop the latter's commitment to cross-domain integration of discipline-specific data. The IUCr has, in particular, emphasized the need for standards relating to data quality and completeness as an adjunct to the FAIR data landscape. This can ensure definitive reusable data, which in turn can aid interoperability across domains. A microsymposium at the IUCr 2023 Congress provided an up-to-date survey of data interoperability within and outside of crystallography, expounded using a broad range of examples. Full Article text
bi The curious case of proton migration under pressure in the malonic acid and 4,4'-bipyridine cocrystal By journals.iucr.org Published On :: 2024-01-13 In the search for new active pharmaceutical ingredients, the precise control of the chemistry of cocrystals becomes essential. One crucial step within this chemistry is proton migration between cocrystal coformers to form a salt, usually anticipated by the empirical ΔpKa rule. Due to the effective role it plays in modifying intermolecular distances and interactions, pressure adds a new dimension to the ΔpKa rule. Still, this variable has been scarcely applied to induce proton-transfer reactions within these systems. In our study, high-pressure X-ray diffraction and Raman spectroscopy experiments, supported by DFT calculations, reveal modifications to the protonation states of the 4,4'-bipyridine (BIPY) and malonic acid (MA) cocrystal (BIPYMA) that allow the conversion of the cocrystal phase into ionic salt polymorphs. On compression, neutral BIPYMA and monoprotonated (BIPYH+MA−) species coexist up to 3.1 GPa, where a phase transition to a structure of P21/c symmetry occurs, induced by a double proton-transfer reaction forming BIPYH22+MA2−. The low-pressure C2/c phase is recovered at 2.4 GPa on decompression, leading to a 0.7 GPa hysteresis pressure range. This is one of a few studies on proton transfer in multicomponent crystals that shows how susceptible the interconversion between differently charged species is to even slight pressure changes, and how the proton transfer can be a triggering factor leading to changes in the crystal symmetry. These new data, coupled with information from previous reports on proton-transfer reactions between coformers, extend the applicability of the ΔpKa rule incorporating the pressure required to induce salt formation. Full Article text
bi Structural analysis of nanocrystals by pair distribution function combining electron diffraction with crystal tilting By journals.iucr.org Published On :: 2024-02-16 As an important characterization method, pair distribution function (PDF) has been extensively used in structural analysis of nanomaterials, providing key insights into the degree of crystallinity, atomic structure, local disorder etc. The collection of scattering signals with good statistics is necessary for a reliable structural analysis. However, current conventional electron diffraction experiments using PDF (ePDF) are limited in their ability to acquire continuous diffraction rings for large nanoparticles. Herein, a new method – tilt-ePDF – is proposed to improve the data quality and compatibility of ePDF by a combination of electron diffraction and specimen tilting. In the present work, a tilt-series of electron diffraction patterns was collected from gold nanoparticles with three different sizes and a standard sample polycrystalline aluminium film for ePDF analysis. The results show that tilt-ePDF can not only enhance the continuity of diffraction rings, but can also improve the signal-to-noise ratio in the high scattering angle range. As a result, compared with conventional ePDF data, tilt-ePDF data provide structure parameters with a better accuracy and lower residual factors in the refinement against the crystal structure. This method provides a new way of utilizing ePDF to obtain accurate local structure information from nanoparticles. Full Article text
bi Structural dissection of two redox proteins from the shipworm symbiont Teredinibacter turnerae By journals.iucr.org Published On :: 2024-03-01 The discovery of lytic polysaccharide monooxygenases (LPMOs), a family of copper-dependent enzymes that play a major role in polysaccharide degradation, has revealed the importance of oxidoreductases in the biological utilization of biomass. In fungi, a range of redox proteins have been implicated as working in harness with LPMOs to bring about polysaccharide oxidation. In bacteria, less is known about the interplay between redox proteins and LPMOs, or how the interaction between the two contributes to polysaccharide degradation. We therefore set out to characterize two previously unstudied proteins from the shipworm symbiont Teredinibacter turnerae that were initially identified by the presence of carbohydrate binding domains appended to uncharacterized domains with probable redox functions. Here, X-ray crystal structures of several domains from these proteins are presented together with initial efforts to characterize their functions. The analysis suggests that the target proteins are unlikely to function as LPMO electron donors, raising new questions as to the potential redox functions that these large extracellular multi-haem-containing c-type cytochromes may perform in these bacteria. Full Article text
bi Time-series analysis of rhenium(I) organometallic covalent binding to a model protein for drug development By journals.iucr.org Published On :: 2024-04-19 Metal-based complexes with their unique chemical properties, including multiple oxidation states, radio-nuclear capabilities and various coordination geometries yield value as potential pharmaceuticals. Understanding the interactions between metals and biological systems will prove key for site-specific coordination of new metal-based lead compounds. This study merges the concepts of target coordination with fragment-based drug methodologies, supported by varying the anomalous scattering of rhenium along with infrared spectroscopy, and has identified rhenium metal sites bound covalently with two amino acid types within the model protein. A time-based series of lysozyme-rhenium-imidazole (HEWL-Re-Imi) crystals was analysed systematically over a span of 38 weeks. The main rhenium covalent coordination is observed at His15, Asp101 and Asp119. Weak (i.e. noncovalent) interactions are observed at other aspartic, asparagine, proline, tyrosine and tryptophan side chains. Detailed bond distance comparisons, including precision estimates, are reported, utilizing the diffraction precision index supplemented with small-molecule data from the Cambridge Structural Database. Key findings include changes in the protein structure induced at the rhenium metal binding site, not observed in similar metal-free structures. The binding sites are typically found along the solvent-channel-accessible protein surface. The three primary covalent metal binding sites are consistent throughout the time series, whereas binding to neighbouring amino acid residues changes through the time series. Co-crystallization was used, consistently yielding crystals four days after setup. After crystal formation, soaking of the compound into the crystal over 38 weeks is continued and explains these structural adjustments. It is the covalent bond stability at the three sites, their proximity to the solvent channel and the movement of residues to accommodate the metal that are important, and may prove useful for future radiopharmaceutical development including target modification. Full Article text
