for

A Quantum Algorithm To Locate Unknown Hashes For Known N-Grams Within A Large Malware Corpus. (arXiv:2005.02911v2 [quant-ph] UPDATED)

Quantum computing has evolved quickly in recent years and is showing significant benefits in a variety of fields. Malware analysis is one of those fields that could also take advantage of quantum computing. The combination of software used to locate the most frequent hashes and $n$-grams between benign and malicious software (KiloGram) and a quantum search algorithm could be beneficial, by loading the table of hashes and $n$-grams into a quantum computer, and thereby speeding up the process of mapping $n$-grams to their hashes. The first phase will be to use KiloGram to find the top-$k$ hashes and $n$-grams for a large malware corpus. From here, the resulting hash table is then loaded into a quantum machine. A quantum search algorithm is then used search among every permutation of the entangled key and value pairs to find the desired hash value. This prevents one from having to re-compute hashes for a set of $n$-grams, which can take on average $O(MN)$ time, whereas the quantum algorithm could take $O(sqrt{N})$ in the number of table lookups to find the desired hash values.




for

Multi-Resolution POMDP Planning for Multi-Object Search in 3D. (arXiv:2005.02878v2 [cs.RO] UPDATED)

Robots operating in household environments must find objects on shelves, under tables, and in cupboards. Previous work often formulate the object search problem as a POMDP (Partially Observable Markov Decision Process), yet constrain the search space in 2D. We propose a new approach that enables the robot to efficiently search for objects in 3D, taking occlusions into account. We model the problem as an object-oriented POMDP, where the robot receives a volumetric observation from a viewing frustum and must produce a policy to efficiently search for objects. To address the challenge of large state and observation spaces, we first propose a per-voxel observation model which drastically reduces the observation size necessary for planning. Then, we present a novel octree-based belief representation which captures beliefs at different resolutions and supports efficient exact belief update. Finally, we design an online multi-resolution planning algorithm that leverages the resolution layers in the octree structure as levels of abstractions to the original POMDP problem. Our evaluation in a simulated 3D domain shows that, as the problem scales, our approach significantly outperforms baselines without resolution hierarchy by 25%-35% in cumulative reward. We demonstrate the practicality of our approach on a torso-actuated mobile robot searching for objects in areas of a cluttered lab environment where objects appear on surfaces at different heights.




for

Multi-task pre-training of deep neural networks for digital pathology. (arXiv:2005.02561v2 [eess.IV] UPDATED)

In this work, we investigate multi-task learning as a way of pre-training models for classification tasks in digital pathology. It is motivated by the fact that many small and medium-size datasets have been released by the community over the years whereas there is no large scale dataset similar to ImageNet in the domain. We first assemble and transform many digital pathology datasets into a pool of 22 classification tasks and almost 900k images. Then, we propose a simple architecture and training scheme for creating a transferable model and a robust evaluation and selection protocol in order to evaluate our method. Depending on the target task, we show that our models used as feature extractors either improve significantly over ImageNet pre-trained models or provide comparable performance. Fine-tuning improves performance over feature extraction and is able to recover the lack of specificity of ImageNet features, as both pre-training sources yield comparable performance.




for

The Cascade Transformer: an Application for Efficient Answer Sentence Selection. (arXiv:2005.02534v2 [cs.CL] UPDATED)

Large transformer-based language models have been shown to be very effective in many classification tasks. However, their computational complexity prevents their use in applications requiring the classification of a large set of candidates. While previous works have investigated approaches to reduce model size, relatively little attention has been paid to techniques to improve batch throughput during inference. In this paper, we introduce the Cascade Transformer, a simple yet effective technique to adapt transformer-based models into a cascade of rankers. Each ranker is used to prune a subset of candidates in a batch, thus dramatically increasing throughput at inference time. Partial encodings from the transformer model are shared among rerankers, providing further speed-up. When compared to a state-of-the-art transformer model, our approach reduces computation by 37% with almost no impact on accuracy, as measured on two English Question Answering datasets.




for

Temporal Event Segmentation using Attention-based Perceptual Prediction Model for Continual Learning. (arXiv:2005.02463v2 [cs.CV] UPDATED)

Temporal event segmentation of a long video into coherent events requires a high level understanding of activities' temporal features. The event segmentation problem has been tackled by researchers in an offline training scheme, either by providing full, or weak, supervision through manually annotated labels or by self-supervised epoch based training. In this work, we present a continual learning perceptual prediction framework (influenced by cognitive psychology) capable of temporal event segmentation through understanding of the underlying representation of objects within individual frames. Our framework also outputs attention maps which effectively localize and track events-causing objects in each frame. The model is tested on a wildlife monitoring dataset in a continual training manner resulting in $80\%$ recall rate at $20\%$ false positive rate for frame level segmentation. Activity level testing has yielded $80\%$ activity recall rate for one false activity detection every 50 minutes.




for

Prediction of Event Related Potential Speller Performance Using Resting-State EEG. (arXiv:2005.01325v3 [cs.HC] UPDATED)

Event-related potential (ERP) speller can be utilized in device control and communication for locked-in or severely injured patients. However, problems such as inter-subject performance instability and ERP-illiteracy are still unresolved. Therefore, it is necessary to predict classification performance before performing an ERP speller in order to use it efficiently. In this study, we investigated the correlations with ERP speller performance using a resting-state before an ERP speller. In specific, we used spectral power and functional connectivity according to four brain regions and five frequency bands. As a result, the delta power in the frontal region and functional connectivity in the delta, alpha, gamma bands are significantly correlated with the ERP speller performance. Also, we predicted the ERP speller performance using EEG features in the resting-state. These findings may contribute to investigating the ERP-illiteracy and considering the appropriate alternatives for each user.




for

Quantum arithmetic operations based on quantum Fourier transform on signed integers. (arXiv:2005.00443v2 [cs.IT] UPDATED)

The quantum Fourier transform brings efficiency in many respects, especially usage of resource, for most operations on quantum computers. In this study, the existing QFT-based and non-QFT-based quantum arithmetic operations are examined. The capabilities of QFT-based addition and multiplication are improved with some modifications. The proposed operations are compared with the nearest quantum arithmetic operations. Furthermore, novel QFT-based subtraction and division operations are presented. The proposed arithmetic operations can perform non-modular operations on all signed numbers without any limitation by using less resources. In addition, novel quantum circuits of two's complement, absolute value and comparison operations are also presented by using the proposed QFT based addition and subtraction operations.




for

Warwick Image Forensics Dataset for Device Fingerprinting In Multimedia Forensics. (arXiv:2004.10469v2 [cs.CV] UPDATED)

