thermal

Thermal treatment of biomass

A biomass pyrolysis process is provided in which biomass feedstock is mixed with a heat carrier. The heat carrier at least partly comprises char. The ratio by weight of biomass to char is in the range 1:1 to 1:20. The process may be carried out by in a screw/auger pyrolysis reactor in which the solid feedstock components are conveyed along the reactor by a first screw. A second screw conveys at least a portion of the solid products of the biomass pyrolysis back to a heat transfer medium input port. Thus, the heat transfer medium includes char from the biomass pyrolysis.




thermal

Reciprocating reactor and methods for thermal decomposition of carbonaceous feedstock

The present technology describes apparatus, systems, and methods for the thermal decomposition of carbonaceous feedstocks through continuous pyrolysis. A reciprocating reactor is described that includes an inner reactor pipe and an outer reactor pipe. The outer reactor pipe has a first portion that surrounds the inner reactor pipe forming an annulus space, and a second portion that extends beyond the inner reactor pipe and forms a turnaround zone. The inner reactor pipe defines an inner reactor zone that produces partially reacted carbonaceous feedstock, and the annulus space defines an outer reactor zone that produces product gases and solids.




thermal

Method and an apparatus having a compressible collar for thermally treating a photosensitive precursor

The invention pertains to a method and apparatus for preparing a printing form from a precursor, particularly a method and apparatus for preparing the printing form by thermally treating a photosensitive precursor having a photopolymerizable layer. The method and apparatus includes heating the photosensitive precursor to a temperature sufficient to cause a portion of the layer to liquefy, contacting the precursor with a development medium to remove the liquefied material, and supporting a development medium with a core member adjacent an exterior surface of the photosensitive precursor, wherein a compressible collar of a closed-cell foam having a Poisson's ratio of less than 0.4 is disposed between the core member and the development medium.




thermal

THERMAL ENHANCEMENT OF CABIN AIR COMPRESSOR MOTOR COOLING

A cabin air compressor assembly includes a cabin air compressor, and a cabin air compressor motor operably connected to the cabin air compressor. The cabin air compressor motor includes a rotor and a stator having a plurality of end windings. A cabin air compressor housing includes at least one cooling airflow hole formed therein. A motor cooling flow is movable across a portion of the cabin air compressor motor to cool the stator and the end windings. A duct extends from the cabin air compressor housing to an adjacent end winding such that a cooling outlet flow provided via the at least one cooling air flow hole is arranged in fluid communication with the end winding.




thermal

Integrated thermal management system and environmental control system for a gas turbine engine

A gas turbine engine includes a first and second pump driven by a spool. An Air-Oil Cooler downstream of the first pump. An air-air precooler is downstream of the second pump, the air-air precooler downstream of the Air-Oil Cooler.




thermal

Electronic personal thermal control apparatus and system

An electronic personal thermal control apparatus and method may provide heating and cooling for a user. A power source may provide power to a thermal module that is capable of heating or cooling a heat transfer component to a desired temperature. The heating or cooling may be managed by a controller. The components may be placed in a housing. The apparatus may be placed at any suitable position on a user's body, such as the wrist or ankle(s). The housing of the apparatus may be incorporated or combined with clothing, such as wristband(s), apparel, jackets, footwear, or the like.




thermal

Wastewater effluent to geothermal heating

A wastewater geothermal heat system is supplied with processed wastewater through a drip field in proximity to a thermal array part of a geothermal heat pump system. The wastewater treatment system portion provides a periodic source of treated wastewater. Several sensors and a control system regulate a pump that discharges wastewater from the treatment system and enters a drip field where it is released into the surrounding soil. The dampened soil provides an efficient vehicle to transfer heat into or out of a thermal array which is positioned adjacent to the drip field such that it is in contact with the soil that is dampened by the discharged wastewater.




thermal

Window mounting for thermal expansion in an oven appliance

Mounting for a window in an oven appliance is provided so as to allow for thermal expansion during oven use. More particularly, an expansion zone is provided around the window such that, during heating of the window from oven operation, the window is allowed to expand without restraint that could cause cracking or shattering. Space can be allowed for both lateral and longitudinal expansion of the window.