bi RCSB Protein Data Bank: supporting research and education worldwide through explorations of experimentally determined and computationally predicted atomic level 3D biostructures By journals.iucr.org Published On :: 2024-04-10 The Protein Data Bank (PDB) was established as the first open-access digital data resource in biology and medicine in 1971 with seven X-ray crystal structures of proteins. Today, the PDB houses >210 000 experimentally determined, atomic level, 3D structures of proteins and nucleic acids as well as their complexes with one another and small molecules (e.g. approved drugs, enzyme cofactors). These data provide insights into fundamental biology, biomedicine, bioenergy and biotechnology. They proved particularly important for understanding the SARS-CoV-2 global pandemic. The US-funded Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) and other members of the Worldwide Protein Data Bank (wwPDB) partnership jointly manage the PDB archive and support >60 000 `data depositors' (structural biologists) around the world. wwPDB ensures the quality and integrity of the data in the ever-expanding PDB archive and supports global open access without limitations on data usage. The RCSB PDB research-focused web portal at https://www.rcsb.org/ (RCSB.org) supports millions of users worldwide, representing a broad range of expertise and interests. In addition to retrieving 3D structure data, PDB `data consumers' access comparative data and external annotations, such as information about disease-causing point mutations and genetic variations. RCSB.org also provides access to >1 000 000 computed structure models (CSMs) generated using artificial intelligence/machine-learning methods. To avoid doubt, the provenance and reliability of experimentally determined PDB structures and CSMs are identified. Related training materials are available to support users in their RCSB.org explorations. Full Article text
bi Biophysical and structural study of La Crosse virus endonuclease inhibition for the development of new antiviral options By journals.iucr.org Published On :: 2024-04-24 The large Bunyavirales order includes several families of viruses with a segmented ambisense (−) RNA genome and a cytoplasmic life cycle that starts by synthesizing viral mRNA. The initiation of transcription, which is common to all members, relies on an endonuclease activity that is responsible for cap-snatching. In La Crosse virus, an orthobunyavirus, it has previously been shown that the cap-snatching endonuclease resides in the N-terminal domain of the L protein. Orthobunyaviruses are transmitted by arthropods and cause diseases in cattle. However, California encephalitis virus, La Crosse virus and Jamestown Canyon virus are North American species that can cause encephalitis in humans. No vaccines or antiviral drugs are available. In this study, three known Influenza virus endonuclease inhibitors (DPBA, L-742,001 and baloxavir) were repurposed on the La Crosse virus endonuclease. Their inhibition was evaluated by fluorescence resonance energy transfer and their mode of binding was then assessed by differential scanning fluorimetry and microscale thermophoresis. Finally, two crystallographic structures were obtained in complex with L-742,001 and baloxavir, providing access to the structural determinants of inhibition and offering key information for the further development of Bunyavirales endonuclease inhibitors. Full Article text
bi Analysis of COF-300 synthesis: probing degradation processes and 3D electron diffraction structure By journals.iucr.org Published On :: 2024-05-10 Although COF-300 is often used as an example to study the synthesis and structure of (3D) covalent organic frameworks (COFs), knowledge of the underlying synthetic processes is still fragmented. Here, an optimized synthetic procedure based on a combination of linker protection and modulation was applied. Using this approach, the influence of time and temperature on the synthesis of COF-300 was studied. Synthesis times that were too short produced materials with limited crystallinity and porosity, lacking the typical pore flexibility associated with COF-300. On the other hand, synthesis times that were too long could be characterized by loss of crystallinity and pore order by degradation of the tetrakis(4-aminophenyl)methane (TAM) linker used. The presence of the degradation product was confirmed by visual inspection, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). As TAM is by far the most popular linker for the synthesis of 3D COFs, this degradation process might be one of the reasons why the development of 3D COFs is still lagging compared with 2D COFs. However, COF crystals obtained via an optimized procedure could be structurally probed using 3D electron diffraction (3DED). The 3DED analysis resulted in a full structure determination of COF-300 at atomic resolution with satisfying data parameters. Comparison of our 3DED-derived structural model with previously reported single-crystal X-ray diffraction data for this material, as well as parameters derived from the Cambridge Structural Database, demonstrates the high accuracy of the 3DED method for structure determination. This validation might accelerate the exploitation of 3DED as a structure determination technique for COFs and other porous materials. Full Article text
bi Photoinduced bidirectional mesophase transition in vesicles containing azobenzene amphiphiles By journals.iucr.org Published On :: 2024-05-28 The functionality and efficiency of proteins within a biological membrane are highly dependent on both the membrane lipid composition and the physiochemical properties of the solution. Lipid mesophases are directly influenced by changes in temperature, pH, water content or due to individual properties of single lipids such as photoswitchability. In this work, we were able to induce light- and temperature-driven mesophase transitions in a model membrane system containing a mixture of 1,2-dipalmitoyl-phosphatidylcholine phospholipids and azobenzene amphiphiles. We observed reversible and reproducible transitions between the lamellar and Pn3m cubic phase after illuminating the sample for 5 min with light of 365 and 455 nm wavelengths, respectively, to switch between the cis and trans states of the azobenzene N=N double bond. These light-controlled mesophase transitions were found for mixed complexes with up to 20% content of the photosensitive molecule and at temperatures below the gel-to-liquid crystalline phase transition temperature of 33°C. Our results demonstrate the potential to design bespoke model systems to study the response of membrane lipids and proteins upon changes in mesophase without altering the environment and thus provide a possible basis for drug delivery systems. Full Article text
bi From X-ray crystallographic structure to intrinsic thermodynamics of protein–ligand binding using carbonic anhydrase isozymes as a model system By journals.iucr.org Published On :: 2024-06-10 Carbonic anhydrase (CA) was among the first proteins whose X-ray crystal structure was solved to atomic resolution. CA proteins have essentially the same fold and similar active centers that differ in only several amino acids. Primary sulfonamides are well defined, strong and specific binders of CA. However, minor variations in chemical structure can significantly alter their binding properties. Over 1000 sulfonamides have been designed, synthesized and evaluated to understand the correlations between the structure and thermodynamics of their binding to the human CA isozyme family. Compound binding was determined by several binding assays: fluorescence-based thermal shift assay, stopped-flow enzyme activity inhibition assay, isothermal titration calorimetry and competition assay for enzyme expressed on cancer cell surfaces. All assays have advantages and limitations but are necessary for deeper characterization of these protein–ligand interactions. Here, the concept and importance of intrinsic binding thermodynamics is emphasized and the role of structure–thermodynamics correlations for the novel inhibitors of CA IX is discussed – an isozyme that is overexpressed in solid hypoxic tumors, and thus these inhibitors may serve as anticancer drugs. The abundant structural and thermodynamic data are assembled into the Protein–Ligand Binding Database to understand general protein–ligand recognition principles that could be used in drug discovery. Full Article text