Device fingerprints like sensor pattern noise (SPN) are widely used for provenance analysis and image authentication. Over the past few years, the rapid advancement in digital photography has greatly reshaped the pipeline of image capturing process on consumer-level mobile devices. The flexibility of camera parameter settings and the emergence of multi-frame photography algorithms, especially high dynamic range (HDR) imaging, bring new challenges to device fingerprinting. The subsequent study on these topics requires a new purposefully built image dataset. In this paper, we present the Warwick Image Forensics Dataset, an image dataset of more than 58,600 images captured using 14 digital cameras with various exposure settings. Special attention to the exposure settings allows the images to be adopted by different multi-frame computational photography algorithms and for subsequent device fingerprinting. The dataset is released as an open-source, free for use for the digital forensic community.




for

SPECTER: Document-level Representation Learning using Citation-informed Transformers. (arXiv:2004.07180v3 [cs.CL] UPDATED)

Representation learning is a critical ingredient for natural language processing systems. Recent Transformer language models like BERT learn powerful textual representations, but these models are targeted towards token- and sentence-level training objectives and do not leverage information on inter-document relatedness, which limits their document-level representation power. For applications on scientific documents, such as classification and recommendation, the embeddings power strong performance on end tasks. We propose SPECTER, a new method to generate document-level embedding of scientific documents based on pretraining a Transformer language model on a powerful signal of document-level relatedness: the citation graph. Unlike existing pretrained language models, SPECTER can be easily applied to downstream applications without task-specific fine-tuning. Additionally, to encourage further research on document-level models, we introduce SciDocs, a new evaluation benchmark consisting of seven document-level tasks ranging from citation prediction, to document classification and recommendation. We show that SPECTER outperforms a variety of competitive baselines on the benchmark.




for

The growth rate over trees of any family of set defined by a monadic second order formula is semi-computable. (arXiv:2004.06508v3 [cs.DM] UPDATED)

Monadic second order logic can be used to express many classical notions of sets of vertices of a graph as for instance: dominating sets, induced matchings, perfect codes, independent sets or irredundant sets. Bounds on the number of sets of any such family of sets are interesting from a combinatorial point of view and have algorithmic applications. Many such bounds on different families of sets over different classes of graphs are already provided in the literature. In particular, Rote recently showed that the number of minimal dominating sets in trees of order $n$ is at most $95^{frac{n}{13}}$ and that this bound is asymptotically sharp up to a multiplicative constant. We build on his work to show that what he did for minimal dominating sets can be done for any family of sets definable by a monadic second order formula.

We first show that, for any monadic second order formula over graphs that characterizes a given kind of subset of its vertices, the maximal number of such sets in a tree can be expressed as the extit{growth rate of a bilinear system}. This mostly relies on well known links between monadic second order logic over trees and tree automata and basic tree automata manipulations. Then we show that this "growth rate" of a bilinear system can be approximated from above.We then use our implementation of this result to provide bounds on the number of independent dominating sets, total perfect dominating sets, induced matchings, maximal induced matchings, minimal perfect dominating sets, perfect codes and maximal irredundant sets on trees. We also solve a question from D. Y. Kang et al. regarding $r$-matchings and improve a bound from G'orska and Skupie'n on the number of maximal matchings on trees. Remark that this approach is easily generalizable to graphs of bounded tree width or clique width (or any similar class of graphs where tree automata are meaningful).




for

Transfer Learning for EEG-Based Brain-Computer Interfaces: A Review of Progress Made Since 2016. (arXiv:2004.06286v3 [cs.HC] UPDATED)

A brain-computer interface (BCI) enables a user to communicate with a computer directly using brain signals. Electroencephalograms (EEGs) used in BCIs are weak, easily contaminated by interference and noise, non-stationary for the same subject, and varying across different subjects and sessions. Therefore, it is difficult to build a generic pattern recognition model in an EEG-based BCI system that is optimal for different subjects, during different sessions, for different devices and tasks. Usually, a calibration session is needed to collect some training data for a new subject, which is time consuming and user unfriendly. Transfer learning (TL), which utilizes data or knowledge from similar or relevant subjects/sessions/devices/tasks to facilitate learning for a new subject/session/device/task, is frequently used to reduce the amount of calibration effort. This paper reviews journal publications on TL approaches in EEG-based BCIs in the last few years, i.e., since 2016. Six paradigms and applications -- motor imagery, event-related potentials, steady-state visual evoked potentials, affective BCIs, regression problems, and adversarial attacks -- are considered. For each paradigm/application, we group the TL approaches into cross-subject/session, cross-device, and cross-task settings and review them separately. Observations and conclusions are made at the end of the paper, which may point to future research directions.




for

Decoding EEG Rhythms During Action Observation, Motor Imagery, and Execution for Standing and Sitting. (arXiv:2004.04107v2 [cs.HC] UPDATED)

Event-related desynchronization and synchronization (ERD/S) and movement-related cortical potential (MRCP) play an important role in brain-computer interfaces (BCI) for lower limb rehabilitation, particularly in standing and sitting. However, little is known about the differences in the cortical activation between standing and sitting, especially how the brain's intention modulates the pre-movement sensorimotor rhythm as they do for switching movements. In this study, we aim to investigate the decoding of continuous EEG rhythms during action observation (AO), motor imagery (MI), and motor execution (ME) for standing and sitting. We developed a behavioral task in which participants were instructed to perform both AO and MI/ME in regard to the actions of sit-to-stand and stand-to-sit. Our results demonstrated that the ERD was prominent during AO, whereas ERS was typical during MI at the alpha band across the sensorimotor area. A combination of the filter bank common spatial pattern (FBCSP) and support vector machine (SVM) for classification was used for both offline and pseudo-online analyses. The offline analysis indicated the classification of AO and MI providing the highest mean accuracy at 82.73$pm$2.38\% in stand-to-sit transition. By applying the pseudo-online analysis, we demonstrated the higher performance of decoding neural intentions from the MI paradigm in comparison to the ME paradigm. These observations led us to the promising aspect of using our developed tasks based on the integration of both AO and MI to build future exoskeleton-based rehabilitation systems.




for

PACT: Privacy Sensitive Protocols and Mechanisms for Mobile Contact Tracing. (arXiv:2004.03544v4 [cs.CR] UPDATED)

The global health threat from COVID-19 has been controlled in a number of instances by large-scale testing and contact tracing efforts. We created this document to suggest three functionalities on how we might best harness computing technologies to supporting the goals of public health organizations in minimizing morbidity and mortality associated with the spread of COVID-19, while protecting the civil liberties of individuals. In particular, this work advocates for a third-party free approach to assisted mobile contact tracing, because such an approach mitigates the security and privacy risks of requiring a trusted third party. We also explicitly consider the inferential risks involved in any contract tracing system, where any alert to a user could itself give rise to de-anonymizing information.

