als An unusually short intermolecular N—H⋯N hydrogen bond in crystals of the hemi-hydrochloride salt of 1-exo-acetamidopyrrolizidine By scripts.iucr.org Published On :: 2020-01-01 The title compound [systematic name: (1R*, 8S)-2-acetamidooctahydropyrrolizin-4-ium chloride–N-[(1R, 8S)-hexahydro-1H-pyrrolizin-2-yl)acetamide (1/1)], 2(C9H16N2O)·HCl or C9H17N2O+·Cl−·C9H16N2O, arose as an unexpected product when 1-exo-acetamidopyrrolizidine (AcAP; C9H16N2O) was dissolved in CHCl3. Within the AcAP pyrrolizidine group, the unsubstituted five-membered ring is disordered over two orientations in a 0.897 (5):0.103 (5) ratio. Two AcAP molecules related by a crystallographic twofold axis link to H+ and Cl− ions lying on the rotation axis, thereby forming N—H⋯N and N—H⋯Cl⋯H—N hydrogen bonds. The first of these has an unusually short N⋯N separation of 2.616 (2) Å: refinement of different models against the present data set could not distinguish between a symmetrical hydrogen bond (H atom lying on the twofold axis and equidistant from the N atoms) or static or dynamic disorder models (i.e. N—H⋯N + N⋯H—N). Computational studies suggest that the disorder model is slightly more stable, but the energy difference is very small. Full Article text
als Structural and luminescent properties of co-crystals of tetraiodoethylene with two azaphenanthrenes By scripts.iucr.org Published On :: 2020-02-25 Two new co-crystals, tetraiodoethylene–phenanthridine (1/2), 0.5C2I4·C13H9N (1) and tetraiodoethylene–benzo[f]quinoline (1/2), 0.5C2I4·C13H9N (2), were obtained from tetraiodoethylene and azaphenanthrenes, and characterized by IR and fluorescence spectroscopy, elemental analysis and X-ray crystallography. In the crystal structures, C—I⋯π and C—I⋯N halogen bonds link the independent molecules into one-dimensional chains and two-dimensional networks with subloops. In addition, the planar azaphenanthrenes lend themselves to π–π stacking and C—H⋯π interactions, leading to a diversity of supramolecular three-dimensional structural motifs being formed by these interactions. Luminescence studies show that co-crystals 1 and 2 exhibit distinctly different luminescence properties in the solid state at room temperature. Full Article text
als Hydrogen-bonding patterns in 2,2-bis(4-methylphenyl)hexafluoropropane pyridinium and ethylenediammonium salt crystals By scripts.iucr.org Published On :: 2020-04-24 The crystal structures of two salt crystals of 2,2-bis(4-methylphenyl)hexafluoropropane (Bmphfp) with amines, namely, dipyridinium 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)dibenzoate 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)dibenzoic acid, 2C5H6N+·C17H8F6O42−·C17H10F6O4, (1), and a monohydrated ethylenediammonium salt ethane-1,2-diaminium 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)dibenzoate monohydrate, C2H10N22+·C17H8F6O42−·H2O, (2), are reported. Compounds 1 and 2 crystallize, respectively, in space group P21/c with Z' = 2 and in space group Pbca with Z' = 1. The crystals of compound 1 contain neutral and anionic Bmphfp molecules, and form a one-dimensional hydrogen-bonded chain motif. The crystals of compound 2 contain anionic Bmphfp molecules, which form a complex three-dimensional hydrogen-bonded network with the ethylenediamine and water molecules. Full Article text
als Compressive strain formation in surface-damaged crystals By scripts.iucr.org Published On :: 2020-04-23 The mechanism of formation of residual strain in crystals with a damaged surface has been studied by transmission electron microscopy in GaAs wafers ground with sandpaper. The samples showed a dislocation network located near the sample surface penetrating to a depth of a few micrometres, comparable to the size of abrasive particles used for the treatment, and no other types of defects were observed. A simple model for the formation of a compressive strain induced by the dislocation network in the damaged layer is proposed, in satisfactory agreement with the measured strain. The strain is generated by the formation of dislocation half-loops at the crystal surface, having the same component of the Burgers vectors parallel to the surface of the crystal. This is equivalent to the insertion of extra half-planes from the crystal surface to the depth of the damaged zone. This model can be generalized for other crystal structures. An approximate calculation of the strain generated from the observed dislocation distribution in the sample agrees with the proposed model and permits the conclusion that this mechanism is in general sufficient to explain the observed compressive strain, without the need to consider other types of defects. Full Article text
