for On the automorphic sheaves for GSp_4. (arXiv:1901.04447v6 [math.RT] UPDATED) By arxiv.org Published On :: In this paper we first review the setting for the geometric Langlands functoriality and establish a result for the `backward' functoriality functor. We illustrate this by known examples of the geometric theta-lifting. We then apply the above result to obtain new Hecke eigen-sheaves. The most important application is a construction of the automorphic sheaf for G=GSp_4 attached to a G^L-local system on a curve X such that its standard representation is an irreducible local system of rank 4 on X. Full Article
for Mirror Symmetry for Non-Abelian Landau-Ginzburg Models. (arXiv:1812.06200v3 [math.AG] UPDATED) By arxiv.org Published On :: We consider Landau-Ginzburg models stemming from groups comprised of non-diagonal symmetries, and we describe a rule for the mirror LG model. In particular, we present the non-abelian dual group, which serves as the appropriate choice of group for the mirror LG model. We also describe an explicit mirror map between the A-model and the B-model state spaces for two examples. Further, we prove that this mirror map is an isomorphism between the untwisted broad sectors and the narrow diagonal sectors for Fermat type polynomials. Full Article
for Optimal construction of Koopman eigenfunctions for prediction and control. (arXiv:1810.08733v3 [math.OC] UPDATED) By arxiv.org Published On :: This work presents a novel data-driven framework for constructing eigenfunctions of the Koopman operator geared toward prediction and control. The method leverages the richness of the spectrum of the Koopman operator away from attractors to construct a rich set of eigenfunctions such that the state (or any other observable quantity of interest) is in the span of these eigenfunctions and hence predictable in a linear fashion. The eigenfunction construction is optimization-based with no dictionary selection required. Once a predictor for the uncontrolled part of the system is obtained in this way, the incorporation of control is done through a multi-step prediction error minimization, carried out by a simple linear least-squares regression. The predictor so obtained is in the form of a linear controlled dynamical system and can be readily applied within the Koopman model predictive control framework of [12] to control nonlinear dynamical systems using linear model predictive control tools. The method is entirely data-driven and based purely on convex optimization, with no reliance on neural networks or other non-convex machine learning tools. The novel eigenfunction construction method is also analyzed theoretically, proving rigorously that the family of eigenfunctions obtained is rich enough to span the space of all continuous functions. In addition, the method is extended to construct generalized eigenfunctions that also give rise Koopman invariant subspaces and hence can be used for linear prediction. Detailed numerical examples with code available online demonstrate the approach, both for prediction and feedback control. Full Article
for Exotic Springer fibers for orbits corresponding to one-row bipartitions. (arXiv:1810.03731v2 [math.RT] UPDATED) By arxiv.org Published On :: We study the geometry and topology of exotic Springer fibers for orbits corresponding to one-row bipartitions from an explicit, combinatorial point of view. This includes a detailed analysis of the structure of the irreducible components and their intersections as well as the construction of an explicit affine paving. Moreover, we compute the ring structure of cohomology by constructing a CW-complex homotopy equivalent to the exotic Springer fiber. This homotopy equivalent space admits an action of the type C Weyl group inducing Kato's original exotic Springer representation on cohomology. Our results are described in terms of the diagrammatics of the one-boundary Temperley-Lieb algebra (also known as the blob algebra). This provides a first step in generalizing the geometric versions of Khovanov's arc algebra to the exotic setting. Full Article
for On the rationality of cycle integrals of meromorphic modular forms. (arXiv:1810.00612v3 [math.NT] UPDATED) By arxiv.org Published On :: We derive finite rational formulas for the traces of cycle integrals of certain meromorphic modular forms. Moreover, we prove the modularity of a completion of the generating function of such traces. The theoretical framework for these results is an extension of the Shintani theta lift to meromorphic modular forms of positive even weight. Full Article
for A Forward-Backward Splitting Method for Monotone Inclusions Without Cocoercivity. (arXiv:1808.04162v4 [math.OC] UPDATED) By arxiv.org Published On :: In this work, we propose a simple modification of the forward-backward splitting method for finding a zero in the sum of two monotone operators. Our method converges under the same assumptions as Tseng's forward-backward-forward method, namely, it does not require cocoercivity of the single-valued operator. Moreover, each iteration only requires one forward evaluation rather than two as is the case for Tseng's method. Variants of the method incorporating a linesearch, relaxation and inertia, or a structured three operator inclusion are also discussed. Full Article