More generally, we hope to participate in bringing together colleagues in industry, academia, and civil society to discuss and converge on ideas around a critical issue rising with attempts to mitigate the COVID-19 pandemic.




for

Improved RawNet with Feature Map Scaling for Text-independent Speaker Verification using Raw Waveforms. (arXiv:2004.00526v2 [eess.AS] UPDATED)

Recent advances in deep learning have facilitated the design of speaker verification systems that directly input raw waveforms. For example, RawNet extracts speaker embeddings from raw waveforms, which simplifies the process pipeline and demonstrates competitive performance. In this study, we improve RawNet by scaling feature maps using various methods. The proposed mechanism utilizes a scale vector that adopts a sigmoid non-linear function. It refers to a vector with dimensionality equal to the number of filters in a given feature map. Using a scale vector, we propose to scale the feature map multiplicatively, additively, or both. In addition, we investigate replacing the first convolution layer with the sinc-convolution layer of SincNet. Experiments performed on the VoxCeleb1 evaluation dataset demonstrate the effectiveness of the proposed methods, and the best performing system reduces the equal error rate by half compared to the original RawNet. Expanded evaluation results obtained using the VoxCeleb1-E and VoxCeleb-H protocols marginally outperform existing state-of-the-art systems.




for

Personal Health Knowledge Graphs for Patients. (arXiv:2004.00071v2 [cs.AI] UPDATED)

Existing patient data analytics platforms fail to incorporate information that has context, is personal, and topical to patients. For a recommendation system to give a suitable response to a query or to derive meaningful insights from patient data, it should consider personal information about the patient's health history, including but not limited to their preferences, locations, and life choices that are currently applicable to them. In this review paper, we critique existing literature in this space and also discuss the various research challenges that come with designing, building, and operationalizing a personal health knowledge graph (PHKG) for patients.




for

Mathematical Formulae in Wikimedia Projects 2020. (arXiv:2003.09417v2 [cs.DL] UPDATED)

This poster summarizes our contributions to Wikimedia's processing pipeline for mathematical formulae. We describe how we have supported the transition from rendering formulae as course-grained PNG images in 2001 to providing modern semantically enriched language-independent MathML formulae in 2020. Additionally, we describe our plans to improve the accessibility and discoverability of mathematical knowledge in Wikimedia projects further.




for

Hierarchical Neural Architecture Search for Single Image Super-Resolution. (arXiv:2003.04619v2 [cs.CV] UPDATED)

Deep neural networks have exhibited promising performance in image super-resolution (SR). Most SR models follow a hierarchical architecture that contains both the cell-level design of computational blocks and the network-level design of the positions of upsampling blocks. However, designing SR models heavily relies on human expertise and is very labor-intensive. More critically, these SR models often contain a huge number of parameters and may not meet the requirements of computation resources in real-world applications. To address the above issues, we propose a Hierarchical Neural Architecture Search (HNAS) method to automatically design promising architectures with different requirements of computation cost. To this end, we design a hierarchical SR search space and propose a hierarchical controller for architecture search. Such a hierarchical controller is able to simultaneously find promising cell-level blocks and network-level positions of upsampling layers. Moreover, to design compact architectures with promising performance, we build a joint reward by considering both the performance and computation cost to guide the search process. Extensive experiments on five benchmark datasets demonstrate the superiority of our method over existing methods.




for

Testing Scenario Library Generation for Connected and Automated Vehicles: An Adaptive Framework. (arXiv:2003.03712v2 [eess.SY] UPDATED)

How to generate testing scenario libraries for connected and automated vehicles (CAVs) is a major challenge faced by the industry. In previous studies, to evaluate maneuver challenge of a scenario, surrogate models (SMs) are often used without explicit knowledge of the CAV under test. However, performance dissimilarities between the SM and the CAV under test usually exist, and it can lead to the generation of suboptimal scenario libraries. In this paper, an adaptive testing scenario library generation (ATSLG) method is proposed to solve this problem. A customized testing scenario library for a specific CAV model is generated through an adaptive process. To compensate the performance dissimilarities and leverage each test of the CAV, Bayesian optimization techniques are applied with classification-based Gaussian Process Regression and a new-designed acquisition function. Comparing with a pre-determined library, a CAV can be tested and evaluated in a more efficient manner with the customized library. To validate the proposed method, a cut-in case study was performed and the results demonstrate that the proposed method can further accelerate the evaluation process by a few orders of magnitude.




for

Trees and Forests in Nuclear Physics. (arXiv:2002.10290v2 [nucl-th] UPDATED)

We present a simple introduction to the decision tree algorithm using some examples from nuclear physics. We show how to improve the accuracy of the classical liquid drop nuclear mass model by performing Feature Engineering with a decision tree. Finally, we apply the method to the Duflo-Zuker model showing that, despite their simplicity, decision trees are capable of improving the description of nuclear masses using a limited number of free parameters.




for

A memory of motion for visual predictive control tasks. (arXiv:2001.11759v3 [cs.RO] UPDATED)

This paper addresses the problem of efficiently achieving visual predictive control tasks. To this end, a memory of motion, containing a set of trajectories built off-line, is used for leveraging precomputation and dealing with difficult visual tasks. Standard regression techniques, such as k-nearest neighbors and Gaussian process regression, are used to query the memory and provide on-line a warm-start and a way point to the control optimization process. The proposed technique allows the control scheme to achieve high performance and, at the same time, keep the computational time limited. Simulation and experimental results, carried out with a 7-axis manipulator, show the effectiveness of the approach.




for

A Real-Time Approach for Chance-Constrained Motion Planning with Dynamic Obstacles. (arXiv:2001.08012v2 [cs.RO] UPDATED)

Uncertain dynamic obstacles, such as pedestrians or vehicles, pose a major challenge for optimal robot navigation with safety guarantees. Previous work on motion planning has followed two main strategies to provide a safe bound on an obstacle's space: a polyhedron, such as a cuboid, or a nonlinear differentiable surface, such as an ellipsoid. The former approach relies on disjunctive programming, which has a relatively high computational cost that grows exponentially with the number of obstacles. The latter approach needs to be linearized locally to find a tractable evaluation of the chance constraints, which dramatically reduces the remaining free space and leads to over-conservative trajectories or even unfeasibility. In this work, we present a hybrid approach that eludes the pitfalls of both strategies while maintaining the original safety guarantees. The key idea consists in obtaining a safe differentiable approximation for the disjunctive chance constraints bounding the obstacles. The resulting nonlinear optimization problem is free of chance constraint linearization and disjunctive programming, and therefore, it can be efficiently solved to meet fast real-time requirements with multiple obstacles. We validate our approach through mathematical proof, simulation and real experiments with an aerial robot using nonlinear model predictive control to avoid pedestrians.