als X-ray diffraction using focused-ion-beam-prepared single crystals By scripts.iucr.org Published On :: 2020-04-14 High-quality single-crystal X-ray diffraction measurements are a prerequisite for obtaining precise and reliable structure data and electron densities. The single crystal should therefore fulfill several conditions, of which a regular defined shape is of particularly high importance for compounds consisting of heavy elements with high X-ray absorption coefficients. The absorption of X-rays passing through a 50 µm-thick LiNbO3 crystal can reduce the transmission of Mo Kα radiation by several tens of percent, which makes an absorption correction of the reflection intensities necessary. In order to reduce ambiguities concerning the shape of a crystal, used for the necessary absorption correction, a method for preparation of regularly shaped single crystals out of large samples is presented and evaluated. This method utilizes a focused ion beam to cut crystals with defined size and shape reproducibly and carefully without splintering. For evaluation, a single-crystal X-ray diffraction study using a laboratory diffractometer is presented, comparing differently prepared LiNbO3 crystals originating from the same macroscopic crystal plate. Results of the data reduction, structure refinement and electron density reconstruction indicate qualitatively similar values for all prepared crystals. Thus, the different preparation techniques have a smaller impact than expected. However, the atomic coordinates, electron densities and atomic charges are supposed to be more reliable since the focused-ion-beam-prepared crystal exhibits the smallest extinction influences. This preparation technique is especially recommended for susceptible samples, for cases where a minimal invasive preparation procedure is needed, and for the preparation of crystals from specific areas, complex material architectures and materials that cannot be prepared with common methods (breaking or grinding). Full Article text
als Screening topological materials with a CsCl-type structure in crystallographic databases By scripts.iucr.org Published On :: 2019-06-13 CsCl-type materials have many outstanding characteristics, i.e. simple in structure, ease of synthesis and good stability at room temperature, thus are an excellent choice for designing functional materials. Using high-throughput first-principles calculations, a large number of topological semimetals/metals (TMs) were designed from CsCl-type materials found in crystallographic databases and their crystal and electronic structures have been studied. The CsCl-type TMs in this work show rich topological character, ranging from triple nodal points, type-I nodal lines and critical-type nodal lines, to hybrid nodal lines. The TMs identified show clean topological band structures near the Fermi level, which are suitable for experimental investigations and future applications. This work provides a rich data set of TMs with a CsCl-type structure. Full Article text
als A comparative anatomy of protein crystals: lessons from the automatic processing of 56 000 samples By scripts.iucr.org Published On :: 2019-07-10 The fully automatic processing of crystals of macromolecules has presented a unique opportunity to gather information on the samples that is not usually recorded. This has proved invaluable in improving sample-location, characterization and data-collection algorithms. After operating for four years, MASSIF-1 has now processed over 56 000 samples, gathering information at each stage, from the volume of the crystal to the unit-cell dimensions, the space group, the quality of the data collected and the reasoning behind the decisions made in data collection. This provides an unprecedented opportunity to analyse these data together, providing a detailed landscape of macromolecular crystals, intimate details of their contents and, importantly, how the two are related. The data show that mosaic spread is unrelated to the size or shape of crystals and demonstrate experimentally that diffraction intensities scale in proportion to crystal volume and molecular weight. It is also shown that crystal volume scales inversely with molecular weight. The results set the scene for the development of X-ray crystallography in a changing environment for structural biology. Full Article text
als Sulfur-SAD phasing from microcrystals utilizing low-energy X-rays By scripts.iucr.org Published On :: 2019-06-28 Full Article text
als A new small-angle X-ray scattering model for polymer spherulites with a limited lateral size of the lamellar crystals By scripts.iucr.org Published On :: 2019-08-31 As is well known, polymers commonly form lamellar crystals, and these assemble further into lamellar stacks and spherulites during quiescent crystallization. Fifty years ago, Vonk and Kortleve constructed the classical small-angle X-ray scattering theory (SAXS) for a lamellar system, in which it was assumed that the lamellar stack had an infinite lateral size [Vonk & Kortleve (1967), Kolloid Z. Z. Polym. 220, 19–24]. Under this assumption, only crystal planes satisfying the Bragg condition can form strong scattering, and the scattering from the lamellar stack arises from the difference between the scattering intensities in the amorphous and crystalline layers, induced by the incident X-ray beam. This assumption is now deemed unreasonable. In a real polymer spherulite, the lamellar crystal commonly has dimensions of only a few hundred nanometres. At such a limited lateral size, lamellar stacks in a broad orientation have similar scattering, so interference between these lamellar stacks must be considered. Scattering from lamellar stacks parallel to the incident X-ray beam also needs to be considered when total reflection occurs. In this study, various scattering contributions from lamellar stacks in a spherulite are determined. It is found that, for a limited lateral size, the scattering induced by the incident X-ray beam is not the main origin of SAXS. It forms double peaks, which are not observed in real scattering because of destructive interference between the lamellar stacks. The scattering induced by the evanescent wave is the main origin. It can form a similar interference pattern to that observed in a real SAXS measurement: a Guinier region in the small-q range, a signal region in the intermediate-q range and a Porod region in the high-q range. It is estimated that, to avoid destructive interference, the lateral size needs to be greater than 11 µm, which cannot be satisfied in a real lamellar system. Therefore, SAXS in a real polymer system arises largely from the scattering induced by the evanescent wave. Evidence for the existence of the evanescent wave was identified in the scattering of isotactic polypropylene. This study corrects a long-term misunderstanding of SAXS in a polymer lamellar system. Full Article text
