thermal

Direct thermal media and registration sensor system and method for use in a color thermal printer

Provided is a direct thermal media containing a regular repeating pattern of color-forming thermally-imageable stripes printed parallel to the print head element line and a system for using such direct thermal media in color direct thermal printers including an optical registration system optimized for use with this media and an image processing unit that monitors the position of the stripe pattern relative to the print head and synchronizes the start of the printing process. This direct thermal media together with the optical registration system and image processing unit comprise an operative system in that the design of the thermal media, the optical registration system and image processing unit used to control printing are optimized for use with each other. This system may be utilized, for example, in color thermal printers for documents, receipts, tags, tickets or labels.




thermal

Thermal image receiver elements prepared using aqueous formulations

A thermal image receiver element dry image receiving layer has a Tg of at least 25° C. as the outermost layer. The dry image receiving layer has a dry thickness of at least 0.5 μm and up to and including 5 μm. It comprises a polymer binder matrix that consists essentially of: (1) a water-dispersible acrylic polymer comprising chemically reacted or chemically non-reacted hydroxyl, phospho, phosphonate, sulfo, sulfonate, carboxy, or carboxylate groups, and (2) a water-dispersible polyester that has a Tg of 30° C. or less. The water-dispersible acrylic polymer is present in an amount of at least 55 weight % of the total dry image receiving layer weight and at a dry ratio to the water-dispersible polyester of at least 1:1 to and including 20:1. The thermal image receiver element can be used to prepare thermal dye images after thermal transfer from a thermal donor element.




thermal

Thermal image receiver elements having release agents

A thermal image receiver element dry image receiving layer has a Tg of at least 25° C. and is the outermost layer. The dry image receiving layer has a dry thickness of at least 0.5 μm and up to and including 5 μm. It comprises a water-dispersible release agent and a polymer binder matrix that consists essentially of: (1) a water-dispersible acrylic polymer comprising chemically reacted or chemically non-reacted hydroxyl, phospho, phosphonate, sulfo, sulfonate, carboxy, or carboxylate groups, and (2) a water-dispersible polyester that has a Tg of 30° C. or less. The water-dispersible acrylic polymer is present in an amount of at least 55 weight % and at a dry ratio to the water-dispersible polyester of at least 1:1. The thermal image receiver element can be used to prepare thermal dye images after thermal transfer from a thermal donor element.




thermal

Thermally-responsive record material

The invention describes an improved thermally-responsive record material substantially free of aromatic isocyanate yielding an image of high intensity and useful for bar codes. The record material comprises a support having provided thereon a heat-sensitive composition comprising a substantially colorless color former comprising a fluoran; and a developer material selected from the group consisting of 4,4'-diaminodiphenylsulfone and 3,3'-diaminodiphenylsulfone, and an organic acid which upon being heated reacts with said color former to develop color, and including a binder material. Optionally, a modifier compound is included in the heat-sensitive composition. The compound can be selected from the group consisting of a fatty acid amide, such as stearmide. Optionally, magnesium state is included.




thermal

Thermally-responsive record material

The invention describes a thermally-responsive record material substantially free of aromatic isocyanate. The record material comprises a support having provided thereon a heat-sensitive composition comprising a substantially colorless dye precursor comprising a fluoran; and a developer material selected from the group consisting of 4,4'-diaminodiphenylsulfone and 3,3'-diaminodiphenylsulfone in combination with N-[(butylamino)carbonyl]-4-methylbenzene sulfonamide, which upon being heated react with said dye precursor to develop color, and including a binder material.




thermal

Vinyl chloride-based resin latexes, processes for producing the same, and thermal transfer image-receiving sheet obtained using the same

A vinyl chloride-based resin latex which froths little when unreacted monomer remaining in the latex are recovered under heat and reduced-pressure conditions, and a thermal transfer image-receiving sheet which has satisfactory water resistance, does not yellow during storage, and gives images having excellent durability and light resistance. The invention provides a vinyl chloride-based resin latex contains a copolymer containing a vinyl chloride and an epoxy-group-containing vinyl or contains vinyl chloride, an epoxy-group-containing vinyl, and a carboxylic acid vinyl ester, wherein a content of the epoxy-group-containing vinyl is 0.1% by weight or more but less than 3% by weight, and wherein the latex contains no surfactant, and has a solid concentration of 25% by weight or more; a process for producing the latex; and a thermal transfer image-receiving sheet obtained using the latex.