for The 2d-directed spanning forest converges to the Brownian web. (arXiv:1805.09399v3 [math.PR] UPDATED) By arxiv.org Published On :: The two-dimensional directed spanning forest (DSF) introduced by Baccelli and Bordenave is a planar directed forest whose vertex set is given by a homogeneous Poisson point process $mathcal{N}$ on $mathbb{R}^2$. If the DSF has direction $-e_y$, the ancestor $h(u)$ of a vertex $u in mathcal{N}$ is the nearest Poisson point (in the $L_2$ distance) having strictly larger $y$-coordinate. This construction induces complex geometrical dependencies. In this paper we show that the collection of DSF paths, properly scaled, converges in distribution to the Brownian web (BW). This verifies a conjecture made by Baccelli and Bordenave in 2007. Full Article
for Extremal values of the Sackin balance index for rooted binary trees. (arXiv:1801.10418v5 [q-bio.PE] UPDATED) By arxiv.org Published On :: Tree balance plays an important role in different research areas like theoretical computer science and mathematical phylogenetics. For example, it has long been known that under the Yule model, a pure birth process, imbalanced trees are more likely than balanced ones. Therefore, different methods to measure the balance of trees were introduced. The Sackin index is one of the most frequently used measures for this purpose. In many contexts, statements about the minimal and maximal values of this index have been discussed, but formal proofs have never been provided. Moreover, while the number of trees with maximal Sackin index as well as the number of trees with minimal Sackin index when the number of leaves is a power of 2 are relatively easy to understand, the number of trees with minimal Sackin index for all other numbers of leaves was completely unknown. In this manuscript, we fully characterize trees with minimal and maximal Sackin index and also provide formulas to explicitly calculate the number of such trees. Full Article
for Categorification via blocks of modular representations for sl(n). (arXiv:1612.06941v3 [math.RT] UPDATED) By arxiv.org Published On :: Bernstein, Frenkel, and Khovanov have constructed a categorification of tensor products of the standard representation of $mathfrak{sl}_2$, where they use singular blocks of category $mathcal{O}$ for $mathfrak{sl}_n$ and translation functors. Here we construct a positive characteristic analogue using blocks of representations of $mathfrak{sl}_n$ over a field $ extbf{k}$ of characteristic $p$ with zero Frobenius character, and singular Harish-Chandra character. We show that the aforementioned categorification admits a Koszul graded lift, which is equivalent to a geometric categorification constructed by Cautis, Kamnitzer, and Licata using coherent sheaves on cotangent bundles to Grassmanians. In particular, the latter admits an abelian refinement. With respect to this abelian refinement, the stratified Mukai flop induces a perverse equivalence on the derived categories for complementary Grassmanians. This is part of a larger project to give a combinatorial approach to Lusztig's conjectures for representations of Lie algebras in positive characteristic. Full Article
for Word problems for finite nilpotent groups. (arXiv:2005.03634v1 [math.GR]) By arxiv.org Published On :: Let $w$ be a word in $k$ variables. For a finite nilpotent group $G$, a conjecture of Amit states that $N_w(1) ge |G|^{k-1}$, where $N_w(1)$ is the number of $k$-tuples $(g_1,...,g_k)in G^{(k)}$ such that $w(g_1,...,g_k)=1$. Currently, this conjecture is known to be true for groups of nilpotency class 2. Here we consider a generalized version of Amit's conjecture, and prove that $N_w(g) ge |G|^{k-2}$, where $g$ is a $w$-value in $G$, for finite groups $G$ of odd order and nilpotency class 2. If $w$ is a word in two variables, we further show that $N_w(g) ge |G|$, where $g$ is a $w$-value in $G$ for finite groups $G$ of nilpotency class 2. In addition, for $p$ a prime, we show that finite $p$-groups $G$, with two distinct irreducible complex character degrees, satisfy the generalized Amit conjecture for words $w_k =[x_1,y_1]...[x_k,y_k]$ with $k$ a natural number; that is, for $g$ a $w_k$-value in $G$ we have $N_{w_k}(g) ge |G|^{2k-1}$. Finally, we discuss the related group properties of being rational and chiral, and show that every finite group of nilpotency class 2 is rational. Full Article
for A Hamilton-Jacobi Formulation for Time-Optimal Paths of Rectangular Nonholonomic Vehicles. (arXiv:2005.03623v1 [math.OC]) By arxiv.org Published On :: We address the problem of optimal path planning for a simple nonholonomic vehicle in the presence of obstacles. Most current approaches are either split hierarchically into global path planning and local collision avoidance, or neglect some of the ambient geometry by assuming the car is a point mass. We present a Hamilton-Jacobi formulation of the problem that resolves time-optimal paths and considers the geometry of the vehicle. Full Article
for A Model for Optimal Human Navigation with Stochastic Effects. (arXiv:2005.03615v1 [math.OC]) By arxiv.org Published On :: We present a method for optimal path planning of human walking paths in mountainous terrain, using a control theoretic formulation and a Hamilton-Jacobi-Bellman equation. Previous models for human navigation were entirely deterministic, assuming perfect knowledge of the ambient elevation data and human walking velocity as a function of local slope of the terrain. Our model includes a stochastic component which can account for uncertainty in the problem, and thus includes a Hamilton-Jacobi-Bellman equation with viscosity. We discuss the model in the presence and absence of stochastic effects, and suggest numerical methods for simulating the model. We discuss two different notions of an optimal path when there is uncertainty in the problem. Finally, we compare the optimal paths suggested by the model at different levels of uncertainty, and observe that as the size of the uncertainty tends to zero (and thus the viscosity in the equation tends to zero), the optimal path tends toward the deterministic optimal path. Full Article