als Consistency and variability of cocrystals containing positional isomers: the self-assembly evolution mechanism of supramolecular synthons of cresol–piperazine By scripts.iucr.org Published On :: 2019-10-09 The disposition of functional groups can induce variations in the nature and type of interactions and hence affect the molecular recognition and self-assembly mechanism in cocrystals. To better understand the formation of cocrystals on a molecular level, the effects of disposition of functional groups on the formation of cocrystals were systematically and comprehensively investigated using cresol isomers (o-, m-, p-cresol) as model compounds. Consistency and variability in these cocrystals containing positional isomers were found and analyzed. The structures, molecular recognition and self-assembly mechanism of supramolecular synthons in solution and in their corresponding cocrystals were verified by a combined experimental and theoretical calculation approach. It was found that the heterosynthons (heterotrimer or heterodimer) combined with O—H⋯N hydrogen bonding played a significant role. Hirshfeld surface analysis and computed interaction energy values were used to determine the hierarchical ordering of the weak interactions. The quantitative analyses of charge transfers and molecular electrostatic potential were also applied to reveal and verify the reasons for consistency and variability. Finally, the molecular recognition, self-assembly and evolution process of the supramolecular synthons in solution were investigated. The results confirm that the supramolecular synthon structures formed initially in solution would be carried over to the final cocrystals, and the supramolecular synthon structures are the precursors of cocrystals and the information memory of the cocrystallization process, which is evidence for classical nucleation theory. Full Article text
als R3c-type LnNiO3 (Ln = La, Ce, Nd, Pm, Gd, Tb, Dy, Ho, Er, Lu) half-metals with multiple Dirac cones: a potential class of advanced spintronic materials By scripts.iucr.org Published On :: 2019-10-16 In the past three years, Dirac half-metals (DHMs) have attracted considerable attention and become a high-profile topic in spintronics becuase of their excellent physical properties such as 100% spin polarization and massless Dirac fermions. Two-dimensional DHMs proposed recently have not yet been experimentally synthesized and thus remain theoretical. As a result, their characteristics cannot be experimentally confirmed. In addition, many theoretically predicted Dirac materials have only a single cone, resulting in a nonlinear electromagnetic response with insufficient intensity and inadequate transport carrier efficiency near the Fermi level. Therefore, after several attempts, we have focused on a novel class of DHMs with multiple Dirac crossings to address the above limitations. In particular, we direct our attention to three-dimensional bulk materials. In this study, the discovery via first principles of an experimentally synthesized DHM LaNiO3 with many Dirac cones and complete spin polarization near the Fermi level is reported. It is also shown that the crystal structures of these materials are strongly correlated with their physical properties. The results indicate that many rhombohedral materials with the general formula LnNiO3 (Ln = La, Ce, Nd, Pm, Gd, Tb, Dy, Ho, Er, Lu) in the space group R3c are potential DHMs with multiple Dirac cones. Full Article text
als Extraordinary anisotropic thermal expansion in photosalient crystals By scripts.iucr.org Published On :: 2020-01-01 Although a plethora of metal complexes have been characterized, those having multifunctional properties are very rare. This article reports three isotypical complexes, namely [Cu(benzoate)L2], where L = 4-styrylpyridine (4spy) (1), 2'-fluoro-4-styrylpyridine (2F-4spy) (2) and 3'-fluoro-4-styrylpyridine (3F-4spy) (3), which show photosalient behavior (photoinduced crystal mobility) while they undergo [2+2] cycloaddition. These crystals also exhibit anisotropic thermal expansion when heated from room temperature to 200°C. The overall thermal expansion of the crystals is impressive, with the largest volumetric thermal expansion coefficients for 1, 2 and 3 of 241.8, 233.1 and 285.7 × 10−6 K−1, respectively, values that are comparable to only a handful of other reported materials known to undergo colossal thermal expansion. As a result of the expansion, their single crystals occasionally move by rolling. Altogether, these materials exhibit unusual and hitherto untapped solid-state properties. Full Article text