thermal

Metallized thermal dye image receiver elements and imaging

A thermal dye image receiver element has a substrate comprising a voided compliant layer and metalized layer. Disposed on the metalized layer is an opacifying layer that includes an opacifying agent and a dye receiving layer. This thermal dye image receiver element can be a duplex element with image receiving layers on both sides of the substrate, and it can be used in association with a thermal donor element to provide a thermal image on either or opposing sides of the receiver element. The metalized layer provides increased specular reflectance under resulting thermal dye images.




thermal

Thermal recording material and method for producing the same

Provided is a thermal recording material that is excellent in water resistance and prevention of print head wear, less prone to discoloration in the non-printing area, and stably producible. The thermal recording material comprises a protective layer formed by applying a coating liquid for forming the protective layer, the coating liquid being prepared by mixing an acetoacetyl-modified polyvinyl alcohol and calcium glyoxylate particles with a maximum diameter less than 500 μm and an average diameter of 125 μm or less.




thermal

Thermally-responsive record material

The invention describes a thermally-responsive record material substantially free of aromatic isocyanate. The record material comprises a support having provided thereon a heat-sensitive composition comprising a substantially colorless dye precursor comprising a fluoran; and a developer material selected from the group consisting of 4,4'-diaminodiphenylsulfone and 3,3'-diaminodiphenylsulfone, which upon being heated react with said dye precursor to develop color, and including a binder material. Optionally, a modifier compound is included in the heat-sensitive composition. The modifier compound can be selected from the group consisting of a fatty acid amide, preferably a saturated fatty acid amide such as an alkyl amide, a bis methylene alkyl amide, or a bis ethylene alkyl amide, or any of 1,2-diphenoxy ethane, dimethyl diphenoxy ethane, and dimethyl phthalate.




thermal

Thermal transfer image-receiving sheet and manufacturing method for thermal transfer image-receiving sheet

Disclosed is a thermal transfer image-receiving sheet which excels in adhesiveness to a receiving layer and solvent resistance, and a manufacturing method thereof. In the thermal transfer image-receiving sheet, which includes a porous layer, a barrier layer, a receiving layer which are stacked in this order on a substrate, the porous layer includes a binder resin and hollow particles, and the barrier layer includes (i) (A) a first acrylic resin and (B) one or more kinds of resins selected from the group consisting of polyester resins, polyvinyl pyrrolidone type resins, polyester type urethane resin, and a second acrylic resin which differs from the first acrylic resin; or (ii) a polyvinyl pyrrolidone type resin.




thermal

Process and plant for the production of methanol with isothermal catalytic beds

A process for the synthesis of methanol, comprising the steps of reforming a hydrocarbon source obtaining a make-up gas feed (101), feeding said make up gas to a synthesis loop (L), converting said make up gas to methanol (108) in a substantially isothermal catalytic environment, wherein said catalytic environment comprises a plurality of isothermal catalytic beds (11, 12, 21) preferably arranged in series, and at least a portion of make-up gas (101) is mixed with recycle gas (112) from the loop (L), obtaining a gaseous mixture of fresh gas and recycle gas, and at least a portion of said gaseous mixture is directed between two consecutive catalytic beds acting as a quench gas. A related plant is also disclosed.




thermal

Electrical-thermal co-simulation with joule heating and convection effects for 3D systems

In a method for simulating temperature and electrical characteristics within an circuit, a temperature of at least one volume within the circuit as a function of a resistance within the at least one volume is repeatedly calculated and the resistance as a function of the temperature is repeatedly calculated until the temperature is within a predetermined tolerance of a previous temperature result and until the resistance is within a predetermined tolerance of a previous resistance result. Once the temperature is within a predetermined tolerance of the previous temperature result and the resistance is within a predetermined tolerance of the previous resistance, then an output indicative of the temperature is generated.




thermal

Thermal therapy device

A thermal therapy device comprising a flexible, water-impermeable container containing a plurality of discrete, non-water-soluble hydrophillic absorbers, a hydrating liquid mixture comprising water, means for physically separating at least two adjacent absorbers thereby providing a means for preventing clumping, and a plurality of insulating members. The means for preventing clumping maintaining the pliability of the device in a frozen state after prolonged and extend cycles of freezing/thawing. A rigid storage container is also provided.