for

Provenance for the Description Logic ELHr. (arXiv:2001.07541v2 [cs.LO] UPDATED)

We address the problem of handling provenance information in ELHr ontologies. We consider a setting recently introduced for ontology-based data access, based on semirings and extending classical data provenance, in which ontology axioms are annotated with provenance tokens. A consequence inherits the provenance of the axioms involved in deriving it, yielding a provenance polynomial as an annotation. We analyse the semantics for the ELHr case and show that the presence of conjunctions poses various difficulties for handling provenance, some of which are mitigated by assuming multiplicative idempotency of the semiring. Under this assumption, we study three problems: ontology completion with provenance, computing the set of relevant axioms for a consequence, and query answering.




for

Intra-Variable Handwriting Inspection Reinforced with Idiosyncrasy Analysis. (arXiv:1912.12168v2 [cs.CV] UPDATED)

In this paper, we work on intra-variable handwriting, where the writing samples of an individual can vary significantly. Such within-writer variation throws a challenge for automatic writer inspection, where the state-of-the-art methods do not perform well. To deal with intra-variability, we analyze the idiosyncrasy in individual handwriting. We identify/verify the writer from highly idiosyncratic text-patches. Such patches are detected using a deep recurrent reinforcement learning-based architecture. An idiosyncratic score is assigned to every patch, which is predicted by employing deep regression analysis. For writer identification, we propose a deep neural architecture, which makes the final decision by the idiosyncratic score-induced weighted average of patch-based decisions. For writer verification, we propose two algorithms for patch-fed deep feature aggregation, which assist in authentication using a triplet network. The experiments were performed on two databases, where we obtained encouraging results.




for

SCAttNet: Semantic Segmentation Network with Spatial and Channel Attention Mechanism for High-Resolution Remote Sensing Images. (arXiv:1912.09121v2 [cs.CV] UPDATED)

High-resolution remote sensing images (HRRSIs) contain substantial ground object information, such as texture, shape, and spatial location. Semantic segmentation, which is an important task for element extraction, has been widely used in processing mass HRRSIs. However, HRRSIs often exhibit large intraclass variance and small interclass variance due to the diversity and complexity of ground objects, thereby bringing great challenges to a semantic segmentation task. In this paper, we propose a new end-to-end semantic segmentation network, which integrates lightweight spatial and channel attention modules that can refine features adaptively. We compare our method with several classic methods on the ISPRS Vaihingen and Potsdam datasets. Experimental results show that our method can achieve better semantic segmentation results. The source codes are available at https://github.com/lehaifeng/SCAttNet.




for

A predictive path-following controller for multi-steered articulated vehicles. (arXiv:1912.06259v5 [math.OC] UPDATED)

Stabilizing multi-steered articulated vehicles in backward motion is a complex task for any human driver. Unless the vehicle is accurately steered, its structurally unstable joint-angle kinematics during reverse maneuvers can cause the vehicle segments to fold and enter a jack-knife state. In this work, a model predictive path-following controller is proposed enabling automatic low-speed steering control of multi-steered articulated vehicles, comprising a car-like tractor and an arbitrary number of trailers with passive or active steering. The proposed path-following controller is tailored to follow nominal paths that contains full state and control-input information, and is designed to satisfy various physical constraints on the vehicle states as well as saturations and rate limitations on the tractor's curvature and the trailer steering angles. The performance of the proposed model predictive path-following controller is evaluated in a set of simulations for a multi-steered 2-trailer with a car-like tractor where the last trailer has steerable wheels.




for

SetRank: Learning a Permutation-Invariant Ranking Model for Information Retrieval. (arXiv:1912.05891v2 [cs.IR] UPDATED)

In learning-to-rank for information retrieval, a ranking model is automatically learned from the data and then utilized to rank the sets of retrieved documents. Therefore, an ideal ranking model would be a mapping from a document set to a permutation on the set, and should satisfy two critical requirements: (1)~it should have the ability to model cross-document interactions so as to capture local context information in a query; (2)~it should be permutation-invariant, which means that any permutation of the inputted documents would not change the output ranking. Previous studies on learning-to-rank either design uni-variate scoring functions that score each document separately, and thus failed to model the cross-document interactions; or construct multivariate scoring functions that score documents sequentially, which inevitably sacrifice the permutation invariance requirement. In this paper, we propose a neural learning-to-rank model called SetRank which directly learns a permutation-invariant ranking model defined on document sets of any size. SetRank employs a stack of (induced) multi-head self attention blocks as its key component for learning the embeddings for all of the retrieved documents jointly. The self-attention mechanism not only helps SetRank to capture the local context information from cross-document interactions, but also to learn permutation-equivariant representations for the inputted documents, which therefore achieving a permutation-invariant ranking model. Experimental results on three large scale benchmarks showed that the SetRank significantly outperformed the baselines include the traditional learning-to-rank models and state-of-the-art Neural IR models.




for

Novel Deep Learning Framework for Wideband Spectrum Characterization at Sub-Nyquist Rate. (arXiv:1912.05255v2 [eess.SP] UPDATED)

Introduction of spectrum-sharing in 5G and subsequent generation networks demand base-station(s) with the capability to characterize the wideband spectrum spanned over licensed, shared and unlicensed non-contiguous frequency bands. Spectrum characterization involves the identification of vacant bands along with center frequency and parameters (energy, modulation, etc.) of occupied bands. Such characterization at Nyquist sampling is area and power-hungry due to the need for high-speed digitization. Though sub-Nyquist sampling (SNS) offers an excellent alternative when the spectrum is sparse, it suffers from poor performance at low signal to noise ratio (SNR) and demands careful design and integration of digital reconstruction, tunable channelizer and characterization algorithms. In this paper, we propose a novel deep-learning framework via a single unified pipeline to accomplish two tasks: 1)~Reconstruct the signal directly from sub-Nyquist samples, and 2)~Wideband spectrum characterization. The proposed approach eliminates the need for complex signal conditioning between reconstruction and characterization and does not need complex tunable channelizers. We extensively compare the performance of our framework for a wide range of modulation schemes, SNR and channel conditions. We show that the proposed framework outperforms existing SNS based approaches and characterization performance approaches to Nyquist sampling-based framework with an increase in SNR. Easy to design and integrate along with a single unified deep learning framework make the proposed architecture a good candidate for reconfigurable platforms.




for

IPG-Net: Image Pyramid Guidance Network for Small Object Detection. (arXiv:1912.00632v3 [cs.CV] UPDATED)