bi Many locks to one key: N-acetylneuraminic acid binding to proteins By journals.iucr.org Published On :: 2024-07-04 Sialic acids play crucial roles in cell surface glycans of both eukaryotic and prokaryotic organisms, mediating various biological processes, including cell–cell interactions, development, immune response, oncogenesis and host–pathogen interactions. This review focuses on the β-anomeric form of N-acetylneuraminic acid (Neu5Ac), particularly its binding affinity towards various proteins, as elucidated by solved protein structures. Specifically, we delve into the binding mechanisms of Neu5Ac to proteins involved in sequestering and transporting Neu5Ac in Gram-negative bacteria, with implications for drug design targeting these proteins as antimicrobial agents. Unlike the initial assumptions, structural analyses revealed significant variability in the Neu5Ac binding pockets among proteins, indicating diverse evolutionary origins and binding modes. By comparing these findings with existing structures from other systems, we can effectively highlight the intricate relationship between protein structure and Neu5Ac recognition, emphasizing the need for tailored drug design strategies to inhibit Neu5Ac-binding proteins across bacterial species. Full Article text
bi Binding structures of SERF1a with NT17-polyQ peptides of huntingtin exon 1 revealed by SEC-SWAXS, NMR and molecular simulation By journals.iucr.org Published On :: 2024-08-08 The aberrant fibrillization of huntingtin exon 1 (Httex1) characterized by an expanded polyglutamine (polyQ) tract is a defining feature of Huntington's disease, a neurodegenerative disorder. Recent investigations underscore the involvement of a small EDRK-rich factor 1a (SERF1a) in promoting Httex1 fibrillization through interactions with its N terminus. By establishing an integrated approach with size-exclusion-column-based small- and wide-angle X-ray scattering (SEC-SWAXS), NMR, and molecular simulations using Rosetta, the analysis here reveals a tight binding of two NT17 fragments of Httex1 (comprising the initial 17 amino acids at the N terminus) to the N-terminal region of SERF1a. In contrast, examination of the complex structure of SERF1a with a coiled NT17-polyQ peptide (33 amino acids in total) indicates sparse contacts of the NT17 and polyQ segments with the N-terminal side of SERF1a. Furthermore, the integrated SEC-SWAXS and molecular-simulation analysis suggests that the coiled NT17 segment can transform into a helical conformation when associated with a polyQ segment exhibiting high helical content. Intriguingly, NT17-polyQ peptides with enhanced secondary structures display diminished interactions with SERF1a. This insight into the conformation-dependent binding of NT17 provides clues to a catalytic association mechanism underlying SERF1a's facilitation of Httext1 fibrillization. Full Article text
bi CheckMyMetal (CMM): validating metal-binding sites in X-ray and cryo-EM data By journals.iucr.org Published On :: 2024-08-14 Identifying and characterizing metal-binding sites (MBS) within macromolecular structures is imperative for elucidating their biological functions. CheckMyMetal (CMM) is a web based tool that facilitates the interactive validation of MBS in structures determined through X-ray crystallography and cryo-electron microscopy (cryo-EM). Recent updates to CMM have significantly enhanced its capability to efficiently handle large datasets generated from cryo-EM structural analyses. In this study, we address various challenges inherent in validating MBS within both X-ray and cryo-EM structures. Specifically, we examine the difficulties associated with accurately identifying metals and modeling their coordination environments by considering the ongoing reproducibility challenges in structural biology and the critical importance of well annotated, high-quality experimental data. CMM employs a sophisticated framework of rules rooted in the valence bond theory for MBS validation. We explore how CMM validation parameters correlate with the resolution of experimentally derived structures of macromolecules and their complexes. Additionally, we showcase the practical utility of CMM by analyzing a representative cryo-EM structure. Through a comprehensive examination of experimental data, we demonstrate the capability of CMM to advance MBS characterization and identify potential instances of metal misassignment. Full Article text
bi Structural characterization of TIR-domain signalosomes through a combination of structural biology approaches By journals.iucr.org Published On :: 2024-08-27 The TIR (Toll/interleukin-1 receptor) domain represents a vital structural element shared by proteins with roles in immunity signalling pathways across phyla (from humans and plants to bacteria). Decades of research have finally led to identifying the key features of the molecular basis of signalling by these domains, including the formation of open-ended (filamentous) assemblies (responsible for the signalling by cooperative assembly formation mechanism, SCAF) and enzymatic activities involving the cleavage of nucleotides. We present a historical perspective of the research that led to this understanding, highlighting the roles that different structural methods played in this process: X-ray crystallography (including serial crystallography), microED (micro-crystal electron diffraction), NMR (nuclear magnetic resonance) spectroscopy and cryo-EM (cryogenic electron microscopy) involving helical reconstruction and single-particle analysis. This perspective emphasizes the complementarity of different structural approaches. Full Article text
bi Solvent organization in the ultrahigh-resolution crystal structure of crambin at room temperature By journals.iucr.org Published On :: 2024-08-27 Ultrahigh-resolution structures provide unprecedented details about protein dynamics, hydrogen bonding and solvent networks. The reported 0.70 Å, room-temperature crystal structure of crambin is the highest-resolution ambient-temperature structure of a protein achieved to date. Sufficient data were collected to enable unrestrained refinement of the protein and associated solvent networks using SHELXL. Dynamic solvent networks resulting from alternative side-chain conformations and shifts in water positions are revealed, demonstrating that polypeptide flexibility and formation of clathrate-type structures at hydrophobic surfaces are the key features endowing crambin crystals with extraordinary diffraction power. Full Article text