for Positive Geometries and Differential Forms with Non-Logarithmic Singularities I. (arXiv:2005.03612v1 [hep-th]) By arxiv.org Published On :: Positive geometries encode the physics of scattering amplitudes in flat space-time and the wavefunction of the universe in cosmology for a large class of models. Their unique canonical forms, providing such quantum mechanical observables, are characterised by having only logarithmic singularities along all the boundaries of the positive geometry. However, physical observables have logarithmic singularities just for a subset of theories. Thus, it becomes crucial to understand whether a similar paradigm can underlie their structure in more general cases. In this paper we start a systematic investigation of a geometric-combinatorial characterisation of differential forms with non-logarithmic singularities, focusing on projective polytopes and related meromorphic forms with multiple poles. We introduce the notions of covariant forms and covariant pairings. Covariant forms have poles only along the boundaries of the given polytope; moreover, their leading Laurent coefficients along any of the boundaries are still covariant forms on the specific boundary. Whereas meromorphic forms in covariant pairing with a polytope are associated to a specific (signed) triangulation, in which poles on spurious boundaries do not cancel completely, but their order is lowered. These meromorphic forms can be fully characterised if the polytope they are associated to is viewed as the restriction of a higher dimensional one onto a hyperplane. The canonical form of the latter can be mapped into a covariant form or a form in covariant pairing via a covariant restriction. We show how the geometry of the higher dimensional polytope determines the structure of these differential forms. Finally, we discuss how these notions are related to Jeffrey-Kirwan residues and cosmological polytopes. Full Article
for The Fourier Transform Approach to Inversion of lambda-Cosine and Funk Transforms on the Unit Sphere. (arXiv:2005.03607v1 [math.FA]) By arxiv.org Published On :: We use the classical Fourier analysis to introduce analytic families of weighted differential operators on the unit sphere. These operators are polynomial functions of the usual Beltrami-Laplace operator. New inversion formulas are obtained for totally geodesic Funk transforms on the sphere and the correpsonding lambda-cosine transforms. Full Article
for Minimal acceleration for the multi-dimensional isentropic Euler equations. (arXiv:2005.03570v1 [math.AP]) By arxiv.org Published On :: Among all dissipative solutions of the multi-dimensional isentropic Euler equations there exists at least one that minimizes the acceleration, which implies that the solution is as close to being a weak solution as possible. The argument is based on a suitable selection procedure. Full Article
for Connectedness of square-free Groebner Deformations. (arXiv:2005.03569v1 [math.AC]) By arxiv.org Published On :: Let $Isubseteq S=K[x_1,ldots,x_n]$ be a homogeneous ideal equipped with a monomial order $<$. We show that if $operatorname{in}_<(I)$ is a square-free monomial ideal, then $S/I$ and $S/operatorname{in}_<(I)$ have the same connectedness dimension. We also show that graphs related to connectedness of these quotient rings have the same number of components. We also provide consequences regarding Lyubeznik numbers. We obtain these results by furthering the study of connectedness modulo a parameter in a local ring. Full Article
for Phase Transitions for one-dimensional Lorenz-like expanding Maps. (arXiv:2005.03558v1 [math.DS]) By arxiv.org Published On :: Given an one-dimensional Lorenz-like expanding map we prove that the conditionlinebreak $P_{top}(phi,partial mathcal{P},ell)<P_{top}(phi,ell)$ (see, subsection 2.4 for definition), introduced by Buzzi and Sarig in [1] is satisfied for all continuous potentials $phi:[0,1]longrightarrow mathbb{R}$. We apply this to prove that quasi-H"older-continuous potentials (see, subsection 2.2 for definition) have at most one equilibrium measure and we construct a family of continuous but not H"older and neither weak H"older continuous potentials for which we observe phase transitions. Indeed, this class includes all H"older and weak-H"older continuous potentials and form an open and [2]. Full Article
for Off-diagonal estimates for bi-commutators. (arXiv:2005.03548v1 [math.CA]) By arxiv.org Published On :: We study the bi-commutators $[T_1, [b, T_2]]$ of pointwise multiplication and Calder'on-Zygmund operators, and characterize their $L^{p_1}L^{p_2} o L^{q_1}L^{q_2}$ boundedness for several off-diagonal regimes of the mixed-norm integrability exponents $(p_1,p_2) eq(q_1,q_2)$. The strategy is based on a bi-parameter version of the recent approximate weak factorization method. Full Article