thermal

Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy

A method and system uniquely capable of generating thermal bubbles for improved ultrasound imaging and therapy. Several embodiments of the method and system contemplates the use of unfocused, focused, or defocused acoustic energy at variable spatial and/or temporal energy settings, in the range of about 1 kHz-100 MHz, and at variable tissue depths. The unique ability to customize acoustic energy output and target a particular region of interest makes possible highly accurate and precise thermal bubble formation. In an embodiment, the energy is acoustic energy. In other embodiments, the energy is photon based energy (e.g., IPL, LED, laser, white light, etc.), or other energy forms, such radio frequency electric currents (including monopolar and bipolar radio-frequency current). In an embodiment, the energy is various combinations of acoustic energy, electromagnetic energy and other energy forms or energy absorbers such as cooling.




thermal

Thermally assisted magnetic recording medium and magnetic recording and reproducing apparatus

A thermally assisted magnetic recording medium (1) includes a substrate (101), an underlayer (3) that is formed above the substrate (101), and a magnetic layer (107) that is formed on the underlayer (3) and contains an alloy having an L10 structure as a main component. The underlayer (3) is formed by continuously laminating a first underlayer (104) having a BCC structure with a lattice constant that is 0.302 to 0.332 nm, a second underlayer (105) that has a NaCl structure including C, and a third underlayer (106) that is composed of MgO.




thermal

Thermally-assisted magnetic recording head having a plasmon generator

A return path section includes first and second yoke portions and first, second and third columnar portions. The first and second yoke portions and the first columnar portion are located on the same side in the direction of travel of the recording medium relative to a wave guide core. The second and third columnar portions are located on opposite sides of a plasmon generator and connected to a shield. The first yoke portion connects a main pole to the first columnar portion. The second yoke portion connects the first columnar portion to the second and third columnar portions. A coil is wound around the first columnar portion.




thermal

Self-controlled laser pulsing for thermally assisted recording

A method of storing data includes providing a write signal for a write head of a hard disk drive, generating a transition pulse signal derived from the write signal using a transition pulse generator, and generating a logic signal to drive a thermal source associated with the write head of the hard disk drive. The logic signal includes the logical summation of a cyclical base pulse signal and the transition pulse signal.




thermal

Thermally conductive features for a heat-assisted magnetic recording head

In a heat-assisted magnetic recording hard disk drive, one or more thermally conductive features are incorporated to assist with dissipation of heat from a laser module that comprises a laser and a submount. The submount may be coupled to the slider with solder covering a wider adhesive area for enhanced conduction of heat away from the laser module and to the slider, one or both of the submount and the laser may include a surface coating that increases the thermal radiation of the corresponding component, and/or one or both of the submount and the laser may include fins configured to transfer heat from the corresponding component. Further, a HAMR HGA may be configured such that the submount is coupled directly to the suspension flexure using a thermally conductive material, for conduction of heat away from the laser module and to the flexure.




thermal

E-antenna near field transducer with thermal shunt to return pole

In a heat-assisted magnetic recording head for use in a hard disk drive, a thermal shunt is positioned between an E-antenna near field transducer (NFT) and a return pole, to draw excess heat away from the NFT region. The thermal shunt comprises two portions separated by a gap that has a trapezoidal cross-section, where the NFT-side of the gap is wider than the return pole-side of the gap.




thermal

Thermally stabilized perpendicular magnetic recording medium

A magnetic recording medium including a substrate, and at least one magnetic layer formed on the substrate. The magnetic layer is formed from an alloy containing Cobalt, and Platinum (Pt). The magnetic layer is also formed from grain boundary segregation materials comprising Manganese Oxide and at least one of Silicon Oxide, Chromium Oxide, and Cobalt Oxide (CoO).




thermal

Bearing assemblies including a thermally conductive structure, bearing apparatuses, and methods of use

Embodiments of the invention are directed to bearing assemblies configured to effectively provide heat distribution from and/or heat dissipation for bearing element, bearing apparatuses including such bearing assemblies, and methods of operating such bearing assemblies and apparatuses. In an embodiment, a bearing assembly includes a plurality of superhard bearing elements distributed about an axis. Each superhard bearing element of the plurality of superhard bearing elements has a superhard material including a superhard surface. Additionally, a support ring structure that includes a support ring that supports the plurality of superhard bearing elements and a thermally-conductive structure in thermal communication with the superhard table of each of the plurality of superhard bearing elements. The thermally-conductive structure has a higher thermal conductivity than the support ring of the support ring structure.