thermal

Integrated thermal module and back plate structure and related methods

A thermal solar system having a fire rating of at least A. In a specific embodiment, the system includes a thermal solar module having an aperture region and a backside region. The system has a shaped thickness of material having a first side and a second side. In a preferred embodiment, the shaped thickness of material is characterized by a fire rating of at least A. The material has a thickness suitable to be free from penetration of moisture according to one or more embodiments. The thickness of material also has a structural characteristic capable of maintaining a shape and coupling to the backside region of the thermal solar module according to one or more embodiments. The system also has an air plenum provided between the thermal solar module and the thickness shaped thickness of material. In a preferred embodiment, the system further has a frame assembly operably coupled to the shaped thickness of material to support the shaped thickness of material and the thermal solar module.




thermal

Self-contained, multi-fluid energy conversion and management system for converting solar energy to electric and thermal energy

The teachings generally relate to a system for converting solar energy into electrical energy and thermal energy using a self-contained system having a plurality of channels for the heat transfer using a respective plurality of fluids.




thermal

Thermal vector system for solar concentration power plant

The present invention relates to a thermal vector system for solar concentration plants, in particular for parabolic trough solar concentration plants, both for industrial and domestic use, comprising a solid state thermal vector. A preferred solar concentration plant comprises one or more solar collectors (1), an heat exchanger (3-5), a heat accumulator (2) and a connecting pipe circuit, in which a solid state thermal vector is pushed through said circuit by mechanical means (6).




thermal

Tunable thermal switch

A new multifunctional, thermoelastic cellular structure is described. The new structure provides tunable thermal transport behaviors particularly important for thermal switching. In its simplest example embodiment of a single or unit cell, opposing bimetallic elements bend in response to temperature changes and, below a tunable switching temperature, are separated in an open or insulating position and, at and above the switching temperature, bend to come into contact in a closed or conducting position. Multiple cells are combined in different lattice arrays to create structures that are both switchable and load bearing. The cells can be switched by both temperature and other external fields.




thermal

Nanoparticle-enhanced phase change materials (NEPCM) with improved thermal energy storage

Nanoparticle-enhanced phase change materials (NEPCM) including nanoparticles dispersed with a base phase change material and that exhibit enhanced thermal conductivity in comparison to the base phase change material.




thermal

Underground thermal battery storage system

‘Underground Thermal Battery Storage System’ using a battery structure of one or more underground thermally insulated cells, where each cell comprised of a waterproof thermal insulation shell, one or more fluid storage tanks and earth matrix. The thermal storage cell's fluid storage tanks are interconnected using a thermal fluid transport system with control valves, circulating pumps, and managed by a programmable controller. The programmable controller uses the cell sensors to determine cell status, control cell interconnections, and to manage the thermal charging and discharging by exterior heating or cooling devices. A moisture injection system is provided to control the thermal conductivity within the cell's earth matrix.




thermal

Plate heat exchanger for isothermal chemical reactors

A radial-flow plate heat exchanger (5) embedded in the catalytic bed of an isothermal chemical reactor (1) has heat exchange plates (10) comprising fluid passages (13) between a first metal sheet (20) and a second metal sheet (21) joined by perimeter weld seams (23) on a first surface (A) of the plate, a feeding channel (14) and a collecting channel (15) for the heat exchange fluid are formed with suitable metal sheets which are seam welded (25) directly to the opposite surface (B) of the plate, this structure allows the manufacturing of the plate (10) with an automated seam welding process, such as laser beam welding.




thermal

Thermal energy storage materials

The thermal energy storage material (TESM) system includes a container having a wall surface, and a TESM in at least partial contact with the wall surface. The TESM may include, consist essentially of, or consist of a metal containing compound comprising lithium, one or more different metal cations (i.e., different from lithium) and one or more polyatomic anions. The TESM may have a liquidus temperature, TL, from about 100° C. to about 250° C. The TESM may exhibits a heat storage density from 1 MJ/l to 1.84 MJ/l, as measured from 300° C. to 80° C. The TESM system may be free of water. If any water is present in the TESM system, the water concentration preferably is less than 10 wt. %. Preferably, the TESM system is generally resistant to corrosion at temperatures of about 300° C.




thermal

Thermal management of a communication transceiver in an electrical communication device