bi Crossing length scales: X-ray approaches to studying the structure of biological materials By journals.iucr.org Published On :: 2024-08-28 Biological materials have outstanding properties. With ease, challenging mechanical, optical or electrical properties are realised from comparatively `humble' building blocks. The key strategy to realise these properties is through extensive hierarchical structuring of the material from the millimetre to the nanometre scale in 3D. Though hierarchical structuring in biological materials has long been recognized, the 3D characterization of such structures remains a challenge. To understand the behaviour of materials, multimodal and multi-scale characterization approaches are needed. In this review, we outline current X-ray analysis approaches using the structures of bone and shells as examples. We show how recent advances have aided our understanding of hierarchical structures and their functions, and how these could be exploited for future research directions. We also discuss current roadblocks including radiation damage, data quantity and sample preparation, as well as strategies to address them. Full Article text
bi Unity gives strength: combining Bertaut's and Belov's concepts and the formalism of aperiodic crystals to solve magnetic structures of unprecedented complexity By journals.iucr.org Published On :: 2024-10-29 Full Article text
bi Ab initio crystal structures and relative phase stabilities for the aleksite series, PbnBi4Te4Sn+2 By journals.iucr.org Published On :: 2023-11-01 Density functional theory methods are applied to crystal structures and stabilities of phases from the aleksite homologous series, PbnBi4Te4Sn+2 (n = homologue number). The seven phases investigated correspond to n = 0 (tetradymite), 2 (aleksite-21R and -42R), 4 (saddlebackite-9H and -18H), 6 (unnamed Pb6Bi4Te4S8), 8 (unnamed Pb8Bi4Te4S10), 10 (hitachiite) and 12 (unnamed Pb12Bi4Te4S14). These seven phases correspond to nine single- or double-module structures, each comprising an odd number of atom layers, 5, 7, (5.9), 9, (7.11), 11, 13, 15 and 17, expressed by the formula: S(MpXp+1)·L(Mp+1Xp+2), where M = Pb, Bi and X = Te, S, p ≥ 2, and S and L = number of short and long modules, respectively. Relaxed structures show a and c values within 1.5% of experimental data; a and the interlayer distance dsub decrease with increasing PbS content. Variable Pb—S bond lengths contrast with constant Pb—S bond lengths in galena. All phases are n-fold superstructures of a rhombohedral subcell with c/3 = dsub*. Electron diffraction patterns show two brightest reflections at the centre of dsub*, described by the modulation vector qF = (i/N) · dsub*, i = S + L. A second modulation vector, q = γ · csub*, shows a decrease in γ, from 1.8 to 1.588, across the n = 0 to n = 12 interval. The linear relationship between γ and dsub allows the prediction of any theoretical phases beyond the studied compositional range. The upper PbS-rich limit of the series is postulated as n = 398 (Pb398Bi4Te4S400), a phase with dsub (1.726 Å) identical to that of trigonal PbS within experimental error. The aleksite series is a prime example of mixed layer compounds built with accretional homology principles. Full Article text
bi K0.72Na1.71Ca5.79Si6O19 – the first oligosilicate based on [Si6O19]-hexamers and its stability compared to cyclosilicates By journals.iucr.org Published On :: 2024-08-30 Synthesis experiments were conducted in the quaternary system K2O–Na2O–CaO–SiO2, resulting in the formation of a previously unknown compound with the composition K0.72Na1.71Ca5.79Si6O19. Single crystals of sufficient size and quality were recovered from a starting mixture with a K2O:Na2O:CaO:SiO2 molar ratio of 1.5:0.5:2:3. The mixture was confined in a closed platinum tube and slowly cooled from 1150°C at a rate of 0.1°C min−1 to 700°C before being finally quenched in air. The structure has tetragonal symmetry and belongs to space group P4122 (No. 91), with a = 7.3659 (2), c = 32.2318 (18) Å, V = 1748.78 (12) Å3, and Z = 4. The silicate anion consists of highly puckered, unbranched six-membered oligomers with the composition [Si6O19] and point group symmetry 2 (C2). Although several thousands of natural and synthetic oxosilicates have been structurally characterized, this compound is the first representative of a catena-hexasilicate anion, to the best of our knowledge. Structural investigations were completed using Raman spectroscopy. The spectroscopic data was interpreted and the bands were assigned to certain vibrational species with the support of density functional theory at the HSEsol level of theory. To determine the stability properties of the novel oligosilicate compared to those of the chemically and structurally similar cyclosilicate combeite, we calculated the electronegativity of the respective structures using the electronegativity equalization method. The results showed that the molecular electronegativity of the cyclosilicate was significantly higher than that of the oligostructure due to the different connectivities of the oxygen atoms within the molecular units. Full Article text
bi Determining magnetic structures in GSAS-II using the Bilbao Crystallographic Server tool k-SUBGROUPSMAG By journals.iucr.org Published On :: 2024-09-20 The embedded call to a special version of the web-based Bilbao Crystallographic Server tool k-SUBGROUPSMAG from within GSAS-II to form a list of all possible commensurate magnetic subgroups of a parent magnetic grey group is described. It facilitates the selection and refinement of the best commensurate magnetic structure model by having all the analysis tools including Rietveld refinement in one place as part of GSAS-II. It also provides the chosen magnetic space group as one of the 1421 possible standard Belov–Neronova–Smirnova forms or equivalent non-standard versions. Full Article text
bi Crystal structure of N-terminally hexahistidine-tagged Onchocerca volvulus macrophage migration inhibitory factor-1 By journals.iucr.org Published On :: 2024-11-06 Onchocerca volvulus causes blindness, onchocerciasis, skin infections and devastating neurological diseases such as nodding syndrome. New treatments are needed because the currently used drug, ivermectin, is contraindicated in pregnant women and those co-infected with Loa loa. The Seattle Structural Genomics Center for Infectious Disease (SSGCID) produced, crystallized and determined the apo structure of N-terminally hexahistidine-tagged O. volvulus macrophage migration inhibitory factor-1 (His-OvMIF-1). OvMIF-1 is a possible drug target. His-OvMIF-1 has a unique jellyfish-like structure with a prototypical macrophage migration inhibitory factor (MIF) trimer as the `head' and a unique C-terminal `tail'. Deleting the N-terminal tag reveals an OvMIF-1 structure with a larger cavity than that observed in human MIF that can be targeted for drug repurposing and discovery. Removal of the tag will be necessary to determine the actual biological oligomer of OvMIF-1 because size-exclusion chomatographic analysis of His-OvMIF-1 suggests a monomer, while PISA analysis suggests a hexamer stabilized by the unique C-terminal tails. Full Article text
bi Crystal structure of S-n-octyl 3-(1-phenylethylidene)dithiocarbazate and of its bis-chelated nickel(II) complex By journals.iucr.org Published On :: 2023-11-14 The nitrogen–sulfur Schiff base proligand S-n-octyl 3-(1-phenylethylidene)dithiocarbazate, C17H26N2S2 (HL), was prepared by reaction of S-octyl dithiocarbamate with acetophenone. Treatment of HL with nickel acetate yielded the complex bis[S-n-octyl 3-(1-phenylethylidene)dithiocarbazato]nickel(II), [Ni(C17H25N2S2)2] (NiL2), which was shown to adopt a tetrahedrally distorted cis-square-planar coordination geometry, with the NiSN planes of the two ligands forming a dihedral angle of 21.66 (6)°. Changes in the geometry of the L ligand upon chelation of Ni2+ are described, involving a ca 180° rotation around the N(azomethine)—C(thiolate) bond. Full Article text