als Measuring energy-dependent photoelectron escape in microcrystals By scripts.iucr.org Published On :: 2020-01-01 With the increasing trend of using microcrystals and intense microbeams at synchrotron X-ray beamlines, radiation damage becomes a more pressing problem. Theoretical calculations show that the photoelectrons that primarily cause damage can escape microcrystals. This effect would become more pronounced with decreasing crystal size as well as at higher energies. To prove this effect, data from cryocooled lysozyme crystals of dimensions 5 × 3 × 3 and 20 × 8 × 8 µm mounted on cryo-transmission electron microscopy (cryo-TEM) grids were collected at 13.5 and 20.1 keV using a PILATUS CdTe 2M detector, which has a similar quantum efficiency at both energies. Accurate absorbed doses were calculated through the direct measurement of individual crystal sizes using scanning electron microscopy after the experiment and characterization of the X-ray microbeam. The crystal lifetime was then quantified based on the D1/2 metric. In this first systematic study, a longer crystal lifetime for smaller crystals was observed and crystal lifetime increased at higher X-ray energies, supporting the theoretical predictions of photoelectron escape. The use of detector technologies specifically optimized for data collection at energies above 20 keV allows the theoretically predicted photoelectron escape to be quantified and exploited, guiding future beamline-design choices. Full Article text
als Comparing serial X-ray crystallography and microcrystal electron diffraction (MicroED) as methods for routine structure determination from small macromolecular crystals By scripts.iucr.org Published On :: 2020-02-26 Innovative new crystallographic methods are facilitating structural studies from ever smaller crystals of biological macromolecules. In particular, serial X-ray crystallography and microcrystal electron diffraction (MicroED) have emerged as useful methods for obtaining structural information from crystals on the nanometre to micrometre scale. Despite the utility of these methods, their implementation can often be difficult, as they present many challenges that are not encountered in traditional macromolecular crystallography experiments. Here, XFEL serial crystallography experiments and MicroED experiments using batch-grown microcrystals of the enzyme cyclophilin A are described. The results provide a roadmap for researchers hoping to design macromolecular microcrystallography experiments, and they highlight the strengths and weaknesses of the two methods. Specifically, we focus on how the different physical conditions imposed by the sample-preparation and delivery methods required for each type of experiment affect the crystal structure of the enzyme. Full Article text
als On the mechanism of solid-state phase transitions in molecular crystals – the role of cooperative motion in (quasi)racemic linear amino acids By scripts.iucr.org Published On :: 2020-02-27 During single-crystal-to-single-crystal (SCSC) phase transitions, a polymorph of a compound can transform to a more stable form while remaining in the solid state. By understanding the mechanism of these transitions, strategies can be developed to control this phenomenon. This is particularly important in the pharmaceutical industry, but also relevant for other industries such as the food and agrochemical industries. Although extensive literature exists on SCSC phase transitions in inorganic crystals, it is unclear whether their classications and mechanisms translate to molecular crystals, with weaker interactions and more steric hindrance. A comparitive study of SCSC phase transitions in aliphatic linear-chain amino acid crystals, both racemates and quasi-racemates, is presented. A total of 34 transitions are considered and most are classified according to their structural change during the transition. Transitions without torsional changes show very different characteristics, such as transition temperature, enthalpy and free energy, compared with transitions that involve torsional changes. These differences can be rationalized using classical nucleation theory and in terms of a difference in mechanism; torsional changes occur in a molecule-by-molecule fashion, whereas transitions without torsional changes involve cooperative motion with multiple molecules at the same time. Full Article text
als A complete compendium of crystal structures for the human SEPT3 subgroup reveals functional plasticity at a specific septin interface By scripts.iucr.org Published On :: 2020-03-28 Human septins 3, 9 and 12 are the only members of a specific subgroup of septins that display several unusual features, including the absence of a C-terminal coiled coil. This particular subgroup (the SEPT3 septins) are present in rod-like octameric protofilaments but are lacking in similar hexameric assemblies, which only contain representatives of the three remaining subgroups. Both hexamers and octamers can self-assemble into mixed filaments by end-to-end association, implying that the SEPT3 septins may facilitate polymerization but not necessarily function. These filaments frequently associate into higher order complexes which associate with biological membranes, triggering a wide range of cellular events. In the present work, a complete compendium of crystal structures for the GTP-binding domains of all of the SEPT3 subgroup members when bound to either GDP or to a GTP analogue is provided. The structures reveal a unique