Disclosed herein are various systems and methods relating to communication devices that include modular transceivers, such as small form pluggable transceivers. According to one embodiment, a communication device may include a chassis defining an interior and an exterior of the communication device. The chassis includes a top, a bottom, and a plurality of sides that together with the top and the bottom form an enclosure. One of the sides may include a first segment disposed in a first plane and a second segment disposed in a second plane. The second segment includes an outwardly extending communication transceiver housing configured to receive a communication transceiver. The communication transceiver may extend through an aperture in the second segment and into interior of the communication device to contact an electrical connector, while a second portion of the communication transceiver in the communication transceiver housing remains on the exterior of the communication device.




thermal

Apparatus and methods for rapid thermal processing

Embodiments of the present invention provide apparatus and methods for performing rapid thermal processing. One embodiment of the present invention provides an apparatus for processing a substrate. The apparatus includes a heating source disposed outside a chamber body and configured to provide thermal energy towards a processing volume. The substrate support defines a substrate supporting plane, and the substrate support is configured to support the substrate in the substrate supporting plane. The heating source includes a frame member having an inner wall surrounding an area large enough to encompass a surface area of the substrate, and a plurality of diode laser tiles mounted on the inner wall of the frame member. Each of the plurality of diode laser tiles is directed towards a corresponding area in the processing volume.




thermal

Low alloy steel for geothermal power generation turbine rotor, and low alloy material for geothermal power generation turbine rotor and method for manufacturing the same

A low alloy steel ingot contains from 0.15 to 0.30% of C, from 0.03 to 0.2% of Si, from 0.5 to 2.0% of Mn, from 0.1 to 1.3% of Ni, from 1.5 to 3.5% of Cr, from 0.1 to 1.0% of Mo, and more than 0.15 to 0.35% of V, and optionally Ni, with a balance being Fe and unavoidable impurities. Performing quality heat treatment including a quenching step and a tempering step to the low alloy steel ingot to obtain a material, which has a grain size number of from 3 to 7 and is free from pro-eutectoid ferrite in a metallographic structure thereof, and which has a tensile strength of from 760 to 860 MPa and a fracture appearance transition temperature of not higher than 40° C.




thermal

Machine for the homogenization and thermal treatment of liquid and semi-liquid food products

A machine for the homogenization and thermal treatment of liquid and semi-liquid food products, for example ice creams, whipped cream, creams, chocolate, yogurt and the like, comprises a containment tank for the mixture and a centrifugal pump put in fluid communication with the bottom of the containment tank for drawing mixture from the tank and putting it back into the tank, heating and cooling means acting at the pump for heating and cooling the mixture in transit in the pump. The heating and cooling means comprise a thermal machine with reversible thermodynamic cycle and using carbon dioxide as refrigerant.




thermal

Connection of tubes using thermally curable adhesives

The invention relates to a method for connecting a first tube to a second tube, the tubes being interconnected in an overlapping region by means of an adhesive that fills a gap in the overlapping region between the tubes. Said method is characterized in that: a) adhesive is applied to the overlapping region of at least one of the tubes and the adhesive is selected in such a way that it is solid at temperatures of below 30° C. after application to the overlapping region and prior to the connection of the tubes, and cannot be cured without thermal activation; b) the tube having the adhesive in the overlapping region is pushed onto or inside the other tube; c) the tubes are fixed in relation to one another in the overlapping region by a heatable clamp, said clamp being designed in such a way that it can heat the tubes in said region; d) the adhesive is thermally activated by heating the overlapping region with the aid of the heatable clamp, whereby the adhesive cures and connects the two tubes in the overlapping region; and e) the heatable clamp is removed once the adhesive has cured. The invention also relates to a method for producing a refrigerator and to a refrigerator comprising correspondingly joined tube sections.




thermal

Devices for thermally induced transformations controlled by irradiation of functionalized fullerenes

An electromagnetic radiation activated device comprises a property changing material and at least one functionalized fullerene that upon irradiation of the functionalized fullerenes with electromagnetic radiation of one or more frequencies a thermally activated chemical or physical transformation occurs in the property changing material. The thermal activated transformation of the property changing material is triggered by the heating or combustion of the functionalized fullerenes upon their irradiation. The device can include a chemical agent that is embedded in the property changing material and is released when the material is heated by the functionalized fullerenes upon irradiation.