bi Crystal structures of the isotypic complexes bis(morpholine)gold(I) chloride and bis(morpholine)gold(I) bromide By journals.iucr.org Published On :: 2023-11-16 The compounds bis(morpholine-κN)gold(I) chloride, [Au(C4H9NO)2]Cl, 1, and bis(morpholine-κN)gold(I) bromide, [Au(C4H9NO)2]Br, 2, crystallize isotypically in space group C2/c with Z = 4. The gold atoms, which are axially positioned at the morpholine rings, lie on inversion centres (so that the N—Au—N coordination is exactly linear) and the halide anions on twofold axes. The residues are connected by a classical hydrogen bond N—H⋯halide and by a short gold⋯halide contact to form a layer structure parallel to the bc plane. The morpholine oxygen atom is not involved in classical hydrogen bonding. Full Article text
bi Crystal structure of polymeric bis(3-amino-1H-pyrazole)cadmium dibromide By journals.iucr.org Published On :: 2023-11-14 The reaction of cadmium bromide tetrahydrate with 3-aminopyrazole (3-apz) in ethanolic solution leads to tautomerization of the ligand and the formation of crystals of the title compound, catena-poly[[dibromidocadmium(II)]-bis(μ-3-amino-1H-pyrazole)-κ2N3:N2;κ2N2:N3], [CdBr2(C3H5N3)2]n or [CdBr2(3-apz)2]n. Its asymmetric unit consists of a half of a Cd2+ cation, a bromide anion and a 3-apz molecule. The Cd2+ cations are coordinated by two bromide anions and two 3-apz ligands, generating trans-CdN4Br2 octahedra, which are linked into chains by pairs of the bridging ligands. In the crystal, the ligand molecules and bromide anions of neighboring chains are linked through interchain hydrogen bonds into a two-dimensional network. The intermolecular contacts were quantified using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative quantitative contributions of the weak intermolecular contacts. Full Article text
bi Synthesis, structure and Hirshfeld surface analysis of 1,3-bis[(1-octyl-1H-1,2,3-triazol-4-yl)methyl]-1H-benzo[d]imidazol-2(3H)-one By journals.iucr.org Published On :: 2023-11-21 The title molecule, C29H44N8O, adopts a conformation resembling a two-bladed fan with the octyl chains largely in fully extended conformations. In the crystal, C—H⋯O hydrogen bonds form chains of molecules extending along the b-axis direction, which are linked by weak C—H⋯N hydrogen bonds and C—H⋯π interactions to generate a three-dimensional network. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (68.3%), H⋯N/N⋯H (15.7%) and H⋯C/C⋯H (10.4%) interactions. Full Article text
bi Synthesis, crystal structure and Hirshfeld analysis of trans-bis(2-{1-[(6R,S)-3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl]ethylidene}-N-methylhydrazinecarbothioamidato-κ2N2,S)palladium(II) ethanol mon By journals.iucr.org Published On :: 2023-11-16 The reaction between the (R,S)-fixolide 4-methylthiosemicarbazone and PdII chloride yielded the title compound, [Pd(C20H30N3S)2]·C2H6O {common name: trans-bis[(R,S)-fixolide 4-methylthiosemicarbazonato-κ2N2S]palladium(II) ethanol monosolvate}. The asymmetric unit of the title compound consists of one bis-thiosemicarbazonato PdII complex and one ethanol solvent molecule. The thiosemicarbazononato ligands act as metal chelators with a trans configuration in a distorted square-planar geometry. A C—H⋯S intramolecular interaction, with graph-set motif S(6), is observed and the coordination sphere resembles a hydrogen-bonded macrocyclic environment. Additionally, one C—H⋯Pd anagostic interaction can be suggested. Each ligand is disordered over the aliphatic ring, which adopts a half-chair conformation, and two methyl groups [s.o.f. = 0.624 (2):0.376 (2)]. The disorder includes the chiral carbon atoms and, remarkably, one ligand has the (R)-isomer with the highest s.o.f. value atoms, while the other one shows the opposite, the atoms with the highest s.o.f. value are associated with the (S)-isomer. The N—N—C(=S)—N fragments of the ligands are approximately planar, with the maximum deviations from the mean plane through the selected atoms being 0.0567 (1) and −0.0307 (8) Å (r.m.s.d. = 0.0403 and 0.0269 Å) and the dihedral angle with the respective aromatic rings amount to 46.68 (5) and 50.66 (4)°. In the crystal, the complexes are linked via pairs of N—H⋯S interactions, with graph-set motif R22(8), into centrosymmetric dimers. The dimers are further connected by centrosymmetric pairs of ethanol molecules, building mono-periodic hydrogen-bonded ribbons along [011]. The Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are [atoms with highest/lowest s.o.f.s considered separately]: H⋯H (81.6/82.0%), H⋯C/C⋯H (6.5/6.4%), H⋯N/N⋯H (5.2/5.0%) and H⋯S/S⋯H (5.0/4.9%). Full Article text
bi An octanuclear nickel(II) pyrazolate cluster with a cubic Ni8 core and its methyl- and n-octyl-functionalized derivatives By journals.iucr.org Published On :: 2023-11-30 The molecular and crystal structure of a discrete [Ni8(μ4-OH)6(μ-4-Rpz)12]2− (R = H; pz = pyrazolate anion, C3H3N2−) cluster with an unprecedented, perfectly cubic arrangement of its eight Ni centers is reported, along with its lower-symmetry alkyl-functionalized (R = methyl and n-octyl) derivatives. Crystals of the latter two were obtained with two identical counter-ions (Bu4N+), whereas the crystal of the complex with the parent pyrazole ligand has one Me4N+ and one Bu4N+ counter-ion. The methyl derivative incorporates 1,2-dichloroethane solvent molecules in its crystal structure, whereas the other two are solvent-free. The compounds are tetrabutylazanium tetramethylazanium hexa-μ4-hydroxido-dodeca-μ2-pyrazolato-hexahedro-octanickel, (C16H36N)(C4H12N)[Ni8(C3H3N2)12(OH)6] or (Bu4N)(Me4N)[Ni8(μ4-OH)6(μ-pz)12] (1), bis(tetrabutylazanium) hexa-μ4-hydroxido-dodeca-μ2-(4-methylpyrazolato)-hexahedro-octanickel 1,2-dichloroethane 7.196-solvate, (C16H36N)2[Ni8(C4H5N2)12(OH)6]·7.196C2H4Cl2 or (Bu4N)2[Ni8(μ4-OH)6(μ-4-Mepz)12]·7.196(ClCH2CH2Cl) (2), and bis(tetrabutylazanium) hexa-μ4-hydroxido-dodeca-μ2-(4-octylpyrazolato)-hexahedro-octanickel, (C16H36N)2[Ni8(C11H19N2)12(OH)6] or (Bu4N)2[Ni8(μ4-OH)6(μ-4-nOctpz)12] (3). All counter-ions are disordered (with the exception of one Bu4N+ in 3). Some of the octyl chains of 3 (the crystal is twinned by non-merohedry) are also disordered. Various structural features are discussed and contrasted with those of other known [Ni8(μ4-OH)6(μ-4-Rpz)12]2− complexes, including extended three-dimensional metal–organic frameworks. In all three structures, the Ni8 units are lined up in columns. Full Article text
bi Synthesis, crystal structure and computational analysis of 2,7-bis(4-chlorophenyl)-3,3-dimethyl-1,4-diazepan-5-one By journals.iucr.org Published On :: 2023-11-30 In the title compound, C19H20Cl2N2O, the seven-membered 1,4-diazepane ring adopts a chair conformation while the 4-chlorophenyl substituents adopt equatorial orientations. The chlorophenyl ring at position 7 is disordered over two positions [site occupancies 0.480 (16):0.520 (16)]. The dihedral angle between the two benzene rings is 63.0 (4)°. The methyl groups at position 3 have an axial and an equatorial orientation. The compound exists as a dimer exhibiting intermolecular N—H⋯O hydrogen bonding with R22(8) graph-set motifs. The crystal structure is further stabilized by C—H⋯O hydrogen bonds together with two C—Cl⋯π (ring) interactions. The geometry was optimized by DFT using the B3LYP/6–31 G(d,p) level basis set. In addition, the HOMO and LUMO energies, chemical reactivity parameters and molecular electrostatic potential were calculated at the same level of theory. Hirshfeld surface analysis indicated that the most important contributions to the crystal packing are from H⋯H (45.6%), Cl⋯H/H⋯Cl (23.8%), H⋯C/C⋯H (12.6%), H⋯O/O⋯H (8.7%) and C⋯Cl/Cl⋯C (7.1%) interactions. Analysis of the interaction energies showed that the dispersion energy is greater than the electrostatic energy. A crystal void volume of 237.16 Å3 is observed. A molecular docking study with the human oestrogen receptor 3ERT protein revealed good docking with a score of −8.9 kcal mol−1. Full Article text