for Continuity properties of the shearlet transform and the shearlet synthesis operator on the Lizorkin type spaces. (arXiv:2005.03505v1 [math.FA]) By arxiv.org Published On :: We develop a distributional framework for the shearlet transform $mathcal{S}_{psi}colonmathcal{S}_0(mathbb{R}^2) omathcal{S}(mathbb{S})$ and the shearlet synthesis operator $mathcal{S}^t_{psi}colonmathcal{S}(mathbb{S}) omathcal{S}_0(mathbb{R}^2)$, where $mathcal{S}_0(mathbb{R}^2)$ is the Lizorkin test function space and $mathcal{S}(mathbb{S})$ is the space of highly localized test functions on the standard shearlet group $mathbb{S}$. These spaces and their duals $mathcal{S}_0^prime (mathbb R^2),, mathcal{S}^prime (mathbb{S})$ are called Lizorkin type spaces of test functions and distributions. We analyze the continuity properties of these transforms when the admissible vector $psi$ belongs to $mathcal{S}_0(mathbb{R}^2)$. Then, we define the shearlet transform and the shearlet synthesis operator of Lizorkin type distributions as transpose mappings of the shearlet synthesis operator and the shearlet transform, respectively. They yield continuous mappings from $mathcal{S}_0^prime (mathbb R^2)$ to $mathcal{S}^prime (mathbb{S})$ and from $mathcal{S}^prime (mathbb S)$ to $mathcal{S}_0^prime (mathbb{R}^2)$. Furthermore, we show the consistency of our definition with the shearlet transform defined by direct evaluation of a distribution on the shearlets. The same can be done for the shearlet synthesis operator. Finally, we give a reconstruction formula for Lizorkin type distributions, from which follows that the action of such generalized functions can be written as an absolutely convergent integral over the standard shearlet group. Full Article
for Characteristic Points, Fundamental Cubic Form and Euler Characteristic of Projective Surfaces. (arXiv:2005.03481v1 [math.DG]) By arxiv.org Published On :: We define local indices for projective umbilics and godrons (also called cusps of Gauss) on generic smooth surfaces in projective 3-space. By means of these indices, we provide formulas that relate the algebraic numbers of those characteristic points on a surface (and on domains of the surface) with the Euler characteristic of that surface (resp. of those domains). These relations determine the possible coexistences of projective umbilics and godrons on the surface. Our study is based on a "fundamental cubic form" for which we provide a closed simple expression. Full Article
for On the connection problem for the second Painlev'e equation with large initial data. (arXiv:2005.03440v1 [math.CA]) By arxiv.org Published On :: We consider two special cases of the connection problem for the second Painlev'e equation (PII) using the method of uniform asymptotics proposed by Bassom et al.. We give a classification of the real solutions of PII on the negative (positive) real axis with respect to their initial data. By product, a rigorous proof of a property associate with the nonlinear eigenvalue problem of PII on the real axis, recently revealed by Bender and Komijani, is given by deriving the asymptotic behavior of the Stokes multipliers. Full Article
for The formation of trapped surfaces in the gravitational collapse of spherically symmetric scalar fields with a positive cosmological constant. (arXiv:2005.03434v1 [gr-qc]) By arxiv.org Published On :: Given spherically symmetric characteristic initial data for the Einstein-scalar field system with a positive cosmological constant, we provide a criterion, in terms of the dimensionless size and dimensionless renormalized mass content of an annular region of the data, for the formation of a future trapped surface. This corresponds to an extension of Christodoulou's classical criterion by the inclusion of the cosmological term. Full Article
for Removable singularities for Lipschitz caloric functions in time varying domains. (arXiv:2005.03397v1 [math.CA]) By arxiv.org Published On :: In this paper we study removable singularities for regular $(1,1/2)$-Lipschitz solutions of the heat equation in time varying domains. We introduce an associated Lipschitz caloric capacity and we study its metric and geometric properties and the connection with the $L^2$ boundedness of the singular integral whose kernel is given by the gradient of the fundamental solution of the heat equation. Full Article
for Semiglobal non-oscillatory big bang singular spacetimes for the Einstein-scalar field system. (arXiv:2005.03395v1 [math-ph]) By arxiv.org Published On :: We construct semiglobal singular spacetimes for the Einstein equations coupled to a massless scalar field. Consistent with the heuristic analysis of Belinskii, Khalatnikov, Lifshitz or BKL for this system, there are no oscillations due to the scalar field. (This is much simpler than the oscillatory BKL heuristics for the Einstein vacuum equations.) Prior results are due to Andersson and Rendall in the real analytic case, and Rodnianski and Speck in the smooth near-spatially-flat-FLRW case. Similar to Andersson and Rendall we give asymptotic data at the singularity, which we refer to as final data, but our construction is not limited to real analytic solutions. This paper is a test application of tools (a graded Lie algebra formulation of the Einstein equations and a filtration) intended for the more subtle vacuum case. We use homological algebra tools to construct a formal series solution, then symmetric hyperbolic energy estimates to construct a true solution well-approximated by truncations of the formal one. We conjecture that the image of the map from final data to initial data is an open set of anisotropic initial data. Full Article
for Minimum pair degree condition for tight Hamiltonian cycles in $4$-uniform hypergraphs. (arXiv:2005.03391v1 [math.CO]) By arxiv.org Published On :: We show that every 4-uniform hypergraph with $n$ vertices and minimum pair degree at least $(5/9+o(1))n^2/2$ contains a tight Hamiltonian cycle. This degree condition is asymptotically optimal. Full Article