thermal

THERMAL PRINT HEAD AND THERMAL PRINTER

The present invention provides a thermal print head and a thermal printer that can deliver improved printing quality. The thermal print head includes a main substrate with a main surface, heating elements arranged along a main scanning direction, and a protection layer that covers the heating elements. A belt-shaped heating glaze layer is between the main surface and the heating elements, extends along the main scanning direction, and bulges towards the direction where the main surface faces. The surface shape of the protection layer has an equivalent radius of curvature Re between 6200 μm and 15000 μm. The equivalent radius of curvature Re is calculated by Hq and Wq. Hq is ¼ of the maximum height Hm of the bulging portion of the protection layer including the heating glaze layer. Wq is the width of the bulging portion along a sub-scanning direction, measured at a height equal to Hm minus Hq.




thermal

THERMAL PRINT HEAD

A thermal print head includes a semiconductor substrate, a resistor layer and a wiring layer. The resistor layer is formed on the semiconductor substrate and has a plurality of heat generating portions arranged in the main scanning direction. The wiring layer is formed on the semiconductor substrate to be included in a conduction path for energizing the plurality of heat generating portions. The conduction path includes a path or paths provided by the semiconductor substrate itself.




thermal

THERMAL PRINT HEAD

A thermal print head includes a semiconductor substrate, a resistor layer with heat generating portions arranged in the main scanning direction, a wiring layer included in a conduction path for energizing the heat generating portions, and a protective layer covering the resistor layer and the wiring layer. The semiconductor substrate includes a projection protruding from the obverse surface of the substrate and elongated in the main scanning direction. The projection has first and second inclined side surfaces spaced apart from each other in the sub-scanning direction. The heat generating portions are arranged to overlap with the first inclined side surface of the projection as viewed in plan view.




thermal

THERMAL PRINTER

A thermal printer includes a thermal head; a platen roller opposed to the thermal head; a platen frame configured to support the platen roller; and a housing for receiving the thermal head, the platen roller, and the platen frame, wherein the platen frame includes: an opposing surface formed below the platen roller in a gravitational direction in an assumed carriage posture, the opposing surface being opposed to the platen roller; and a liquid absorbing sheet arranged on the opposing surface.




thermal

THERMAL TRANSFER PRINTER

A thermal transfer printer includes a label feeding roller driving unit, a ribbon roll-up driving unit, a ribbon feeding roller, a ribbon feeding roller driving unit, and a controller. The ribbon feeding roller has an adhesive layer on its surface and is rotated to feed the ink ribbon while holding the ink ribbon on the adhesive layer.




thermal

THERMAL PRINTER AND METHOD FOR CONTROLLING THE SAME

In accordance with an embodiment, a thermal printer comprises a first thermal head, a first sensor and a control section. The first thermal head prints a first mark on a first surface of an image receiving medium. The first sensor detects a printing density of the first mark. The control section determines whether or not the printing density of the first mark is in a predetermined range, and adjusts the printing density by the first thermal head in the predetermined range in response to determining that the printing density of the first mark is out of the predetermined range.




thermal

Ratio meter of a thermal sensor

A ratio meter includes a converter circuit, a first counter, a delay circuit, and a second counter. The converter circuit is configured to receive a temperature-independent signal, to convert the received temperature-independent signal into a first frequency signal during a first phase, to receive a temperature-dependent signal, and to convert the temperature-dependent signal into a second frequency signal during a second phase. The first counter is configured to receive the first frequency signal and to generate a control signal by counting a predetermined number of pulses of the first frequency signal count. The delay circuit is configured to delay the control signal for a predetermined time delay. The second counter is configured to receive the second frequency signal and to generate a count value by counting the second frequency signal.




thermal

Thermal treatment process for tobacco materials

A method of thermally processing a tobacco material is provided, the method including the steps of (i) mixing a tobacco material, water, and an additive selected from the group consisting of lysine, glycine, histidine, alanine, methionine, glutamic acid, aspartic acid, proline, phenylalanine, valine, arginine, di- and trivalent cations, asparaginase, saccharides, phenolic compounds, reducing agents, compounds having a free thiol group, oxidizing agents, oxidation catalysts, plant extracts, and combinations thereof, to form a moist tobacco mixture; (ii) heating the moist tobacco mixture at a temperature of at least about 60° C. to form a heat-treated tobacco mixture; and (iii) incorporating the heat-treated tobacco mixture into a tobacco product. Heat-treated tobacco composition prepared according to the method are also provided, such as heat-treated smokeless tobacco composition comprising a tobacco material, water, flavorant, binder, and filler, the heat-treated smokeless tobacco composition having an acrylamide content of less than about 2000 ppb.