bi Dimorphism of [Bi2O2(OH)](NO3) – the ordered Pna21 structure at 100 K By journals.iucr.org Published On :: 2023-11-30 The re-investigation of [Bi2O2(OH)](NO3), dioxidodibismuth(III) hydroxide nitrate, on the basis of single-crystal X-ray diffraction data revealed an apparent structural phase transition of a crystal structure determined previously (space group Cmc21 at 173 K) to a crystal structure with lower symmetry (space group Pna21 at 100 K). The Cmc21 → Pna21 group–subgroup relationship between the two crystal structures is klassengleiche with index 2. In contrast to the crystal structure in Cmc21 with orientational disorder of the nitrate anion, disorder does not occur in the Pna21 structure. Apart from the disorder of the nitrate anion, the general structural set-up in the two crystal structures is very similar: [Bi2O2]2+ layers extend parallel to (001) and alternate with layers of (OH)− anions above and (NO3)− anions below the cationic layer. Whereas the (OH)− anion shows strong bonds to the BiIII cations, the (NO3)− anion weakly binds to the BiIII cations of the cationic layer. A rather weak O—H⋯O hydrogen-bonding interaction between the (OH)− anion and the (NO3)− anion links adjacent sheets along [001]. Full Article text
bi Crystal structure of [1,3-bis(2,4,6-trimethylphenyl)imidazolidin-2-ylidene]dichlorido(2-{[(2-methoxyethyl)(methyl)amino]methyl}benzylidene)ruthenium By journals.iucr.org Published On :: 2024-01-01 The title compound, [RuCl2(C33H43N3O)], is an example of a new generation of N,N-dialkyl ruthenium catalysts with an N—Ru coordination bond as part of a six-membered chelate ring. The Ru atom has an Addison τ parameter of 0.244, which indicates a geometry intermediate between square-based pyramidal and trigonal–bipyramidal. The complex shows the usual trans arrangement of the two chlorides, with Ru—Cl bond lengths of 2.3515 (8) and 2.379 (7) Å, and a Cl—Ru—Cl angle of 158.02 (3)°. One of the chlorine atoms and the atoms of the 2-methoxy-N-methyl-N-[(2-methylphenyl)methyl]ethane-1-amine group of the title complex display disorder over two positions in a 0.889 (2): 0.111 (2) ratio. Full Article text
bi The synthesis and structural properties of a chloridobis{N-[(4-methoxyphenyl)imino]pyrrolidine-1-carboxamide}zinc(II) (acetonitrile)trichloridozincate coordination complex By journals.iucr.org Published On :: 2024-01-01 The title complex, [ZnCl(C12H15N3O2)2][ZnCl3(CH3CN)], was synthesized and its structure was fully characterized through single-crystal X-ray diffraction analysis. The complex crystallizes in the orthorhombic system, space group Pbca (61), with a central zinc atom coordinating one chlorine atom and two pyrrolidinyl-4-methoxyphenyl azoformamide ligands in a bidentate manner, utilizing both the nitrogen and oxygen atoms in a 1,3-heterodiene (N=N—C=O) motif for coordinative bonding, yielding an overall positively (+1) charged complex. The complex is accompanied by a [(CH3CN)ZnCl3]− counter-ion. The crystal data show that the harder oxygen atoms in the heterodiene zinc chelate form bonding interactions with distances of 2.002 (3) and 2.012 (3) Å, while nitrogen atoms are coordinated by the central zinc cation with bond lengths of 2.207 (3) and 2.211 (3) Å. To gain further insight into the intermolecular interactions within the crystal, Hirshfeld surface analysis was performed, along with the calculation of two-dimensional fingerprint plots. This analysis revealed that H⋯H (39.9%), Cl⋯H/H⋯Cl (28.2%) and C⋯H/H⋯C (7.2%) interactions are dominant. This unique crystal structure sheds light on arrangement and bonding interactions with azoformamide ligands, and their unique qualities over similar semicarbazone and azothioformamide structures. Full Article text
bi Crystal structure of dilithium biphenyl-4,4'-disulfonate dihydrate By journals.iucr.org Published On :: 2024-01-01 The asymmetric unit of the title compound, μ-biphenyl-4,4'-disulfonato-bis(aqualithium), [Li2(C12H8O6S2)(H2O)2] or Li2[Bph(SO3)2](H2O)2, consists of an Li ion, half of the diphenyl-4,4'-disulfonate [Bph(SO3−)2] ligand, and a water molecule. The Li ion exhibits a four-coordinate tetrahedral geometry with three oxygen atoms of the Bph(SO3−)2 ligands and a water molecule. The tetrahedral LiO4 units, which are interconnected by biphenyl moieties, form a layer structure parallel to (100). These layers are further connected by hydrogen-bonding interactions to yield a three-dimensional network. Full Article text
bi When a dream comes true: birth of the African Crystallographic Association (AfCA) By journals.iucr.org Published On :: 2024-01-05 This paper summarizes brief perspectives on the historic process of establishing an African Crystallographic Association (AfCA) and includes representative references. It covers activities within four arbitrarily selected, approximate time slots, i.e., 1890s–1999, 2000–2013, 2014–2019 and 2020–2023. A genuine attempt is made to include appropriate role players, organizations and accompanying events within these periods. It concludes with the official admission of AfCA as the fifth Regional Associate of the IUCr at the 26th Congress and General Assembly of the IUCr in Melbourne, Australia in 2023. Full Article text
bi Crystal structure and Hirshfeld-surface analysis of diaquabis(5-methyl-1H-1,2,4-triazole-3-carboxylato)copper(II) By journals.iucr.org Published On :: 2024-01-01 The title compound, [Cu(HL)2(H2O)2] or [Cu(C4H4N3O2)2(H2O)2], is a mononuclear octahedral CuII complex based on 5-methyl-1H-1,2,4-triazole-3-carboxylic acid (H2L). [Cu(HL)2(H2O)2] was synthesized by reaction of H2L with copper(II) nitrate hexahydrate (2:1 stoichiometric ratio) in water under ambient conditions to produce clear light-blue crystals. The central Cu atom exhibits an N2O4 coordination environment in an elongated octahedral geometry provided by two bidentate HL− anions in the equatorial plane and two water molecules in the axial positions. Hirshfeld surface analysis revealed that the most important contributions to the surface contacts are from H⋯O/O⋯H (33.1%), H⋯H (29.5%) and H⋯N/N⋯H (19.3%) interactions. Full Article text
bi Synthesis, crystal structure and properties of poly[(μ-2-methylpyridine N-oxide-κ2O:O)bis(μ-thiocyanato-κ2N:S)cobalt(II)] By journals.iucr.org Published On :: 2024-01-01 The title compound, [Co(NCS)2(C6H7NO)]n or Co(NCS)2(2-methylpyridine N-oxide), was prepared by the reaction of Co(NCS)2 and 2-methylpyridine N-oxide in methanol. All crystals obtained by this procedure show reticular pseudo-merohedric twinning, but after recrystallization, one crystal was found that had a minor component with only a very few overlapping reflections. The asymmetric unit consists of one CoII cation, two thiocyanate anions and one 2-methylpyridine N-oxide coligand in general positions. The CoII cations are octahedrally coordinated by two O-bonding 2-methylpyridine N-oxide ligands, as well as two S- and two N-bonding thiocyanate anions, and are connected via μ-1,3(N,S)-bridging thiocyanate anions into chains that are linked by μ-1,1(O,O) bridging coligands into layers. No pronounced directional intermolecular interactions are observed between the layers. The 2-methylpyridine coligand is disordered over two orientations and was refined using a split model with restraints. Powder X-ray diffraction (PXRD) indicates that a pure sample was obtained and IR spectroscopy confirms that bridging thiocyanate anions are present. Thermogravimetry and differential thermoanalysis (TG-DTA) shows one poorly resolved mass loss in the TG curve that is accompanied by an exothermic and an endothermic signal in the DTA curve, which indicate the decomposition of the 2-methylpyridine N-oxide coligands. Full Article text