thermal

Cosmetic device with thermal storage tip

A dispenser includes a thermal storage tip and a housing having a reservoir for containing a product, such as a cosmetics product or a medicinal product. The thermal storage tip comprises a material that is capable of storing and retaining thermal energy during application of the product.




thermal

High temperature material compositions for high temperature thermal cutoff devices

The present disclosure provides a high-temperature thermal pellet composition that maintains structural rigidity up to a transition temperature of about 240° C. The composition comprises at least one organic compound (e.g., triptycene or 1-aminoanthroquinone). The pellet can be disposed in a housing of a thermally-actuated, current cutoff device, such as a high-temperature thermal cutoff device (HTTCO). Also provided are material systems, which include the pellet composition and a high-temperature seal that provides substantial sealing up to at least the transition temperature. Methods of making such high-temperature pellet compositions and incorporating them into a thermally-actuated, current cutoff device are also provided.




thermal

Interposer configuration with thermally isolated regions for temperature-sensitive opto-electronic components

An interposer (support substrate) for an opto-electronic assembly is formed to include a thermally-isolated region where temperature-sensitive devices (such as, for example, laser diodes) may be positioned and operate independent of temperature fluctuations in other areas of the assembly. The thermal isolation is achieved by forming a boundary of dielectric material through the thickness of the interposer, the periphery of the dielectric defining the boundary between the thermally isolated region and the remainder of the assembly. A thermo-electric cooler can be used in conjunction with the temperature-sensitive device(s) to stabilize the operation of these devices.




thermal

Deposition of integrated protective material into zirconium cladding for nuclear reactors by high-velocity thermal application

A zirconium alloy nuclear reactor cylindrical cladding has an inner Zr substrate surface (10), an outer volume of protective material (22), and an integrated middle volume (20) of zirconium oxide, zirconium and protective material, where the protective material is applied by impaction at a velocity greater than 340 meters/second to provide the integrated middle volume (20) resulting in structural integrity for the cladding.




thermal

Apparatus, method and program for monitoring nuclear thermal hydraulic stability of nuclear reactor

An apparatus for monitoring nuclear thermal hydraulic stability of a nuclear reactor, contains: a calculation unit configured to calculate a stability index of a nuclear thermal hydraulic phenomenon based on nuclear instrumentation signals, the signals being outputted by a plurality of nuclear instrumentation detectors placed at regular intervals in a reactor core; a simulation unit configured to simulate the nuclear thermal hydraulic phenomenon based on a physical model by using information on an operating state of the nuclear reactor as an input condition; a limit value updating unit configured to update a limit value of the nuclear thermal hydraulic phenomenon based on a result of the simulation; and a determination unit configured to determine, based on the stability index and the limit value, whether or not to activate a power oscillation suppressing device.




thermal

Direct production of thermal antineutrons and antiprotons

A method for obtaining free thermal antineutrons within the cage-like structure of a fullerene molecule comprising irradiating the fullerene molecule with free neutrons causing free neutrons to be trapped within the fullerene molecule wherein the trapped neutron oscillates between the neutron and antineutron states. A method for producing antiprotons comprising irradiating a fullerene molecule with free neutrons and trapping the neutrons within the fullerene molecule such that the neutrons oscillate between neutron and antineutron states and in the antineutron state decay and produce antiprotons. A method for producing antiprotonic x-ray cascade spectra.




thermal

Thermal target system

A thermal signal generating device, including at least two parallel buss bars operable for carrying a current and a heating element having at least a first region and a second region. The heating element includes a plurality of horizontal traces and a plurality of vertical traces. Widths of each of the plurality of horizontal and vertical traces may be greater in a first region of the heating element than in a second region of the heating element, allowing for a gradient heat differential to be emitted by the heating element.




thermal

Thermally stable low power chip clocking

A method of controlling an integrated circuit chip including first and second clock sources, the first clock source being more thermally stable and having a higher power consumption, the integrated circuit chip being operable in a first mode in which the first clock source is inactive and the second clock source active and in a second mode in which the first and second clock sources are active, the method including operating the integrated circuit chip in the first mode; taking a measurement indicative of temperature; if the measurement indicates that the temperature is outside of a temperature band: activating the first clock source so as to operate the integrated circuit chip in the second mode; recalibrating the second clock source against the first clock source; and following the recalibration, deactivating the first clock source so as to return the integrated circuit chip to the first mode.