thermal

BATTERY AND THERMAL MANAGEMENT DEVICE THEREOF, AND UAV HAVING THE BATTERY

A battery, a thermal management device of the battery, and an unmanned aerial vehicle having the battery are provided. The thermal management device comprises a heat conducting housing having a receiving cavity and configured to divide the receiving cavity into a plurality of cell compartments for receiving cells, and a heat conducting shelf mounted within the receiving cavity and configured to be in contact with at least one of the cells to conduct heat generated by the at least one of the cells. The heat conducting shelf is thermally connected with an inner wall of the receiving cavity and configured to conduct heat in the heat conducting shelf to the heat conducting housing.




thermal

THERMALLY-PROTECTIVE MATERIAL AND COOL-TOUCH CANDLE ASSEMBLIES PREPARED THEREWITH

The present invention relates to materials and systems useful for increasing the safety profile of a candle. In particular, the present invention provides a thermally-protective material that is useful to prepare labels or wraps to encircle or surround a candle. The present invention further provides a cool-touch thermally-protected candle assembly.




thermal

THERMALLY-ASSISTED MAGNETIC RECORDING HEAD INCLUDING A MAIN POLE AND A PLASMON GENERATOR

A main pole has a front end face including a first end face portion and a second end face portion. A plasmon generator has a near-field light generating surface. A surrounding layer has a first surrounding layer end face and a second surrounding layer end face located on opposite sides of the first end face portion in the track width direction. A gap film has a first gap film end face and a second gap film end face located on opposite sides of the near-field light generating surface in the track width direction. Each of the first and second gap film end faces includes a portion located between the first and second surrounding layer end faces, but does not include any portion interposed between the first surrounding layer end face and the first end face portion or between the second surrounding layer end face and the first end face portion.




thermal

THERMAL DRYING SYSTEM FOR ADDITIVE MANUFACTURING DEVICE

An additive manufacturing device includes at least one liquefier assembly that receives filament material from at least one feedstock and extrudes the material in a flowable form. A thermal drying system removes water vapor and heats compressed air to a preselected temperature set point to form conditioned air. At least one enclosed filament path houses and guides the filament material from a supply to the at least one liquefier assembly. The enclosed filament path is exposed to the conditioned air from the thermal drying system so as to keep the filament material dry as it is fed to the at least one liquefier assembly.




thermal

COLUMN FOR THERMAL TREATMENT OF FLUID MIXTURES

The present invention relates to a column (1) for thermal treatment of fluid mixtures, having a cylindrical, vertically aligned column body (2) which forms a column cavity (3), having a sequence of vertically spaced-apart dual-flow mass transfer trays (8) which are mounted in the column cavity (3) and which have orifices for passage of liquid and gas in countercurrent, and having at least one gas entry orifice (5) disposed below the lowermost of the sequence of dual-flow mass transfer trays (8). It is a characteristic feature of the column of the invention that a gas distribution tray (9) which is disposed between the lowermost of the sequence of dual-flow mass transfer trays (8) and the gas entry orifice (5) has orifices (32) for vertical passage of gas which can be introduced into the column cavity (3) via the gas entry orifice (5), the orifices (32) being formed so as to bring about equal gas distribution over the column cross section. The invention further relates to a process for thermal treatment of fluid mixtures in such a column (1).




thermal

Carbon dioxide-based geothermal energy generation systems and methods related thereto

A system comprises an injection well for accessing a reservoir containing a native fluid comprising a hydrocarbon. The reservoir is located below one or more caprocks, is at a first temperature, and is accessible without using large-scale hydrofracturing. The system further includes a production well in fluid communication with the reservoir, a supply apparatus configured to feed a non-water based working fluid at a second temperature that is lower than the first temperature through the injection well to the reservoir. The working fluid mixes with the native fluid to form a production fluid comprising at least a portion of the working fluid and at least a portion of the hydrocarbon at a third temperature that is higher than the second temperature. An energy recovery apparatus in fluid communication with the productions well converts energy contained in the production fluid to electricity, heat, or combinations thereof.