bi Crystal structure and Hirshfeld surface analysis of dimethyl 4-hydroxy-5,4'-dimethyl-2'-(toluene-4-sulfonylamino)biphenyl-2,3-dicarboxylate By journals.iucr.org Published On :: 2024-01-01 In the title compound, C25H25NO7S, the molecular conformation is stabilized by intramolecular O—H⋯O and N—H⋯O hydrogen bonds, which form S(6) and S(8) ring motifs, respectively. The molecules are bent at the S atom with a C—SO2—NH—C torsion angle of −70.86 (11)°. In the crystal, molecules are linked by C—H⋯O and N—H⋯O hydrogen bonds, forming molecular layers parallel to the (100) plane. C—H⋯π interactions are observed between these layers. Full Article text
bi Crystal structure and Hirshfeld surface analysis of 3-benzyl-2-[bis(1H-pyrrol-2-yl)methyl]thiophene By journals.iucr.org Published On :: 2024-01-01 In the title compound, C20H18N2S, the asymmetric unit comprises two similar molecules (A and B). In molecule A, the central thiophene ring makes dihedral angles of 89.96 (12) and 57.39 (13)° with the 1H-pyrrole rings, which are bent at 83.22 (14)° relative to each other, and makes an angle of 85.98 (11)° with the phenyl ring. In molecule B, the corresponding dihedral angles are 89.49 (13), 54.64 (12)°, 83.62 (14)° and 85.67 (11)°, respectively. In the crystal, molecular pairs are bonded to each other by N—H⋯N interactions. N—H⋯π and C—H⋯π interactions further connect the molecules, forming a three-dimensional network. A Hirshfeld surface analysis indicates that H⋯H (57.1% for molecule A; 57.3% for molecule B), C⋯H/H⋯C (30.7% for molecules A and B) and S⋯H/H⋯S (6.2% for molecule A; 6.4% for molecule B) interactions are the most important contributors to the crystal packing. Full Article text
bi JUAMI, the joint undertaking for an African materials institute: building materials science research collaborations and capabilities between continents By journals.iucr.org Published On :: 2024-01-26 JUAMI, the joint undertaking for an African materials institute, is a project to build collaborations and materials research capabilities between PhD researchers in Africa, the United States, and the world. Focusing on research-active universities in the East African countries of Kenya, Ethiopia, Tanzania and Uganda, the effort has run a series of schools focused on materials for sustainable energy and materials for sustainable development. These bring together early-career researchers from Africa, the US, and beyond, for two weeks in a close-knit environment. The program includes lectures on cutting-edge research from internationally renowned speakers, highly interactive tutorial lectures on the science behind the research, also from internationally known researchers, and hands-on practicals and team-building exercises that culminate in group proposals from self-formed student teams. The schools have benefited more than 300 early-career students and led to proposals that have received funding and have led to research collaborations and educational non-profits. JUAMI continues and has an ongoing community of alumni who share resources and expertise, and is open to like-minded people who want to join and develop contacts and collaborations internationally. Full Article text
bi Crystal structure of poly[hexa-μ-bromido-bis{2-[1-(pyridin-2-yl)ethylideneamino]ethanolato}tetracopper(II)] By journals.iucr.org Published On :: 2024-01-12 The reaction of the Schiff base 2-[1-(pyridin-2-yl)ethylideneamino]ethanol (HL), which is formed by reaction of 2-aminoethanol and 2-acetylpyridine with CuBr2 in ethanol results in the isolation of the new polymeric complex poly[hexa-μ-bromido-bis{2-[1-(pyridin-2-yl)ethylideneamino]ethanolato}tetracopper(II)], [Cu4Br6(C9H11N2O)2]n or [Cu4Br6L2]n. The asymmetric unit of the crystal structure of the polymeric [Cu4Br6L2]n complex is composed by four copper (II) cations, two monodeprotonated molecules of the ligand, and six bromide anions, which act as bridges. The ligand molecules act in a tridentate fashion through their azomethine nitrogen atoms, their pyridine nitrogen atoms, and their alcoholate O atoms. The crystal structure shows two types of geometries in the coordination polyhedrons around Cu2+ ions. Two copper cations are situated in a square-based pyramidal environment, while the two other copper cations adopt a tetrahedral geometry. Bromides anions acting as bridges between two metal ions connect the units, resulting in a tetranuclear polymer compound. Full Article text
bi Synthesis, crystal structure and thermal properties of dibromidobis(2-methylpyridine N-oxide-κO)cobalt(II) By journals.iucr.org Published On :: 2024-01-12 Reaction of CoBr2 with 2-methylpyridine N-oxide in n-butanol leads to the formation of the title compound, [CoBr2(C6H7NO)2] or [CoBr2(2-methylpyridine N-oxide)2]. Its asymmetric unit consists of one CoII cation as well as two bromide anions and two 2-methylpyridine N-oxide coligands in general positions. The CoII cations are tetrahedrally coordinated by two bromide anions and two 2-methylpyridine N-oxides, forming discrete complexes. In the crystal structure, these complexes are linked predominantly by weak C–H⋯Br hydrogen bonding into chains that propagate along the crystallographic a-axis. Powder X-ray diffraction (PXRD) measurements indicate that a pure phase was obtained. Thermoanalytical investigations prove that the title compound melts before decomposition; before melting, a further endothermic signal of unknown origin was observed that does not correspond to a phase transition. Full Article text
bi Synthesis and crystal structure of [1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene](isocyanato-κN)gold(I) By journals.iucr.org Published On :: 2024-01-19 The title complex, [Au(NCO)(C27H36N2)], was synthesized by ligand metathesis from [1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]gold(I) chloride and sodium cyanate in anhydrous tetrahydrofuran and crystallized from toluene at 233 K in the orthorhombic space group P212121, as a neutral complex with the central Au atom di-coordinated by an N-heterocyclic carbene [Au—C = 1.963 (2) Å] and an isocyanate [Au—N 1.999 (2) Å] ligands, with a linear CAuNCO moiety. The crystal packing is consolidated by C—H⋯O hydrogen bonds. Full Article text
bi Synthesis, crystal structure and Hirshfeld surface analysis of sodium bis(malonato)borate monohydrate By journals.iucr.org Published On :: 2024-01-26 In the title salt, poly[aqua[μ4-bis(malonato)borato]sodium], {[Na(C6H4BO8)]·H2O}n or Na+·[B(C3H2O4)2]−·H2O, the sodium cation exhibits fivefold coordination by four carbonyl O atoms of the bis(malonato)borate anions and a water O atom. The tetrahedral B atom at the centre of the anion leads to the formation of a polymeric three-dimensional framework, which is consolidated by C—H⋯O and O—H⋯O hydrogen bonds. A Hirshfeld surface analysis indicates that the most significant contacts in the crystal packing are H⋯O/O⋯H (49.7%), Na⋯O/O⋯Na (16.1%), O⋯O (12.6%), H⋯H (10.7%) and C⋯O/O⋯C (7.3%). Full Article text