For Convolutional Neural Network-based object detection, there is a typical dilemma: the spatial information is well kept in the shallow layers which unfortunately do not have enough semantic information, while the deep layers have a high semantic concept but lost a lot of spatial information, resulting in serious information imbalance. To acquire enough semantic information for shallow layers, Feature Pyramid Networks (FPN) is used to build a top-down propagated path. In this paper, except for top-down combining of information for shallow layers, we propose a novel network called Image Pyramid Guidance Network (IPG-Net) to make sure both the spatial information and semantic information are abundant for each layer. Our IPG-Net has two main parts: the image pyramid guidance transformation module and the image pyramid guidance fusion module. Our main idea is to introduce the image pyramid guidance into the backbone stream to solve the information imbalance problem, which alleviates the vanishment of the small object features. This IPG transformation module promises even in the deepest stage of the backbone, there is enough spatial information for bounding box regression and classification. Furthermore, we designed an effective fusion module to fuse the features from the image pyramid and features from the backbone stream. We have tried to apply this novel network to both one-stage and two-stage detection models, state of the art results are obtained on the most popular benchmark data sets, i.e. MS COCO and Pascal VOC.




for

Multi-group Multicast Beamforming: Optimal Structure and Efficient Algorithms. (arXiv:1911.08925v2 [eess.SP] UPDATED)

This paper considers the multi-group multicast beamforming optimization problem, for which the optimal solution has been unknown due to the non-convex and NP-hard nature of the problem. By utilizing the successive convex approximation numerical method and Lagrangian duality, we obtain the optimal multicast beamforming solution structure for both the quality-of-service (QoS) problem and the max-min fair (MMF) problem. The optimal structure brings valuable insights into multicast beamforming: We show that the notion of uplink-downlink duality can be generalized to the multicast beamforming problem. The optimal multicast beamformer is a weighted MMSE filter based on a group-channel direction: a generalized version of the optimal downlink multi-user unicast beamformer. We also show that there is an inherent low-dimensional structure in the optimal multicast beamforming solution independent of the number of transmit antennas, leading to efficient numerical algorithm design, especially for systems with large antenna arrays. We propose efficient algorithms to compute the multicast beamformer based on the optimal beamforming structure. Through asymptotic analysis, we characterize the asymptotic behavior of the multicast beamformers as the number of antennas grows, and in turn, provide simple closed-form approximate multicast beamformers for both the QoS and MMF problems. This approximation offers practical multicast beamforming solutions with a near-optimal performance at very low computational complexity for large-scale antenna systems.




for

Two-Stream FCNs to Balance Content and Style for Style Transfer. (arXiv:1911.08079v2 [cs.CV] UPDATED)

Style transfer is to render given image contents in given styles, and it has an important role in both computer vision fundamental research and industrial applications. Following the success of deep learning based approaches, this problem has been re-launched recently, but still remains a difficult task because of trade-off between preserving contents and faithful rendering of styles. Indeed, how well-balanced content and style are is crucial in evaluating the quality of stylized images. In this paper, we propose an end-to-end two-stream Fully Convolutional Networks (FCNs) aiming at balancing the contributions of the content and the style in rendered images. Our proposed network consists of the encoder and decoder parts. The encoder part utilizes a FCN for content and a FCN for style where the two FCNs have feature injections and are independently trained to preserve the semantic content and to learn the faithful style representation in each. The semantic content feature and the style representation feature are then concatenated adaptively and fed into the decoder to generate style-transferred (stylized) images. In order to train our proposed network, we employ a loss network, the pre-trained VGG-16, to compute content loss and style loss, both of which are efficiently used for the feature injection as well as the feature concatenation. Our intensive experiments show that our proposed model generates more balanced stylized images in content and style than state-of-the-art methods. Moreover, our proposed network achieves efficiency in speed.




for

t-SS3: a text classifier with dynamic n-grams for early risk detection over text streams. (arXiv:1911.06147v2 [cs.CL] UPDATED)

A recently introduced classifier, called SS3, has shown to be well suited to deal with early risk detection (ERD) problems on text streams. It obtained state-of-the-art performance on early depression and anorexia detection on Reddit in the CLEF's eRisk open tasks. SS3 was created to deal with ERD problems naturally since: it supports incremental training and classification over text streams, and it can visually explain its rationale. However, SS3 processes the input using a bag-of-word model lacking the ability to recognize important word sequences. This aspect could negatively affect the classification performance and also reduces the descriptiveness of visual explanations. In the standard document classification field, it is very common to use word n-grams to try to overcome some of these limitations. Unfortunately, when working with text streams, using n-grams is not trivial since the system must learn and recognize which n-grams are important "on the fly". This paper introduces t-SS3, an extension of SS3 that allows it to recognize useful patterns over text streams dynamically. We evaluated our model in the eRisk 2017 and 2018 tasks on early depression and anorexia detection. Experimental results suggest that t-SS3 is able to improve both current results and the richness of visual explanations.




for

Revisiting Semantics of Interactions for Trace Validity Analysis. (arXiv:1911.03094v2 [cs.SE] UPDATED)

Interaction languages such as MSC are often associated with formal semantics by means of translations into distinct behavioral formalisms such as automatas or Petri nets. In contrast to translational approaches we propose an operational approach. Its principle is to identify which elementary communication actions can be immediately executed, and then to compute, for every such action, a new interaction representing the possible continuations to its execution. We also define an algorithm for checking the validity of execution traces (i.e. whether or not they belong to an interaction's semantics). Algorithms for semantic computation and trace validity are analyzed by means of experiments.




for

Imitation Learning for Human-robot Cooperation Using Bilateral Control. (arXiv:1909.13018v2 [cs.RO] UPDATED)

Robots are required to operate autonomously in response to changing situations. Previously, imitation learning using 4ch-bilateral control was demonstrated to be suitable for imitation of object manipulation. However, cooperative work between humans and robots has not yet been verified in these studies. In this study, the task was expanded by cooperative work between a human and a robot. 4ch-bilateral control was used to collect training data for training robot motion. We focused on serving salad as a task in the home. The task was executed with a spoon and a fork fixed to robots. Adjustment of force was indispensable in manipulating indefinitely shaped objects such as salad. Results confirmed the effectiveness of the proposed method as demonstrated by the success of the task.




for

Box Covers and Domain Orderings for Beyond Worst-Case Join Processing. (arXiv:1909.12102v2 [cs.DB] UPDATED)