thermal

Fuel processing systems with thermally integrated componentry

Hydrogen-producing assemblies, fuel cell systems including the same, methods of producing hydrogen gas, and methods of powering an energy-consuming device. Hydrogen-producing assemblies may include a monolithic body that defines at least a reforming conduit, and in some embodiments a plurality of reforming conduits, in which a feed stream is catalyzed into a reformate gas stream containing hydrogen gas, and a burner conduit, in which a fuel-air stream is combusted. The monolithic body is constructed to conduct heat generated by the exothermic reaction of the combustion from the burner conduit to the reformer conduit. In some hydrogen-producing assemblies, the monolithic body further defines a vaporizing conduit, in which liquid portions of the feed stream are vaporized prior to being delivered to the reformer conduit, and the monolithic body may be constructed to conduct heat from the burner conduit to the vaporizing conduit.




thermal

Polycrystalline diamond compact including a polycrystalline diamond table with a thermally-stable region having at least one low-carbon-solubility material and applications therefor

Embodiments of the invention relate to polycrystalline diamond compacts (“PDCs”) comprising a polycrystalline diamond (“PCD”) table including a thermally-stable region having at least one low-carbon-solubility material disposed interstitially between bonded diamond grains thereof, and methods of fabricating such PDCs. In an embodiment, a PDC includes a substrate, and a PCD table bonded to the substrate. The PCD table includes a plurality of diamond grains exhibiting diamond-to-diamond bonding therebetween and defining a plurality of interstitial regions. The PCD table further includes at least one low-carbon-solubility material disposed in at least a portion of the plurality of interstitial regions. The at least one low-carbon-solubility material exhibits a melting temperature of about 1300° C. or less and a bulk modulus at 20° C. of less than about 150 GPa.




thermal

Methods for improving thermal stability of silicon-bonded polycrystalline diamond

Methods for preparing a silicon bonded PCD material involving a one step, double sweep process and drilling cutters made by such processes are disclosed. The PCD material includes thermally stable phases in the interstitial spaces between the sintered diamond grains. The method sweeps a diamond powder with a binder to form sintered PCD, reacts said molten binder with a temporary barrier separating said binder and said diamond from a silicon (Si) source, and sweeps said sintered PCD with said Si source to form SiC bonded PCD.




thermal

Method of enhancing thermal conductivity in hydrogen storage systems

A method of forming a material for reversible hydrogen storage within a storage tank includes charging a mixture of a metal amide and a metal hydride to the storage tank, and chemically reacting the mixture at a reaction condition within the storage tank to form a thermally conducting composite material situated in the storage tank and for reversibly storing hydrogen. The composite material includes a three-dimensional and interconnected framework including a conductive metal. A method for reversibly storing hydrogen includes providing a storage tank and in situ chemically forming a composite material by charging a mixture of a metal amide and a metal hydride to the storage tank and chemically reacting the mixture at a reaction condition to form a thermally conducting composite material including a metal hydride and a substantially unreactive elemental metal framework. Hydrogen is absorbed into the composite material and is desorbed from the composite material.




thermal

THERMAL SPRAY COATINGS ONTO NON-SMOOTH SURFACES

This invention relates to thermal spray coatings and processes onto non-smooth surfaces. The coating and processes can coat non-smooth surfaces without substantial degradation of the underlying surface texture or profile of the non-smooth surfaces so as to sufficiently preserve the underlying surface texture or profile. The ability for coating fractional coverage to maintain the surface profile while maintaining wear resistance is unprecedented by conventional thermal spray processes




thermal

THERMAL MANAGEMENT USING PHASE CHANGE MATERIAL

Generally discussed herein are devices and methods for thermal management of a component. An apparatus can include a phase change material substantially at a phase transition temperature of the phase change material, a component near, on, or at least partially in the phase change material, and a heat removal device to transfer heat energy away from the phase change material and maintain the phase change material substantially at the phase transition temperature.




thermal

One-piece dovetail veneer tie and wall anchoring system with in-cavity thermal breaks