bi (S)-(+)-1-(4-Bromophenyl)-N-[(4-methoxyphenyl)methylidene]ethylamine and bis{(S)-(+)-1-(4-bromophenyl)-N-[(4-methoxyphenyl)methylidene]ethylamine-κN}dichloridopalladium(II) By journals.iucr.org Published On :: 2024-01-26 The (S)-(+)-1-(4-bromophenyl)-N-[(4-methoxyphenyl)methylidene]ethylamine ligand, C16H16BrNO, (I), was synthesized through the reaction of 4-methoxyanisaldehyde with (S)-(−)-1-(4-bromophenyl)ethylamine. It crystallizes in the orthorhombic space group P212121 belonging to the Sohncke group, featuring a single molecule in the asymmetric unit. The refinement converged successfully, achieving an R factor of 0.0508. The PdII complex bis{(S)-(+)-1-(4-bromophenyl)-N-[(4-methoxyphenyl)methylidene]ethylamine-κN}dichloridopalladium(II), [PdCl2(C16H16BrNO)2], (II), crystallizes in the monoclinic space group P21 belonging to the Sohncke group, with two molecules in the asymmetric unit. The central atom is tetracoordinated by two N atoms and two Cl atoms, resulting in a square-planar configuration. The imine moieties exhibit a trans configuration around the PdII centre, with average Cl—Pd—N angles of approximately 89.95 and 90°. The average distances within the palladium complex for the two molecules are ∼2.031 Å for Pd—N and ∼2.309 Å for Pd—Cl. Full Article text
bi Crystal structures of sulfonamide protected bicyclic guanidines: (S)-8-{[(tert-butyldimethylsilyl)oxy]methyl}-1-[(2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl]-1,3,4,6,7,8-hexa By journals.iucr.org Published On :: 2024-02-20 Two compounds, (S)-8-{[(tert-butyldimethylsilyl)oxy]methyl}-1-[(2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl]-1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidin-1-ium trifluoromethanesulfonate, C27H46N3O4SSi+·CF3O3S−, (1) and (S)-8-(iodomethyl)-1-tosyl-1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidin-1-ium iodide, C15H21IN3O2S+·I−, (2), have been synthesized and characterized. They are bicyclic guanidinium salts and were synthesized from N-(tert-butoxycarbonyl)-l-methionine (Boc-l-Met-OH). The guanidine is protected by a 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl (Pbf, 1) or a tosyl (2) group. In the crystals of both compounds, the guanidinium group is almost planar and the N–H forms an intramolecular hydrogen bond in a six-membered ring to the oxygen atom of the sulfonamide protecting group. Full Article text
bi Crystal structure of the sodium salt of mesotrione: a triketone herbicide By journals.iucr.org Published On :: 2024-02-16 The crystal structure of the sodium salt of mesotrione, namely, catena-poly[[sodium-μ3-2-[(4-methanesulfonyl-2-nitrophenyl)carbonyl]-3-oxocyclohex-1-en-1-olato] ethanol monosolvate], {[Na(C14H12NO7S)]C2H5OH}n, is described. The X-ray structural analysis results reveal that the coordination sphere is established by two chelating O atoms, the O atom of the coordinated ethanol molecule, and an O atom from the methylsulfonyl group of a neighboring molecule. Simultaneously, an O atom of the cyclohexane fragment serves as a bridge to a neighboring sodium ion, forming a flat Na–O–Na–O quadrangle, thereby forming a mono-periodic polymer. The structure displays O—H⋯O hydrogen bonds and C—H⋯O short contacts. Thermogravimetric analysis (TGA) data indicate that the sodium salt of mesotrione decomposes in four stages. Full Article text
bi Synthesis and crystal structures of bis[1-oxopyridin-2-olato(1−)]bis(pentafluorophenyl)silicon(IV)–tetrahydrofuran–pentane (2/1/1), bis[1-oxopyridin-2-olato(1−)]bis(p-tolyl)silicon(IV), and dimes By journals.iucr.org Published On :: 2024-02-20 The neutral organosilicon(IV) complex, (C6F5)2Si(OPO)2 (OPO = 1-oxopyridin-2-one, C5H4NO2), was synthesized from (C6F5)2Si(OCH3)2 and 2 equiv. of 1-hydroxypyridin-2-one in tetrahydrofuran (THF). Single crystals grown from the diffusion of n-pentane into a THF solution were identified as a THF hemisolvate and an n-pentane hemisolvate, (C6F5)2Si(OPO)2·0.5THF·0.5C5H12 (1). p-Tolyl2Si(OPO)2 (2) and mesityl2Si(OPO)2 (3) crystallized directly from reaction mixtures of 2 equiv. of Me3Si(OPO) with p-tolyl2SiCl2 and mesityl2SiCl2, respectively, in acetonitrile. The oxygen-bonded carbon and nitrogen atoms of the OPO ligands in 1, 2, and 3 were modeled as disordered indicating co-crystallization of up to three possible diastereomers in each. Solution NMR studies support the presence of exclusively the all-cis isomer in 1 and multiple isomers in 2. Poor solubility of 3 limited its characterization in solution. Full Article text
bi Crystal structure of tetrakis(μ-2-hydroxy-3,5-diisopropylbenzoato)bis[(dimethyl sulfoxide)copper(II)] By journals.iucr.org Published On :: 2024-02-27 Metal complexes of 3,5-diisopropylsalicylate are reported to have anti-inflammatory and anti-convulsant activities. The title binuclear copper complex, [Cu2(C13H17O3)4(C2H6OS)2] or [Cu(II)2(3,5-DIPS)4(DMSO)2], contains two five-coordinate copper atoms that are bridged by four 3,5-diisopropylsalicylate ligands and capped by two axial dimethyl sulfoxide (DMSO) moieties. Each copper atom is attached to four oxygen atoms in an almost square-planar fashion, with the addition of a DMSO ligand in an apical position leading to a square-pyramidal arrangement. The hydroxy group of the diisopropylsalicylate ligands participates in intramolecular O—H⋯O hydrogen-bonding interactions. Full Article text
bi Crystal structure of 1-{4-[bis(4-methylphenyl)amino]phenyl}ethene-1,2,2-tricarbonitrile By journals.iucr.org Published On :: 2024-02-29 The title compound, C25H18N4, crystallizes in the centrosymmetric orthorhombic space group Pbca, with eight molecules in the unit cell. The main feature noticeable in the structure is the impact of the tricyanovinyl (TCV) group in forcing partial planarity of the portion of the molecule carrying the TCV group and directing the molecular packing in the solid state, resulting in the formation of π-stacks of dimers within the unit cell. Short π–π stack closest atom-to-atom distances of 3.444 (15) Å are observed. Such motif patterns are favorable as they are thought to be conducive for better charge transport in organic semiconductors, which results in enhanced device performance. Intramolecular charge transfer is evident from the shortening in the observed experimental bond lengths. The nitrogen atoms (of the cyano groups) are involved in extensive short contacts, primarily through C—H⋯NC interactions with distances of 2.637 (17) Å. Full Article text
bi Crystal structure and Hirshfeld surface analysis of 4,4'-dimethoxybiphenyl-3,3',5,5'-tetracarboxylic acid dihydrate By journals.iucr.org Published On :: 2024-03-26 In the crystal of the title compound, C18H14O10·2H2O, the arene rings of the biphenyl moiety are tilted at an angle of 24.3 (1)°, while the planes passing through the carboxyl groups are rotated at angles of 8.6 (1) and 7.7 (1)° out of the plane of the benzene ring to which they are attached. The crystal structure is essentially stabilized by O—H⋯O bonds. Here, the carboxyl groups of neighbouring host molecules are connected by cyclic R22(8) synthons, leading to the formation of a three-dimensional network. The water molecules in turn form helical supramolecular strands running in the direction of the crystallographic c-axis (chain-like water clusters). The second H atom of each water molecule provides a link to a methoxy O atom of the host molecule. A Hirshfeld surface analysis was performed to quantify the contributions of the different intermolecular interactions, indicating that the most important contributions to the crystal packing are from H⋯O/O⋯H (37.0%), H⋯H (26.3%), H⋯C/C⋯H (18.5%) and C⋯O/O⋯C (9.5%) interactions. Full Article text