for A reducibility problem for even Unitary groups: The depth zero case. (arXiv:2005.03386v1 [math.RT]) By arxiv.org Published On :: We study a problem concerning parabolic induction in certain p-adic unitary groups. More precisely, for $E/F$ a quadratic extension of p-adic fields the associated unitary group $G=mathrm{U}(n,n)$ contains a parabolic subgroup $P$ with Levi component $L$ isomorphic to $mathrm{GL}_n(E)$. Let $pi$ be an irreducible supercuspidal representation of $L$ of depth zero. We use Hecke algebra methods to determine when the parabolically induced representation $iota_P^G pi$ is reducible. Full Article
for A Schur-Nevanlinna type algorithm for the truncated matricial Hausdorff moment problem. (arXiv:2005.03365v1 [math.CA]) By arxiv.org Published On :: The main goal of this paper is to achieve a parametrization of the solution set of the truncated matricial Hausdorff moment problem in the non-degenerate and degenerate situation. We treat the even and the odd cases simultaneously. Our approach is based on Schur analysis methods. More precisely, we use two interrelated versions of Schur-type algorithms, namely an algebraic one and a function-theoretic one. The algebraic version, worked out in our former paper arXiv:1908.05115, is an algorithm which is applied to finite or infinite sequences of complex matrices. The construction and discussion of the function-theoretic version is a central theme of this paper. This leads us to a complete description via Stieltjes transform of the solution set of the moment problem under consideration. Furthermore, we discuss special solutions in detail. Full Article
for Strong maximum principle and boundary estimates for nonhomogeneous elliptic equations. (arXiv:2005.03338v1 [math.AP]) By arxiv.org Published On :: We give a simple proof of the strong maximum principle for viscosity subsolutions of fully nonlinear elliptic PDEs on the form $$ F(x,u,Du,D^2u) = 0 $$ under suitable structure conditions on the equation allowing for non-Lipschitz growth in the gradient terms. In case of smooth boundaries, we also prove the Hopf lemma, the boundary Harnack inequality and that positive viscosity solutions vanishing on a portion of the boundary are comparable with the distance function near the boundary. Our results apply to weak solutions of an eigenvalue problem for the variable exponent $p$-Laplacian. Full Article
for Riemann-Hilbert approach and N-soliton formula for the N-component Fokas-Lenells equations. (arXiv:2005.03319v1 [nlin.SI]) By arxiv.org Published On :: In this work, the generalized $N$-component Fokas-Lenells(FL) equations, which have been studied by Guo and Ling (2012 J. Math. Phys. 53 (7) 073506) for $N=2$, are first investigated via Riemann-Hilbert(RH) approach. The main purpose of this is to study the soliton solutions of the coupled Fokas-Lenells(FL) equations for any positive integer $N$, which have more complex linear relationship than the analogues reported before. We first analyze the spectral analysis of the Lax pair associated with a $(N+1) imes (N+1)$ matrix spectral problem for the $N$-component FL equations. Then, a kind of RH problem is successfully formulated. By introducing the special conditions of irregularity and reflectionless case, the $N$-soliton solution formula of the equations are derived through solving the corresponding RH problem. Furthermore, take $N=2,3$ and $4$ for examples, the localized structures and dynamic propagation behavior of their soliton solutions and their interactions are discussed by some graphical analysis. Full Article
for Linear independence of generalized Poincar'{e} series for anti-de Sitter $3$-manifolds. (arXiv:2005.03308v1 [math.SP]) By arxiv.org Published On :: Let $Gamma$ be a discrete group acting properly discontinuously and isometrically on the three-dimensional anti-de Sitter space $mathrm{AdS}^{3}$, and $square$ the Laplacian which is a second-order hyperbolic differential operator. We study linear independence of a family of generalized Poincar'{e} series introduced by Kassel-Kobayashi [Adv. Math. 2016], which are defined by the $Gamma$-average of certain eigenfunctions on $mathrm{AdS}^{3}$. We prove that the multiplicities of $L^{2}$-eigenvalues of the hyperbolic Laplacian $square$ on $Gammaackslashmathrm{AdS}^{3}$ are unbounded when $Gamma$ is finitely generated. Moreover, we prove that the multiplicities of extit{stable $L^{2}$-eigenvalues} for compact anti-de Sitter $3$-manifolds are unbounded. Full Article
for Fourier transformation and stability of differential equation on $L^1(Bbb{R})$. (arXiv:2005.03296v1 [math.FA]) By arxiv.org Published On :: In the present paper by the Fourier transform we show that every linear differential equations of $n$-th order has a solution in $L^1(Bbb{R})$ which is infinitely differentiable in $Bbb{R} setminus {0}$. Moreover the Hyers-Ulam stability of such equations on $L^1(Bbb{R})$ is investigated. Full Article
for Lorentz estimates for quasi-linear elliptic double obstacle problems involving a Schr"odinger term. (arXiv:2005.03281v1 [math.AP]) By arxiv.org Published On :: Our goal in this article is to study the global Lorentz estimates for gradient of weak solutions to $p$-Laplace double obstacle problems involving the Schr"odinger term: $-Delta_p u + mathbb{V}|u|^{p-2}u$ with bound constraints $psi_1 le u le psi_2$ in non-smooth domains. This problem has its own interest in mathematics, engineering, physics and other branches of science. Our approach makes a novel connection between the study of Calder'on-Zygmund theory for nonlinear Schr"odinger type equations and variational inequalities for double obstacle problems. Full Article