thermal

Thermal treatment apparatus

A disclosed thermal treatment apparatus includes a supporting member where plural substrates are supported in the form of shelves; a reaction tube that accommodates the supporting member within the reaction tube, and is provided with plural gas supplying pipes arranged in a side part of the reaction tube, thereby allowing a gas to flow into the reaction tube through the plural gas supplying pipes; and a first heating part that heats the plural substrates supported by the supporting member accommodated within the reaction tube, wherein the first heating part includes a slit that extends from a bottom end to a top end of the first heating part and allows the plural gas supplying pipes to go therethrough, and wherein an entire inner surface, except for the slit, of the heating part faces the side part of the reaction tube.




thermal

Graphite thermal decontamination with reducing gases

Providing a roaster that operates at temperatures in the range of 800° Celsius to 2000° Celsius with inert, optional oxidizing and reducing gases to treat graphite contaminated with radionuclides including tritium, carbon-14, and chlorine-36. The combination of temperatures and gases allow for the removal of most to substantially all the carbon-14 within the graphite while substantially limiting gasifying the bulk graphite.




thermal

Method and apparatus for generating electricity by thermally cycling an electrically polarizable material using heat from condensers

A method for converting heat to electric energy is described which involves thermally cycling an electrically polarizable material sandwiched between electrodes. The material is heated by extracting thermal energy from a gas to condense the gas into a liquid and transferring the thermal energy to the electrically polarizable material. An apparatus is also described which includes an electrically polarizable material sandwiched between electrodes and a heat exchanger for heating the material in thermal communication with a heat source, wherein the heat source is a condenser. An apparatus is also described which comprises a chamber, one or more conduits inside the chamber for conveying a cooling fluid and an electrically polarizable material sandwiched between electrodes on an outer surface of the conduit. A gas introduced into the chamber condenses on the conduits and thermal energy is thereby transferred from the gas to the electrically polarizable material.




thermal

Method and apparatus for generating electricity by thermally cycling an electrically polarizable material using heat from various sources and a vehicle comprising the apparatus

A method for converting heat to electric energy is described which involves thermally cycling an electrically polarizable material sandwiched between electrodes. The material is heated using thermal energy obtained from: a combustion reaction; solar energy; a nuclear reaction; ocean water; geothermal energy; or thermal energy recovered from an industrial process. An apparatus is also described which includes an electrically polarizable material sandwiched between electrodes and a heat exchanger for heating the material. The heat source used to heat the material can be: a combustion apparatus; a solar thermal collector; or a component of a furnace exhaust device. Alternatively, the heat exchanger can be a device for extracting thermal energy from the earth, the sun, ocean water, an industrial process, a combustion reaction or a nuclear reaction. A vehicle is also described which comprises an apparatus for converting heat to electrical energy connected to an electric motor.




thermal

System and method for thermal control in a gas turbine engine

A system includes a gas turbine engine that includes a compressor section configured to generate compressed air and a combustor coupled to the compressor section. The combustor is configured to combust a first mixture comprising the compressed air and a first fuel to generate a first combustion gas. The gas turbine engine also includes a turbine section coupled to the combustor. The turbine section is configured to expand the first combustion gas to generate an exhaust gas. The gas turbine engine also includes a boiler coupled to the turbine section. The boiler is configured to combust a second mixture comprising a portion of the first combustion gas and a second fuel to generate a second combustion gas that is routed to the turbine section. In addition, the boiler generates a first steam from heat exchange with the second combustion gas.




thermal

Thermal-conduction element for improving the manufacture of a package for transporting and/or storing radioactive materials

The invention relates to a thermal conduction element (20) for a package for transporting and/or storing radioactive materials, comprising: an internal part (30) intended to be in contact with a lateral body (14) of the package;an external part (34) intended to form a portion of an external envelope (24) of said package, holding radiological protection means (22);an intermediate part (32) arranged between the internal and external parts,the internal, external and intermediate parts being produced from copper and one of the alloys thereof. According to the invention, the external part (34) is equipped, at each of its two opposite ends, with an area (36) for connection by welding to another thermal conduction element (20), each connection area (36) being produced from steel.