degree of plasticity at one of the filamentous interfaces (dubbed NC). Specifically, structures of the GDP and GTPγS complexes of SEPT9 reveal a squeezing mechanism at the NC interface which would expel a polybasic region from its binding site and render it free to interact with negatively charged membranes. On the other hand, a polyacidic region associated with helix α5', the orientation of which is particular to this subgroup, provides a safe haven for the polybasic region when retracted within the interface. Together, these results suggest a mechanism which couples GTP binding and hydrolysis to membrane association and implies a unique role for the SEPT3 subgroup in this process. These observations can be accounted for by constellations of specific amino-acid residues that are found only in this subgroup and by the absence of the C-terminal coiled coil. Such conclusions can only be reached owing to the completeness of the structural studies presented here. Full Article text
als Molecular conformational evolution mechanism during nucleation of crystals in solution By scripts.iucr.org Published On :: 2020-04-24 Nucleation of crystals from solution is fundamental to many natural and industrial processes. In this work, the molecular mechanism of conformational polymorphism nucleation and the links between the molecular conformation in solutions and in crystals were investigated in detail by using 5-nitrofurazone as the model compound. Different polymorphs were prepared, and the conformations in solutions obtained by dissolving different polymorphs were analysed and compared. The solutions of 5-nitrofurazone were proven to contain multiple conformers through quantum chemical computation, Raman spectra analysis, 2D nuclear Overhauser effect spectroscopy spectra analysis and molecular dynamics simulation. The conformational evolution and desolvation path was illustrated according to the 1H NMR spectra of solutions with different concentrations. Finally, based on all the above analysis, the molecular conformational evolution path during nucleation of 5-nitrofurazone was illustrated. The results presented in this work shed a new light on the molecular mechanism of conformational polymorphism nucleation in solution. Full Article text
als Non-merohedral twinning: from minerals to proteins By scripts.iucr.org Published On :: 2019-11-19 In contrast to twinning by merohedry, the reciprocal lattices of the different domains of non-merohedral twins do not overlap exactly. This leads to three kinds of reflections: reflections with no overlap, reflections with an exact overlap and reflections with a partial overlap of a reflection from a second domain. This complicates the unit-cell determination, indexing, data integration and scaling of X-ray diffraction data. However, with hindsight it is possible to detwin the data because there are reflections that are not affected by the twinning. In this article, the successful solution and refinement of one mineral, one organometallic and two protein non-merohedral twins using a common strategy are described. The unit-cell constants and the orientation matrices were determined by the program CELL_NOW. The data were then integrated with SAINT. TWINABS was used for scaling, empirical absorption corrections and the generation of two different data files, one with detwinned data for structure solution and refinement and a second one for (usually more accurate) structure refinement against total integrated intensities. The structures were solved by experimental phasing using SHELXT for the first two structures and SHELXC/D/E for the two protein structures; all models were refined with SHELXL. Full Article text
als Visualization of protein crystals by high-energy phase-contrast X-ray imaging By scripts.iucr.org Published On :: 2019-10-31 For the extraction of the best possible X-ray diffraction data from macromolecular crystals, accurate positioning of the crystals with respect to the X-ray beam is crucial. In addition, information about the shape and internal defects of crystals allows the optimization of data-collection strategies. Here, it is demonstrated that the X-ray beam available on the macromolecular crystallography beamline P14 at the high-brilliance synchrotron-radiation source PETRA III at DESY, Hamburg, Germany can be used for high-energy phase-contrast microtomography of protein crystals mounted in an optically opaque lipidic cubic phase matrix. Three-dimensional tomograms have been obtained at X-ray doses that are substantially smaller and on time scales that are substantially shorter than those used for diffraction-scanning approaches that display protein crystals at micrometre resolution. Adding a compound refractive lens as an objective to the imaging setup, two-dimensional imaging at sub-micrometre resolution has been achieved. All experiments were performed on a standard macromolecular crystallography beamline and are compatible with standard diffraction data-collection workflows and apparatus. Phase-contrast X-ray imaging of macromolecular crystals could find wide application at existing and upcoming low-emittance synchrotron-radiation sources. Full Article text