Recent beyond worst-case optimal join algorithms Minesweeper and its generalization Tetris have brought the theory of indexing and join processing together by developing a geometric framework for joins. These algorithms take as input an index $mathcal{B}$, referred to as a box cover, that stores output gaps that can be inferred from traditional indexes, such as B+ trees or tries, on the input relations. The performances of these algorithms highly depend on the certificate of $mathcal{B}$, which is the smallest subset of gaps in $mathcal{B}$ whose union covers all of the gaps in the output space of a query $Q$. We study how to generate box covers that contain small size certificates to guarantee efficient runtimes for these algorithms. First, given a query $Q$ over a set of relations of size $N$ and a fixed set of domain orderings for the attributes, we give a $ ilde{O}(N)$-time algorithm called GAMB which generates a box cover for $Q$ that is guaranteed to contain the smallest size certificate across any box cover for $Q$. Second, we show that finding a domain ordering to minimize the box cover size and certificate is NP-hard through a reduction from the 2 consecutive block minimization problem on boolean matrices. Our third contribution is a $ ilde{O}(N)$-time approximation algorithm called ADORA to compute domain orderings, under which one can compute a box cover of size $ ilde{O}(K^r)$, where $K$ is the minimum box cover for $Q$ under any domain ordering and $r$ is the maximum arity of any relation. This guarantees certificates of size $ ilde{O}(K^r)$. We combine ADORA and GAMB with Tetris to form a new algorithm we call TetrisReordered, which provides several new beyond worst-case bounds. On infinite families of queries, TetrisReordered's runtimes are unboundedly better than the bounds stated in prior work.




for

The Mapillary Traffic Sign Dataset for Detection and Classification on a Global Scale. (arXiv:1909.04422v2 [cs.CV] UPDATED)

Traffic signs are essential map features globally in the era of autonomous driving and smart cities. To develop accurate and robust algorithms for traffic sign detection and classification, a large-scale and diverse benchmark dataset is required. In this paper, we introduce a traffic sign benchmark dataset of 100K street-level images around the world that encapsulates diverse scenes, wide coverage of geographical locations, and varying weather and lighting conditions and covers more than 300 manually annotated traffic sign classes. The dataset includes 52K images that are fully annotated and 48K images that are partially annotated. This is the largest and the most diverse traffic sign dataset consisting of images from all over world with fine-grained annotations of traffic sign classes. We have run extensive experiments to establish strong baselines for both the detection and the classification tasks. In addition, we have verified that the diversity of this dataset enables effective transfer learning for existing large-scale benchmark datasets on traffic sign detection and classification. The dataset is freely available for academic research: https://www.mapillary.com/dataset/trafficsign.




for

A Shift Selection Strategy for Parallel Shift-Invert Spectrum Slicing in Symmetric Self-Consistent Eigenvalue Computation. (arXiv:1908.06043v2 [math.NA] UPDATED)

The central importance of large scale eigenvalue problems in scientific computation necessitates the development of massively parallel algorithms for their solution. Recent advances in dense numerical linear algebra have enabled the routine treatment of eigenvalue problems with dimensions on the order of hundreds of thousands on the world's largest supercomputers. In cases where dense treatments are not feasible, Krylov subspace methods offer an attractive alternative due to the fact that they do not require storage of the problem matrices. However, demonstration of scalability of either of these classes of eigenvalue algorithms on computing architectures capable of expressing massive parallelism is non-trivial due to communication requirements and serial bottlenecks, respectively. In this work, we introduce the SISLICE method: a parallel shift-invert algorithm for the solution of the symmetric self-consistent field (SCF) eigenvalue problem. The SISLICE method drastically reduces the communication requirement of current parallel shift-invert eigenvalue algorithms through various shift selection and migration techniques based on density of states estimation and k-means clustering, respectively. This work demonstrates the robustness and parallel performance of the SISLICE method on a representative set of SCF eigenvalue problems and outlines research directions which will be explored in future work.




for

Single use register automata for data words. (arXiv:1907.10504v2 [cs.FL] UPDATED)

Our starting point are register automata for data words, in the style of Kaminski and Francez. We study the effects of the single-use restriction, which says that a register is emptied immediately after being used. We show that under the single-use restriction, the theory of automata for data words becomes much more robust. The main results are: (a) five different machine models are equivalent as language acceptors, including one-way and two-way single-use register automata; (b) one can recover some of the algebraic theory of languages over finite alphabets, including a version of the Krohn-Rhodes Theorem; (c) there is also a robust theory of transducers, with four equivalent models, including two-way single use transducers and a variant of streaming string transducers for data words. These results are in contrast with automata for data words without the single-use restriction, where essentially all models are pairwise non-equivalent.




for

Dynamic Face Video Segmentation via Reinforcement Learning. (arXiv:1907.01296v3 [cs.CV] UPDATED)

For real-time semantic video segmentation, most recent works utilised a dynamic framework with a key scheduler to make online key/non-key decisions. Some works used a fixed key scheduling policy, while others proposed adaptive key scheduling methods based on heuristic strategies, both of which may lead to suboptimal global performance. To overcome this limitation, we model the online key decision process in dynamic video segmentation as a deep reinforcement learning problem and learn an efficient and effective scheduling policy from expert information about decision history and from the process of maximising global return. Moreover, we study the application of dynamic video segmentation on face videos, a field that has not been investigated before. By evaluating on the 300VW dataset, we show that the performance of our reinforcement key scheduler outperforms that of various baselines in terms of both effective key selections and running speed. Further results on the Cityscapes dataset demonstrate that our proposed method can also generalise to other scenarios. To the best of our knowledge, this is the first work to use reinforcement learning for online key-frame decision in dynamic video segmentation, and also the first work on its application on face videos.




for

Space-Efficient Vertex Separators for Treewidth. (arXiv:1907.00676v3 [cs.DS] UPDATED)

For $n$-vertex graphs with treewidth $k = O(n^{1/2-epsilon})$ and an arbitrary $epsilon>0$, we present a word-RAM algorithm to compute vertex separators using only $O(n)$ bits of working memory. As an application of our algorithm, we give an $O(1)$-approximation algorithm for tree decomposition. Our algorithm computes a tree decomposition in $c^k n (log log n) log^* n$ time using $O(n)$ bits for some constant $c > 0$.

We finally use the tree decomposition obtained by our algorithm to solve Vertex Cover, Independent Set, Dominating Set, MaxCut and $3$-Coloring by using $O(n)$ bits as long as the treewidth of the graph is smaller than $c' log n$ for some problem dependent constant $0 < c' < 1$.




for

On analog quantum algorithms for the mixing of Markov chains. (arXiv:1904.11895v2 [quant-ph] UPDATED)

The problem of sampling from the stationary distribution of a Markov chain finds widespread applications in a variety of fields. The time required for a Markov chain to converge to its stationary distribution is known as the classical mixing time. In this article, we deal with analog quantum algorithms for mixing. First, we provide an analog quantum algorithm that given a Markov chain, allows us to sample from its stationary distribution in a time that scales as the sum of the square root of the classical mixing time and the square root of the classical hitting time. Our algorithm makes use of the framework of interpolated quantum walks and relies on Hamiltonian evolution in conjunction with von Neumann measurements.