for The conjecture of Erd"{o}s--Straus is true for every $nequiv 13 extrm{ mod }24$. (arXiv:2005.03273v1 [math.NT]) By arxiv.org Published On :: In this short note we give a proof of the famous conjecture of Erd"{o}s-Straus for the case $nequiv13 extrm{ mod } 24.$ The Erd"{o}s--Straus conjecture states that the equation $frac{4}{n}=frac{1}{x}+frac{1}{y}+frac{1}{z}$ has positive integer solutions $x,y,z$ for every $ngeq 2$. It is open for $nequiv 1 extrm{ mod } 12$. Indeed, in all of the other cases the solutions are always easy to find. We prove that the conjecture is true for every $nequiv 13 extrm{ mod } 24$. Therefore, to solve it completely, it remains to find solutions for every $nequiv 1 extrm{ mod } 24$. Full Article
for The Congruence Subgroup Problem for finitely generated Nilpotent Groups. (arXiv:2005.03263v1 [math.GR]) By arxiv.org Published On :: The congruence subgroup problem for a finitely generated group $Gamma$ and $Gleq Aut(Gamma)$ asks whether the map $hat{G} o Aut(hat{Gamma})$ is injective, or more generally, what is its kernel $Cleft(G,Gamma ight)$? Here $hat{X}$ denotes the profinite completion of $X$. In the case $G=Aut(Gamma)$ we denote $Cleft(Gamma ight)=Cleft(Aut(Gamma),Gamma ight)$. Let $Gamma$ be a finitely generated group, $ar{Gamma}=Gamma/[Gamma,Gamma]$, and $Gamma^{*}=ar{Gamma}/tor(ar{Gamma})congmathbb{Z}^{(d)}$. Denote $Aut^{*}(Gamma)= extrm{Im}(Aut(Gamma) o Aut(Gamma^{*}))leq GL_{d}(mathbb{Z})$. In this paper we show that when $Gamma$ is nilpotent, there is a canonical isomorphism $Cleft(Gamma ight)simeq C(Aut^{*}(Gamma),Gamma^{*})$. In other words, $Cleft(Gamma ight)$ is completely determined by the solution to the classical congruence subgroup problem for the arithmetic group $Aut^{*}(Gamma)$. In particular, in the case where $Gamma=Psi_{n,c}$ is a finitely generated free nilpotent group of class $c$ on $n$ elements, we get that $C(Psi_{n,c})=C(mathbb{Z}^{(n)})={e}$ whenever $ngeq3$, and $C(Psi_{2,c})=C(mathbb{Z}^{(2)})=hat{F}_{omega}$ = the free profinite group on countable number of generators. Full Article
for Dynamical Phase Transitions for Fluxes of Mass on Finite Graphs. (arXiv:2005.03262v1 [cond-mat.stat-mech]) By arxiv.org Published On :: We study the time-averaged flux in a model of particles that randomly hop on a finite directed graph. In the limit as the number of particles and the time window go to infinity but the graph remains finite, the large-deviation rate functional of the average flux is given by a variational formulation involving paths of the density and flux. We give sufficient conditions under which the large deviations of a given time averaged flux is determined by paths that are constant in time. We then consider a class of models on a discrete ring for which it is possible to show that a better strategy is obtained producing a time-dependent path. This phenomenon, called a dynamical phase transition, is known to occur for some particle systems in the hydrodynamic scaling limit, which is thus extended to the setting of a finite graph. Full Article
for A Chance Constraint Predictive Control and Estimation Framework for Spacecraft Descent with Field Of View Constraints. (arXiv:2005.03245v1 [math.OC]) By arxiv.org Published On :: Recent studies of optimization methods and GNC of spacecraft near small bodies focusing on descent, landing, rendezvous, etc., with key safety constraints such as line-of-sight conic zones and soft landings have shown promising results; this paper considers descent missions to an asteroid surface with a constraint that consists of an onboard camera and asteroid surface markers while using a stochastic convex MPC law. An undermodeled asteroid gravity and spacecraft technology inspired measurement model is established to develop the constraint. Then a computationally light stochastic Linear Quadratic MPC strategy is presented to keep the spacecraft in satisfactory field of view of the surface markers while trajectory tracking, employing chance based constraints and up-to-date estimation uncertainty from navigation. The estimation uncertainty giving rise to the tightened constraints is particularly addressed. Results suggest robust tracking performance across a variety of trajectories. Full Article
for Approximate Performance Measures for a Two-Stage Reneging Queue. (arXiv:2005.03239v1 [math.PR]) By arxiv.org Published On :: We study a two-stage reneging queue with Poisson arrivals, exponential services, and two levels of exponential reneging behaviors, extending the popular Erlang A model that assumes a constant reneging rate. We derive approximate analytical formulas representing performance measures for the two-stage queue following the Markov chain decomposition approach. Our formulas not only give accurate results spanning the heavy-traffic to the light-traffic regimes, but also provide insight into capacity decisions. Full Article
for Non-relativity of K"ahler manifold and complex space forms. (arXiv:2005.03208v1 [math.CV]) By arxiv.org Published On :: We study the non-relativity for two real analytic K"ahler manifolds and complex space forms of three types. The first one is a K"ahler manifold whose polarization of local K"ahler potential is a Nash function in a local coordinate. The second one is the Hartogs domain equpped with two canonical metrics whose polarizations of the K"ahler potentials are the diastatic functions. Full Article