als Well-based crystallization of lipidic cubic phase microcrystals for serial X-ray crystallography experiments By scripts.iucr.org Published On :: 2019-10-01 Serial crystallography is having an increasing impact on structural biology. This emerging technique opens up new possibilities for studying protein structures at room temperature and investigating structural dynamics using time-resolved X-ray diffraction. A limitation of the method is the intrinsic need for large quantities of well ordered micrometre-sized crystals. Here, a method is presented to screen for conditions that produce microcrystals of membrane proteins in the lipidic cubic phase using a well-based crystallization approach. A key advantage over earlier approaches is that the progress of crystal formation can be easily monitored without interrupting the crystallization process. In addition, the protocol can be scaled up to efficiently produce large quantities of crystals for serial crystallography experiments. Using the well-based crystallization methodology, novel conditions for the growth of showers of microcrystals of three different membrane proteins have been developed. Diffraction data are also presented from the first user serial crystallography experiment performed at MAX IV Laboratory. Full Article text
als The crystal structure of the heme d1 biosynthesis-associated small c-type cytochrome NirC reveals mixed oligomeric states in crystallo By scripts.iucr.org Published On :: 2020-03-25 Monoheme c-type cytochromes are important electron transporters in all domains of life. They possess a common fold hallmarked by three α-helices that surround a covalently attached heme. An intriguing feature of many monoheme c-type cytochromes is their capacity to form oligomers by exchanging at least one of their α-helices, which is often referred to as 3D domain swapping. Here, the crystal structure of NirC, a c-type cytochrome co-encoded with other proteins involved in nitrite reduction by the opportunistic pathogen Pseudomonas aeruginosa, has been determined. The crystals diffracted anisotropically to a maximum resolution of 2.12 Å (spherical resolution of 2.83 Å) and initial phases were obtained by Fe-SAD phasing, revealing the presence of 11 NirC chains in the asymmetric unit. Surprisingly, these protomers arrange into one monomer and two different types of 3D domain-swapped dimers, one of which shows pronounced asymmetry. While the simultaneous observation of monomers and dimers probably reflects the interplay between the high protein concentration required for crystallization and the structural plasticity of monoheme c-type cytochromes, the identification of conserved structural motifs in the monomer together with a comparison with similar proteins may offer new leads to unravel the unknown function of NirC. Full Article text
als Scaling diffraction data in the DIALS software package: algorithms and new approaches for multi-crystal scaling By scripts.iucr.org Published On :: 2020-03-31 In processing X-ray diffraction data, the intensities obtained from integration of the diffraction images must be corrected for experimental effects in order to place all intensities on a common scale both within and between data collections. Scaling corrects for effects such as changes in sample illumination, absorption and, to some extent, global radiation damage that cause the measured intensities of symmetry-equivalent observations to differ throughout a data set. This necessarily requires a prior evaluation of the point-group symmetry of the crystal. This paper describes and evaluates the scaling algorithms implemented within the DIALS data-processing package and demonstrates the effectiveness and key features of the implementation on example macromolecular crystallographic rotation data. In particular, the scaling algorithms enable new workflows for the scaling of multi-crystal or multi-sweep data sets, providing the analysis required to support current trends towards collecting data from ever-smaller samples. In addition, the implementation of a free-set validation method is discussed, which allows the quantification of the suitability of scaling-model and algorithm choices. Full Article text
als Inelastic scattering and solvent scattering reduce dynamical diffraction in biological crystals By scripts.iucr.org Published On :: 2019-08-01 Multi-slice simulations of electron diffraction by three-dimensional protein crystals have indicated that structure solution would be severely impeded by dynamical diffraction, especially when crystals are more than a few unit cells thick. In practice, however, dynamical diffraction turned out to be less of a problem than anticipated on the basis of these simulations. Here it is shown that two scattering phenomena, which are usually omitted from multi-slice simulations, reduce the dynamical effect: solvent scattering reduces the phase differences within the exit beam and inelastic scattering followed by elastic scattering results in diffusion of dynamical scattering out of Bragg peaks. Thus, these independent phenomena provide potential reasons for the apparent discrepancy between theory and practice in protein electron crystallography. Full Article text