There also exists a different notion for quantum mixing: the problem of sampling from the limiting distribution of quantum walks, defined in a time-averaged sense. In this scenario, the quantum mixing time is defined as the time required to sample from a distribution that is close to this limiting distribution. Recently we provided an upper bound on the quantum mixing time for Erd"os-Renyi random graphs [Phys. Rev. Lett. 124, 050501 (2020)]. Here, we also extend and expand upon our findings therein. Namely, we provide an intuitive understanding of the state-of-the-art random matrix theory tools used to derive our results. In particular, for our analysis we require information about macroscopic, mesoscopic and microscopic statistics of eigenvalues of random matrices which we highlight here. Furthermore, we provide numerical simulations that corroborate our analytical findings and extend this notion of mixing from simple graphs to any ergodic, reversible, Markov chain.




for

A Fast and Accurate Algorithm for Spherical Harmonic Analysis on HEALPix Grids with Applications to the Cosmic Microwave Background Radiation. (arXiv:1904.10514v4 [math.NA] UPDATED)

The Hierarchical Equal Area isoLatitude Pixelation (HEALPix) scheme is used extensively in astrophysics for data collection and analysis on the sphere. The scheme was originally designed for studying the Cosmic Microwave Background (CMB) radiation, which represents the first light to travel during the early stages of the universe's development and gives the strongest evidence for the Big Bang theory to date. Refined analysis of the CMB angular power spectrum can lead to revolutionary developments in understanding the nature of dark matter and dark energy. In this paper, we present a new method for performing spherical harmonic analysis for HEALPix data, which is a central component to computing and analyzing the angular power spectrum of the massive CMB data sets. The method uses a novel combination of a non-uniform fast Fourier transform, the double Fourier sphere method, and Slevinsky's fast spherical harmonic transform (Slevinsky, 2019). For a HEALPix grid with $N$ pixels (points), the computational complexity of the method is $mathcal{O}(Nlog^2 N)$, with an initial set-up cost of $mathcal{O}(N^{3/2}log N)$. This compares favorably with $mathcal{O}(N^{3/2})$ runtime complexity of the current methods available in the HEALPix software when multiple maps need to be analyzed at the same time. Using numerical experiments, we demonstrate that the new method also appears to provide better accuracy over the entire angular power spectrum of synthetic data when compared to the current methods, with a convergence rate at least two times higher.




for

Constrained Restless Bandits for Dynamic Scheduling in Cyber-Physical Systems. (arXiv:1904.08962v3 [cs.SY] UPDATED)

Restless multi-armed bandits are a class of discrete-time stochastic control problems which involve sequential decision making with a finite set of actions (set of arms). This paper studies a class of constrained restless multi-armed bandits (CRMAB). The constraints are in the form of time varying set of actions (set of available arms). This variation can be either stochastic or semi-deterministic. Given a set of arms, a fixed number of them can be chosen to be played in each decision interval. The play of each arm yields a state dependent reward. The current states of arms are partially observable through binary feedback signals from arms that are played. The current availability of arms is fully observable. The objective is to maximize long term cumulative reward. The uncertainty about future availability of arms along with partial state information makes this objective challenging. Applications for CRMAB abound in the domain of cyber-physical systems. This optimization problem is analyzed using Whittle's index policy. To this end, a constrained restless single-armed bandit is studied. It is shown to admit a threshold-type optimal policy, and is also indexable. An algorithm to compute Whittle's index is presented. Further, upper bounds on the value function are derived in order to estimate the degree of sub-optimality of various solutions. The simulation study compares the performance of Whittle's index, modified Whittle's index and myopic policies.




for

Ranked List Loss for Deep Metric Learning. (arXiv:1903.03238v6 [cs.CV] UPDATED)

The objective of deep metric learning (DML) is to learn embeddings that can capture semantic similarity and dissimilarity information among data points. Existing pairwise or tripletwise loss functions used in DML are known to suffer from slow convergence due to a large proportion of trivial pairs or triplets as the model improves. To improve this, ranking-motivated structured losses are proposed recently to incorporate multiple examples and exploit the structured information among them. They converge faster and achieve state-of-the-art performance. In this work, we unveil two limitations of existing ranking-motivated structured losses and propose a novel ranked list loss to solve both of them. First, given a query, only a fraction of data points is incorporated to build the similarity structure. To address this, we propose to build a set-based similarity structure by exploiting all instances in the gallery. The learning setting can be interpreted as few-shot retrieval: given a mini-batch, every example is iteratively used as a query, and the rest ones compose the galley to search, i.e., the support set in few-shot setting. The rest examples are split into a positive set and a negative set. For every mini-batch, the learning objective of ranked list loss is to make the query closer to the positive set than to the negative set by a margin. Second, previous methods aim to pull positive pairs as close as possible in the embedding space. As a result, the intraclass data distribution tends to be extremely compressed. In contrast, we propose to learn a hypersphere for each class in order to preserve useful similarity structure inside it, which functions as regularisation. Extensive experiments demonstrate the superiority of our proposal by comparing with the state-of-the-art methods on the fine-grained image retrieval task.




for

Deterministic Sparse Fourier Transform with an ell_infty Guarantee. (arXiv:1903.00995v3 [cs.DS] UPDATED)

In this paper we revisit the deterministic version of the Sparse Fourier Transform problem, which asks to read only a few entries of $x in mathbb{C}^n$ and design a recovery algorithm such that the output of the algorithm approximates $hat x$, the Discrete Fourier Transform (DFT) of $x$. The randomized case has been well-understood, while the main work in the deterministic case is that of Merhi et al.@ (J Fourier Anal Appl 2018), which obtains $O(k^2 log^{-1}k cdot log^{5.5}n)$ samples and a similar runtime with the $ell_2/ell_1$ guarantee. We focus on the stronger $ell_{infty}/ell_1$ guarantee and the closely related problem of incoherent matrices. We list our contributions as follows.

1. We find a deterministic collection of $O(k^2 log n)$ samples for the $ell_infty/ell_1$ recovery in time $O(nk log^2 n)$, and a deterministic collection of $O(k^2 log^2 n)$ samples for the $ell_infty/ell_1$ sparse recovery in time $O(k^2 log^3n)$.

2. We give new deterministic constructions of incoherent matrices that are row-sampled submatrices of the DFT matrix, via a derandomization of Bernstein's inequality and bounds on exponential sums considered in analytic number theory. Our first construction matches a previous randomized construction of Nelson, Nguyen and Woodruff (RANDOM'12), where there was no constraint on the form of the incoherent matrix.