thermal

Thermally activated magnetic and resistive aging

Examples of the present invention include apparatus and methods for monitoring aging of an item. A solid-state structure is located within, adjacent to, or otherwise proximate the item, the solid-state structure including nanostructures. The electrical resistance and/or magnetization of the solid-state structure is determined to determine the degree of aging of the item. In representative examples, the solid-state structure includes nanostructures of a metal, such as a ferromagnetic metal, within a non-magnetic matrix, such as a semimetal, semiconductor, or insulator.




thermal

Dust coal boiler, dust coal combustion method, dust coal fuel thermal power generation system, and waste gas purification system for dust coal boiler

A pulverized coal thermal power generation system that significantly reduces the amount of NOx emissions from a boiler and does not require a denitration unit is provided. When a denitration unit is not used, performance to remove mercury from a boiler waste gas is reduced. A waste gas purification system for a pulverized coal boiler, that compensates for this is provided. A pulverized coal boiler having a furnace for burning pulverized coal, burners for supplying pulverized coal and air used for combustion into the furnace so as to burn the pulverized coal in an insufficient air state and after-air ports provided on the downstream side of the burners for supplying air used for perfect combustion characterized in that, an air ratio in the furnace is 1.05 to 1.14, and the residence time of a combustion gas from the burner disposed on the uppermost stage to a main after-air port is 1.1 to 3.3 seconds. Preferably, water is mixed in advance with the air supplied from the after-air port so as to increase the specific heat. Furthermore, pulverized coal carrying air in the burner and a part of air used for combustion are mixed together in advance before they are jetted into the furnace.A waste gas purification system having a pulverized coal boiler, an air heater disposed downstream of the pulverized coal boiler for exchanging heat with a boiler waste gas to heat air used for combustion in the pulverized coal boiler, a dust removing unit, and a desulfurizing unit characterized in that, at least one of a halogen gas supply unit, a catalyst unit for oxidizing a mercury gas, and a mercury adsorbent blowing device is provided so as to oxidize mercury included in the waste gas.




thermal

Method and apparatus for thermal energy-to-electrical energy conversion

An improved method and apparatus for thermal-to-electric conversion involving relatively hot and cold juxtaposed surfaces separated by a small vacuum gap wherein the cold surface provides an array of single charge carrier converter elements along the surface and the hot surface transfers excitation energy to the opposing cold surface across the gap through Coulomb electrostatic coupling interaction.




thermal

Thermally coupled current limiter

This disclosure relates generally to radio frequency (RF) amplification devices and methods of limiting an RF signal current. Embodiments of the RF amplification device include an RF amplification circuit and a feedback circuit. The RF amplification circuit is configured to amplify an RF input signal so as to generate an amplified RF signal that provides an RF signal current with a current magnitude. The feedback circuit is used to limit the RF signal current. In particular, a thermal sense element in the feedback circuit is configured to generate a sense current, and thermal conduction from the RF amplification circuit sets a sense current level of the sense current as being indicative of the current magnitude of the RF signal current. To limit the RF signal current, the feedback circuit decreases the current magnitude of the RF signal current in response to the sense current level reaching a trigger current level.




thermal

Electrostatic chuck and showerhead with enhanced thermal properties and methods of making thereof

Embodiments of the present invention generally provide chamber components with enhanced thermal properties and methods of enhancing thermal properties of chamber components including bonding materials. One embodiment of the present invention provides a method for fabricating a composite structure. The method includes applying a bonding material to a first component, and converting the bonding material applied to the first component to an enhanced bonding layer by heating the bonding material to outgas volatile species from the bonding material. The outgassed volatile species accumulates to at least 0.05% in mass of the bonding material. The method further includes contacting a second component and the enhanced bonding layer to join the first and second components.




thermal

Thermally zoned substrate holder assembly

A thermally zoned substrate holder including a substantially cylindrical base having top and bottom surfaces configured to support a substrate. A plurality of temperature control elements are disposed within the base. An insulator thermally separates the temperature control elements. The insulator is made from an insulting material having a lower coefficient of thermal conductivity than the base (e.g., a gas- or vacuum-filled chamber).




thermal

Thermal engine with an improved valve system

A radial thermal engine with an improved valve system is disclosed herein comprising intake and exhaust port valve assemblies fluidly connected to respective intake and exhaust ports contained within a cylinder head assembly. Each intake and each exhaust port valve assembly comprises at least one rotatable port cover having spaced apart openings which are periodically alignable to the intake and exhaust ports, respectively.