als Synchrotron multimodal imaging in a whole cell reveals lipid droplet core organization By scripts.iucr.org Published On :: 2020-04-23 A lipid droplet (LD) core of a cell consists mainly of neutral lipids, triacylglycerols and/or steryl esters (SEs). The structuration of these lipids inside the core is still under debate. Lipid segregation inside LDs has been observed but is sometimes suggested to be an artefact of LD isolation and chemical fixation. LD imaging in their native state and in unaltered cellular environments appears essential to overcome these possible technical pitfalls. Here, imaging techniques for ultrastructural study of native LDs in cellulo are provided and it is shown that LDs are organized structures. Cryo soft X-ray tomography and deep-ultraviolet (DUV) transmittance imaging are showing a partitioning of SEs at the periphery of the LD core. Furthermore, DUV transmittance and tryptophan/tyrosine auto-fluorescence imaging on living cells are combined to obtain complementary information on cell chemical contents. This multimodal approach paves the way for a new label-free organelle imaging technique in living cells. Full Article text
als Comparative study of the around-Fermi electronic structure of 5d metals and metal-oxides by means of high-resolution X-ray emission and absorption spectroscopies By scripts.iucr.org Published On :: 2020-04-14 The composition of occupied and unoccupied electronic states in the vicinity of Fermi energies is vital for all materials and relates to their physical, chemical and mechanical properties. This work demonstrates how the combination of resonant and non-resonant X-ray emission spectroscopies supplemented with theoretical modelling allows for quantitative analysis of electronic states in 5d transition metal and metal-oxide materials. Application of X-rays provides element selectivity that, in combination with the penetrating properties of hard X-rays, allows determination of the composition of electronic states under working conditions, i.e. non-vacuum environment. Tungsten metal and tungsten oxide are evaluated to show the capability to simultaneously assess composition of around-band-gap electronic states as well as the character and magnitude of the crystal field splitting. Full Article text
als Development of a scanning soft X-ray spectromicroscope to investigate local electronic structures on surfaces and interfaces of advanced materials under conditions ranging from low vacuum to helium atmosphere By scripts.iucr.org Published On :: 2020-03-18 A scanning soft X-ray spectromicroscope was recently developed based mainly on the photon-in/photon-out measurement scheme for the investigation of local electronic structures on the surfaces and interfaces of advanced materials under conditions ranging from low vacuum to helium atmosphere. The apparatus was installed at the soft X-ray beamline (BL17SU) at SPring-8. The characteristic features of the apparatus are described in detail. The feasibility of this spectromicroscope was demonstrated using soft X-ray undulator radiation. Here, based on these results, element-specific two-dimensional mapping and micro-XAFS (X-ray absorption fine structure) measurements are reported, as well as the observation of magnetic domain structures from using a reference sample of permalloy micro-dot patterns fabricated on a silicon substrate, with modest spatial resolution (e.g. ∼500 nm). Then, the X-ray radiation dose for Nafion® near the fluorine K-edge is discussed as a typical example of material that is not radiation hardened against a focused X-ray beam, for near future experiments. Full Article text
als A temperature-controlled cold-gas humidifier and its application to protein crystals with the humid-air and glue-coating method By scripts.iucr.org Published On :: 2019-06-14 The room-temperature experiment has been revisited for macromolecular crystallography. Despite being limited by radiation damage, such experiments reveal structural differences depending on temperature, and it is expected that they will be able to probe structures that are physiologically alive. For such experiments, the humid-air and glue-coating (HAG) method for humidity-controlled experiments is proposed. The HAG method improves the stability of most crystals in capillary-free experiments and is applicable at both cryogenic and ambient temperatures. To expand the thermal versatility of the HAG method, a new humidifier and a protein-crystal-handling workbench have been developed. The devices provide temperatures down to 4°C and successfully maintain growth at that temperature of bovine cytochrome c oxidase crystals, which are highly sensitive to temperature variation. Hence, the humidifier and protein-crystal-handling workbench have proved useful for temperature-sensitive samples and will help reveal temperature-dependent variations in protein structures. Full Article text
als A comparison of gas stream cooling and plunge cooling of macromolecular crystals By scripts.iucr.org Published On :: 2019-08-23 Cryocooling for macromolecular crystallography is usually performed via plunging the crystal into a liquid cryogen or placing the crystal in a cold gas stream. These two approaches are compared here for the case of nitrogen cooling. The results show that gas stream cooling, which typically cools the crystal more slowly, yields lower mosaicity and, in some cases, a stronger anomalous signal relative to rapid plunge cooling. During plunging, moving the crystal slowly through the cold gas layer above the liquid surface can produce mosaicity similar to gas stream cooling. Annealing plunge cooled crystals by warming and recooling in the gas stream allows the mosaicity and anomalous signal to recover. For tetragonal thermolysin, the observed effects are less pronounced when the cryosolvent has smaller thermal contraction, under which conditions the protein structures from plunge cooled and gas stream cooled crystals are very similar. Finally, this work also demonstrates that the resolution dependence of the reflecting range is correlated with the cooling method, suggesting it may be a useful tool for discerning whether crystals are cooled too rapidly. The results support previous studies suggesting that slower cooling methods are less deleterious to crystal order, as long as ice formation is prevented and dehydration is limited. Full Article text