for The UCT problem for nuclear $C^ast$-algebras. (arXiv:2005.03184v1 [math.OA]) By arxiv.org Published On :: In recent years, a large class of nuclear $C^ast$-algebras have been classified, modulo an assumption on the Universal Coefficient Theorem (UCT). We think this assumption is redundant and propose a strategy for proving it. Indeed, following the original proof of the classification theorem, we propose bridging the gap between reduction theorems and examples. While many such bridges are possible, various approximate ideal structures appear quite promising. Full Article
for Optimality for the two-parameter quadratic sieve. (arXiv:2005.03162v1 [math.NT]) By arxiv.org Published On :: We study the two-parameter quadratic sieve for a general test function. We prove, under some very general assumptions, that the function considered by Barban and Vehov [BV68] and Graham [Gra78] for this problem is optimal up to the second-order term. We determine that second-order term explicitly. Full Article
for Functional convex order for the scaled McKean-Vlasov processes. (arXiv:2005.03154v1 [math.PR]) By arxiv.org Published On :: We establish the functional convex order results for two scaled McKean-Vlasov processes $X=(X_{t})_{tin[0, T]}$ and $Y=(Y_{t})_{tin[0, T]}$ defined by [egin{cases} dX_{t}=(alpha X_{t}+eta)dt+sigma(t, X_{t}, mu_{t})dB_{t}, quad X_{0}in L^{p}(mathbb{P}),\ dY_{t}=(alpha Y_{t},+eta)dt+ heta(t, Y_{t}, u_{t})dB_{t}, quad Y_{0}in L^{p}(mathbb{P}). end{cases}] If we make the convexity and monotony assumption (only) on $sigma$ and if $sigmaleq heta$ with respect to the partial matrix order, the convex order for the initial random variable $X_0 leq Y_0$ can be propagated to the whole path of process $X$ and $Y$. That is, if we consider a convex functional $F$ with polynomial growth defined on the path space, we have $mathbb{E}F(X)leqmathbb{E}F(Y)$; for a convex functional $G$ defined on the product space involving the path space and its marginal distribution space, we have $mathbb{E},Gig(X, (mu_t)_{tin[0, T]}ig)leq mathbb{E},Gig(Y, ( u_t)_{tin[0, T]}ig)$ under appropriate conditions. The symmetric setting is also valid, that is, if $ heta leq sigma$ and $Y_0 leq X_0$ with respect to the convex order, then $mathbb{E},F(Y) leq mathbb{E},F(X)$ and $mathbb{E},Gig(Y, ( u_t)_{tin[0, T]}ig)leq mathbb{E},G(X, (mu_t)_{tin[0, T]})$. The proof is based on several forward and backward dynamic programming and the convergence of the Euler scheme of the McKean-Vlasov equation. Full Article
for Sharp p-bounds for maximal operators on finite graphs. (arXiv:2005.03146v1 [math.CA]) By arxiv.org Published On :: Let $G=(V,E)$ be a finite graph and $M_G$ be the centered Hardy-Littlewood maximal operator defined there. We found the optimal value $C_{G,p}$ such that the inequality $$Var_{p}(M_{G}f)le C_{G,p}Var_{p}(f)$$ holds for every every $f:V o mathbb{R},$ where $Var_p$ stands for the $p$-variation, when: (i)$G=K_n$ (complete graph) and $pin [frac{ln(4)}{ln(6)},infty)$ or $G=K_4$ and $pin (0,infty)$;(ii) $G=S_n$(star graph) and $1ge pge frac{1}{2}$; $pin (0,frac{1}{2})$ and $nge C(p)<infty$ or $G=S_3$ and $pin (1,infty).$ We also found the optimal value $L_{G,2}$ such that the inequality $$|M_{G}f|_2le L_{G,2}|f|_2$$ holds for every $f:V o mathbb{R}$, when: (i)$G=K_n$ and $nge 3$;(ii)$G=S_n$ and $nge 3.$ Full Article
for On planar graphs of uniform polynomial growth. (arXiv:2005.03139v1 [math.PR]) By arxiv.org Published On :: Consider an infinite planar graph with uniform polynomial growth of degree d > 2. Many examples of such graphs exhibit similar geometric and spectral properties, and it has been conjectured that this is necessary. We present a family of counterexamples. In particular, we show that for every rational d > 2, there is a planar graph with uniform polynomial growth of degree d on which the random walk is transient, disproving a conjecture of Benjamini (2011). By a well-known theorem of Benjamini and Schramm, such a graph cannot be a unimodular random graph. We also give examples of unimodular random planar graphs of uniform polynomial growth with unexpected properties. For instance, graphs of (almost sure) uniform polynomial growth of every rational degree d > 2 for which the speed exponent of the walk is larger than 1/d, and in which the complements of all balls are connected. This resolves negatively two questions of Benjamini and Papasoglou (2011). Full Article
for Exponential decay for negative feedback loop with distributed delay. (arXiv:2005.03136v1 [math.DS]) By arxiv.org Published On :: We derive sufficient conditions for exponential decay of solutions of the delay negative feedback equation with distributed delay. The conditions are written in terms of exponential moments of the distribution. Our method only uses elementary tools of calculus and is robust towards possible extensions to more complex settings, in particular, systems of delay differential equations. We illustrate the applicability of the method to particular distributions - Dirac delta, Gamma distribution, uniform and truncated normal distributions. Full Article