A dovetail anchoring system for cavity walls is disclosed and includes a sheetmetal dovetail anchor and one-piece sheetmetal dovetail veneer tie. The anchoring system is used in conjunction with building structures that have a masonry outer wythe anchored to a poured masonry inner wythe. A thermally-isolating coating is optionally applied to the high-strength veneer tie, which is interconnected with the wall anchor. The thermally-isolating coating is selected from a distinct grouping of materials, that are applied using a specific variety of methods, in one or more layers and cured and cross-linked to provide high-strength adhesion. The thermally-coated veneer ties provide an in-cavity thermal break that severs the thermal threads running throughout the cavity wall structure, reducing the U- and K-values of the anchoring system by thermally-isolating the metal components.




thermal

Thermally coated wall anchor and anchoring systems with in-cavity thermal breaks for cavity walls

Thermally-isolating wall anchors and reinforcement devices and anchoring systems employing the same are disclosed for use in masonry cavity walls. A thermally-isolating coating is applied to the wall anchor, which is interconnected with a wire formative veneer tie. The thermally-isolating coating is selected from a distinct grouping of materials, that are applied using a specific variety of methods, in one or more layers and cured and cross-linked to provide high-strength adhesion. The thermally-coated wall anchors provide an in-cavity thermal break that severs the thermal threads running throughout the cavity wall structure, reducing the U- and K-values of the anchoring system by thermally-isolating the metal components.




thermal

Aircraft thermal insulation

The invention provides an arrangement and methods for thermally insulating aircraft, particularly but not exclusively for when the aircraft is operating in extremely hot or cold conditions, and describes an aircraft skin construction including a foam-stiffened CFC sandwich panel forming part of the aircraft outer skin mounted to an underlying load bearing aircraft structure, wherein the panel at the mounting to the structure includes two outer layers of CFC material with an inner layer of foam material sandwiched therebetween.




thermal

LOW THERMAL IMPEDANCE STRUCTURE IN A PHASED ARRAY

An antenna system including: a metal base plate; an antenna element arranged on and extending away from the front side of the base plate; a circuit board including a ground plane, adjacent to, and in thermal contact with the base plate; a plurality of electrical components on the circuit board including a power amplifier and an I/O connector; a metal support plate separated from, parallel to, and facing the base plate, with the circuit board located between the base and support plates; a plurality of thermally conductive standoffs thermally connecting the base plate to the support plate; and a master board including an I/O connector mating with the I/O connector on the circuit board and electrically connecting the circuit board to the master board, the master board located between the circuit board and the support plate and including signal paths for routing signals to the circuit board.




thermal

SYSTEMS AND METHODS FOR THERMALLY REGULATING SENSOR OPERATION

Systems and methods are provided for calibrating and regulating the temperature of a sensor. One or more temperature adjusting devices can be provided to regulate the temperature of the sensor. One or more of the temperature adjusting devices can be provided to perform a calibration to determine a relationship between sensor bias and sensor temperature. The one or more temperature adjusting devices can be built into the sensor.




thermal

DEVICE FOR THERMALLY TRIPPING OR DISCONNECTING AN OVERVOLTAGE PROTECTION DEVICE

The invention relates to a device for thermally disconnecting or tripping an overvoltage protection device, comprising: a locking element (A1), on which a first force (F1) acts, and which is fixed in such a way that same is released when a limit temperature is exceeded; and a slider (S1) which is blocked in a first state (Z1) by the fixed locking element (A1), and on which a second force (F2) acts in order to transfer same into a second state (Z2) when the locking element (A1) is released.




thermal

THERMAL HEAT STORAGE SYSTEM

A thermal heat storage system is provided, including a storage tank, a heat injection system and a heat recovery system. The storage tank holds a material for thermal storage. The heat injection system is coupled to an intake on the storage tank. The heat recovery system is coupled to an output on the storage tank and also uses vapor under depressurized conditions for heat transfer.




thermal

THERMALLY INSULATED PERSONAL ARTICLE AND SLEEPING BAG LINERS

An article having an inner article layer and an outer article layer to be worn by a mammal comprising a thermally insulating layer of a reflective metalized polymeric insulation material having moisture vapour transference properties adjacent to at least one of the inner and outer article layers. An apparatus and method for producing a reflective metalized polymeric thermally insulating assembly having moisture vapour transference properties suitable for use in the article is also provided. The insulation material provides enhanced thermal retention.