Our algorithms are nearly sample-optimal, since a lower bound of $Omega(k^2 + k log n)$ is known, even for the case where the sensing matrix can be arbitrarily designed. A similar lower bound of $Omega(k^2 log n/ log k)$ is known for incoherent matrices.




for

Learning Direct Optimization for Scene Understanding. (arXiv:1812.07524v2 [cs.CV] UPDATED)

We develop a Learning Direct Optimization (LiDO) method for the refinement of a latent variable model that describes input image x. Our goal is to explain a single image x with an interpretable 3D computer graphics model having scene graph latent variables z (such as object appearance, camera position). Given a current estimate of z we can render a prediction of the image g(z), which can be compared to the image x. The standard way to proceed is then to measure the error E(x, g(z)) between the two, and use an optimizer to minimize the error. However, it is unknown which error measure E would be most effective for simultaneously addressing issues such as misaligned objects, occlusions, textures, etc. In contrast, the LiDO approach trains a Prediction Network to predict an update directly to correct z, rather than minimizing the error with respect to z. Experiments show that our LiDO method converges rapidly as it does not need to perform a search on the error landscape, produces better solutions than error-based competitors, and is able to handle the mismatch between the data and the fitted scene model. We apply LiDO to a realistic synthetic dataset, and show that the method also transfers to work well with real images.




for

Performance of the smallest-variance-first rule in appointment sequencing. (arXiv:1812.01467v4 [math.PR] UPDATED)

A classical problem in appointment scheduling, with applications in health care, concerns the determination of the patients' arrival times that minimize a cost function that is a weighted sum of mean waiting times and mean idle times. One aspect of this problem is the sequencing problem, which focuses on ordering the patients. We assess the performance of the smallest-variance-first (SVF) rule, which sequences patients in order of increasing variance of their service durations. While it was known that SVF is not always optimal, it has been widely observed that it performs well in practice and simulation. We provide a theoretical justification for this observation by proving, in various settings, quantitative worst-case bounds on the ratio between the cost incurred by the SVF rule and the minimum attainable cost. We also show that, in great generality, SVF is asymptotically optimal, i.e., the ratio approaches 1 as the number of patients grows large. While evaluating policies by considering an approximation ratio is a standard approach in many algorithmic settings, our results appear to be the first of this type in the appointment scheduling literature.




for

An improved exact algorithm and an NP-completeness proof for sparse matrix bipartitioning. (arXiv:1811.02043v2 [cs.DS] UPDATED)

We investigate sparse matrix bipartitioning -- a problem where we minimize the communication volume in parallel sparse matrix-vector multiplication. We prove, by reduction from graph bisection, that this problem is $mathcal{NP}$-complete in the case where each side of the bipartitioning must contain a linear fraction of the nonzeros.

We present an improved exact branch-and-bound algorithm which finds the minimum communication volume for a given matrix and maximum allowed imbalance. The algorithm is based on a maximum-flow bound and a packing bound, which extend previous matching and packing bounds.

We implemented the algorithm in a new program called MP (Matrix Partitioner), which solved 839 matrices from the SuiteSparse collection to optimality, each within 24 hours of CPU-time. Furthermore, MP solved the difficult problem of the matrix cage6 in about 3 days. The new program is on average more than ten times faster than the previous program MondriaanOpt.

Benchmark results using the set of 839 optimally solved matrices show that combining the medium-grain/iterative refinement methods of the Mondriaan package with the hypergraph bipartitioner of the PaToH package produces sparse matrix bipartitionings on average within 10% of the optimal solution.




for

SilhoNet: An RGB Method for 6D Object Pose Estimation. (arXiv:1809.06893v4 [cs.CV] UPDATED)

Autonomous robot manipulation involves estimating the translation and orientation of the object to be manipulated as a 6-degree-of-freedom (6D) pose. Methods using RGB-D data have shown great success in solving this problem. However, there are situations where cost constraints or the working environment may limit the use of RGB-D sensors. When limited to monocular camera data only, the problem of object pose estimation is very challenging. In this work, we introduce a novel method called SilhoNet that predicts 6D object pose from monocular images. We use a Convolutional Neural Network (CNN) pipeline that takes in Region of Interest (ROI) proposals to simultaneously predict an intermediate silhouette representation for objects with an associated occlusion mask and a 3D translation vector. The 3D orientation is then regressed from the predicted silhouettes. We show that our method achieves better overall performance on the YCB-Video dataset than two state-of-the art networks for 6D pose estimation from monocular image input.




for

Using hierarchical matrices in the solution of the time-fractional heat equation by multigrid waveform relaxation. (arXiv:1706.07632v3 [math.NA] UPDATED)

This work deals with the efficient numerical solution of the time-fractional heat equation discretized on non-uniform temporal meshes. Non-uniform grids are essential to capture the singularities of "typical" solutions of time-fractional problems. We propose an efficient space-time multigrid method based on the waveform relaxation technique, which accounts for the nonlocal character of the fractional differential operator. To maintain an optimal complexity, which can be obtained for the case of uniform grids, we approximate the coefficient matrix corresponding to the temporal discretization by its hierarchical matrix (${cal H}$-matrix) representation. In particular, the proposed method has a computational cost of ${cal O}(k N M log(M))$, where $M$ is the number of time steps, $N$ is the number of spatial grid points, and $k$ is a parameter which controls the accuracy of the ${cal H}$-matrix approximation. The efficiency and the good convergence of the algorithm, which can be theoretically justified by a semi-algebraic mode analysis, are demonstrated through numerical experiments in both one- and two-dimensional spaces.




for

Active Intent Disambiguation for Shared Control Robots. (arXiv:2005.03652v1 [cs.RO])

Assistive shared-control robots have the potential to transform the lives of millions of people afflicted with severe motor impairments. The usefulness of shared-control robots typically relies on the underlying autonomy's ability to infer the user's needs and intentions, and the ability to do so unambiguously is often a limiting factor for providing appropriate assistance confidently and accurately. The contributions of this paper are four-fold. First, we introduce the idea of intent disambiguation via control mode selection, and present a mathematical formalism for the same. Second, we develop a control mode selection algorithm which selects the control mode in which the user-initiated motion helps the autonomy to maximally disambiguate user intent. Third, we present a pilot study with eight subjects to evaluate the efficacy of the disambiguation algorithm. Our results suggest that the disambiguation system (a) helps to significantly reduce task effort, as measured by number of button presses, and (b) is of greater utility for more limited control interfaces and more complex tasks. We also observe that (c) subjects demonstrated a wide range of disambiguation request behaviors, with the common thread of concentrating requests early in the execution. As our last contribution, we introduce a novel field-theoretic approach to intent inference inspired by dynamic field theory that works in tandem with the disambiguation scheme.