for On the notion of weak isometry for finite metric spaces. (arXiv:2005.03109v1 [math.MG]) By arxiv.org Published On :: Finite metric spaces are the object of study in many data analysis problems. We examine the concept of weak isometry between finite metric spaces, in order to analyse properties of the spaces that are invariant under strictly increasing rescaling of the distance functions. In this paper, we analyse some of the possible complete and incomplete invariants for weak isometry and we introduce a dissimilarity measure that asses how far two spaces are from being weakly isometric. Furthermore, we compare these ideas with the theory of persistent homology, to study how the two are related. Full Article
for A Note on Approximations of Fixed Points for Nonexpansive Mappings in Norm-attainable Classes. (arXiv:2005.03069v1 [math.FA]) By arxiv.org Published On :: Let $H$ be an infinite dimensional, reflexive, separable Hilbert space and $NA(H)$ the class of all norm-attainble operators on $H.$ In this note, we study an implicit scheme for a canonical representation of nonexpansive contractions in norm-attainable classes. Full Article
for Deformation classes in generalized K"ahler geometry. (arXiv:2005.03062v1 [math.DG]) By arxiv.org Published On :: We introduce natural deformation classes of generalized K"ahler structures using the Courant symmetry group. We show that these yield natural extensions of the notions of K"ahler class and K"ahler cone to generalized K"ahler geometry. Lastly we show that the generalized K"ahler-Ricci flow preserves this generalized K"ahler cone, and the underlying real Poisson tensor. Full Article
for Quantization of Lax integrable systems and Conformal Field Theory. (arXiv:2005.03053v1 [math-ph]) By arxiv.org Published On :: We present the correspondence between Lax integrable systems with spectral parameter on a Riemann surface, and Conformal Field Theories, in quite general set-up suggested earlier by the author. This correspondence turns out to give a prequantization of the integrable systems in question. Full Article
for GraphBLAST: A High-Performance Linear Algebra-based Graph Framework on the GPU. (arXiv:1908.01407v3 [cs.DC] CROSS LISTED) By arxiv.org Published On :: High-performance implementations of graph algorithms are challenging to implement on new parallel hardware such as GPUs, because of three challenges: (1) difficulty of coming up with graph building blocks, (2) load imbalance on parallel hardware, and (3) graph problems having low arithmetic intensity. To address these challenges, GraphBLAS is an innovative, on-going effort by the graph analytics community to propose building blocks based in sparse linear algebra, which will allow graph algorithms to be expressed in a performant, succinct, composable and portable manner. In this paper, we examine the performance challenges of a linear algebra-based approach to building graph frameworks and describe new design principles for overcoming these bottlenecks. Among the new design principles is exploiting input sparsity, which allows users to write graph algorithms without specifying push and pull direction. Exploiting output sparsity allows users to tell the backend which values of the output in a single vectorized computation they do not want computed. Load-balancing is an important feature for balancing work amongst parallel workers. We describe the important load-balancing features for handling graphs with different characteristics. The design principles described in this paper have been implemented in "GraphBLAST", the first open-source linear algebra-based graph framework on GPU targeting high-performance computing. The results show that on a single GPU, GraphBLAST has on average at least an order of magnitude speedup over previous GraphBLAS implementations SuiteSparse and GBTL, comparable performance to the fastest GPU hardwired primitives and shared-memory graph frameworks Ligra and Gunrock, and better performance than any other GPU graph framework, while offering a simpler and more concise programming model. Full Article
for GraCIAS: Grassmannian of Corrupted Images for Adversarial Security. (arXiv:2005.02936v2 [cs.CV] UPDATED) By arxiv.org Published On :: Input transformation based defense strategies fall short in defending against strong adversarial attacks. Some successful defenses adopt approaches that either increase the randomness within the applied transformations, or make the defense computationally intensive, making it substantially more challenging for the attacker. However, it limits the applicability of such defenses as a pre-processing step, similar to computationally heavy approaches that use retraining and network modifications to achieve robustness to perturbations. In this work, we propose a defense strategy that applies random image corruptions to the input image alone, constructs a self-correlation based subspace followed by a projection operation to suppress the adversarial perturbation. Due to its simplicity, the proposed defense is computationally efficient as compared to the state-of-the-art, and yet can withstand huge perturbations. Further, we develop proximity relationships between the projection operator of a clean image and of its adversarially perturbed version, via bounds relating geodesic distance on the Grassmannian to matrix Frobenius norms. We empirically show that our strategy is complementary to other weak defenses like JPEG compression and can be seamlessly integrated with them to create a stronger defense. We present extensive experiments on the ImageNet dataset across four different models namely InceptionV3, ResNet50, VGG16 and MobileNet models with perturbation magnitude set to {epsilon} = 16. Unlike state-of-the-art approaches, even without any retraining, the proposed strategy achieves an absolute improvement of ~ 4.5% in defense accuracy on ImageNet. Full Article