thermal

Method of forming titanium nitride coatings on carbon/graphite substrates by electric arc thermal spray process using titanium feed wire and nitrogen as the atomizing gas

Graphite and/or carbon surfaces are coated with a titanium nitride coating by exposing the substrate to electric arc thermal spray process wherein titanium wire as the source of titanium and nitrogen is used as the propelling (atomizing) gas.




thermal

Rapid thermal conversion of biomass

An improved rapid thermal conversion process for efficiently converting wood, other biomass materials, and other carbonaceous feedstock (including hydrocarbons) into high yields of valuable liquid product, e.g., bio-oil, on a large scale production, is disclosed. In the process, biomass material, e.g., wood, is fed to a conversion system where the biomass material is mixed with an upward stream of hot heat carriers, e.g., sand, that thermally convert the biomass into a hot vapor stream. The hot vapor stream is rapidly quenched with quench media in one or more condensing chambers located downstream of the conversion system. The rapid quenching condenses the vapor stream into liquid product, which is collected from the condensing chambers as a valuable liquid product.




thermal

Thermal ink jet ink composition

An inkjet ink includes an organic solvent, a resin, a surfactant, and a colorant. The ink has a decap time of at least about 1 minute.




thermal

Adjustable thermal forming die assembly

An adjustable thermal die assembly is provided. The thermal die assembly includes a thermal forming die and at least one insert. The thermal forming die has at least one die cavity of a select shape. The die further has at least one opening to the at least one die cavity. The at least one insert has at least one internal passage that is conformed to have a shape of the at least one opening to the at least one die cavity of the die. Moreover, the at least one insert is configured and arranged to be selectively coupled to the die with the at least one internal passage of the at least one insert aligning with the at least one opening of the at least one die cavity to selectively increase a depth of a forming cavity of the thermal forming assembly.




thermal

Molding tool for original shaping or reshaping of components composed of materials that can be thermally influenced

The invention relates to a molding tool for the production of components composed of fiber composite materials, in which the molding tool has a fiber composite structure and an electrical resistance heating element, whereby carbon fibers or carbon filaments are embedded into the fiber composite structure of the molding tool in a plastic matrix, close to the shaping surface of the molding tool. Such a molding tool is further developed in that the carbon fibers or carbon filaments in the plastic matrix, close to the shaping surface, essentially determine the mechanical strength of the molding tool, and that the electrical resistance heating element is interconnected in such a manner that at least individual sections of the electrical resistance heating element form an electrical parallel circuit with one another.




thermal

Sprayer thermal protection

In an electric airless sprayer (16), as the motor (14) temperature approaches allowable limits, several performance cutbacks can be used to prevent overheating. The preferred method is to gradually reduce the controlled pressure. If the temperature continues to rise, the control (20) switches to on/off or deadband control. If the temperature continues to rise in spite of these measures, the control (20) shuts the unit down.




thermal

Ceramic collars for active brazing in sodium-based thermal batteries

The present application provides for ceramic collars and metal rings for active brazing in sodium-based thermal batteries. The ceramic collar may be an alpha-alumina collar configured for active brazing, and thereby sealing, to outer and inner Ni rings for use in NaMx cells. The portions of the alpha-alumina collar active brazed to the outer and inner Ni rings may be outwardly facing and include inwardly extending recesses. The portions of the outer and inner Ni rings active brazed to the outwardly facing portions of the collar may be inwardly facing. The alpha-alumina collar may include a greater coefficient of thermal expansion than each of the outer and inner Ni rings, and the alpha-alumina collar and outer and inner Ni rings may be configured such that a portion of the outer and inner Ni rings is deformed into the inwardly extending recesses of the alpha-alumina collar after active brazing thereof.




thermal

Thermal-acoustic sections for an aircraft

Embodiments of thermal-acoustic sections for an aircraft for reducing noise along an acoustic path produced from an acoustic source are provided herein. The thermal-acoustic section comprises a first porous layer having a first characteristic acoustic impedance. A second porous layer is disposed adjacent to the first porous layer and has a second characteristic acoustic impedance that is greater than the first characteristic acoustic impedance. The thermal-acoustic section is configured to be positioned along the acoustic path such that at least a portion of the noise from the acoustic source is directed through the first porous layer to the second porous layer to promote absorption of the noise.