als A routine for the determination of the microstructure of stacking-faulted nickel cobalt aluminium hydroxide precursors for lithium nickel cobalt aluminium oxide battery materials By scripts.iucr.org Published On :: 2020-02-01 The microstructures of six stacking-faulted industrially produced cobalt- and aluminium-bearing nickel layered double hydroxide (LDH) samples that are used as precursors for Li(Ni1−x−yCoxAly)O2 battery materials were investigated. Shifts from the brucite-type (AγB)□(AγB)□ stacking pattern to the CdCl2-type (AγB)□(CβA)□(BαC)□ and the CrOOH-type (BγA)□(AβC)□(CαB)□ stacking order, as well as random intercalation of water molecules and carbonate ions, were found to be the main features of the microstructures. A recursive routine for generating and averaging supercells of stacking-faulted layered substances implemented in the TOPAS software was used to calculate diffraction patterns of the LDH phases as a function of the degree of faulting and to refine them against the measured diffraction data. The microstructures of the precursor materials were described by a model containing three parameters: transition probabilities for generating CdCl2-type and CrOOH-type faults and a transition probability for the random intercalation of water/carbonate layers. Automated series of simulations and refinements were performed, in which the transition probabilities were modified incrementally and thus the microstructures optimized by a grid search. All samples were found to exhibit the same fraction of CdCl2-type and CrOOH-type stacking faults, which indicates that they have identical Ni, Co and Al contents. Different degrees of interstratification faulting were determined, which could be correlated to different heights of intercalation-water-related mass-loss steps in the thermal analyses. Full Article text
als Reconstructing intragranular strain fields in polycrystalline materials from scanning 3DXRD data By scripts.iucr.org Published On :: 2020-02-21 Two methods for reconstructing intragranular strain fields are developed for scanning three-dimensional X-ray diffraction (3DXRD). The methods are compared with a third approach where voxels are reconstructed independently of their neighbours [Hayashi, Setoyama & Seno (2017). Mater. Sci. Forum, 905, 157–164]. The 3D strain field of a tin grain, located within a sample of approximately 70 grains, is analysed and compared across reconstruction methods. Implicit assumptions of sub-problem independence, made in the independent voxel reconstruction method, are demonstrated to introduce bias and reduce reconstruction accuracy. It is verified that the two proposed methods remedy these problems by taking the spatial properties of the inverse problem into account. Improvements in reconstruction quality achieved by the two proposed methods are further supported by reconstructions using synthetic diffraction data. Full Article text
als Enhancing the homogeneity of YBa2(Cu1−xFex)3O7−δ single crystals by using an Fe-added Y2O3 crucible via top-seeded solution growth By journals.iucr.org Published On :: This paper reports an Fe-added Y2O3 crucible which is capable of balancing the solution spontaneously and is employed to effectively enhance the homogeneity of YBa2(Cu1−xFex)3O7−δ single crystals. Full Article text
als A temperature-controlled cold-gas humidifier and its application to protein crystals with the humid-air and glue-coating method By journals.iucr.org Published On :: A new temperature-controllable humidifier for X-ray diffraction has been developed. It is shown that the humidifier can successfully maintain protein crystal growth at a temperature lower than room temperature. Full Article text
als Significant texture improvement in single-crystalline-like materials on low-cost flexible metal foils through growth of silver thin films By journals.iucr.org Published On :: Single-crystalline-like thin films composed of crystallographically aligned grains are a new prototype of 2D materials developed recently for low-cost and high-performance flexible electronics as well as second-generation high-temperature superconductors. In this work, significant texture improvement in single-crystalline-like materials is achieved through growth of a 330 nm-thick silver layer. Full Article text
als Usefulness of oils for cleaning the host matrix and for cryoprotection of lipidic cubic phase crystals By journals.iucr.org Published On :: Several oils were examined for use in the cleaning and cryoprotection of crystals in the lipidic cubic phase in terms of their effect on the crystal stability, the background scattering and the facilitation of the experiment. Full Article text
als X-ray diffraction using focused-ion-beam-prepared single crystals By journals.iucr.org Published On :: This study demonstrates a new preparation method for single-crystal X-ray diffraction samples using a focused ion beam. The results of the structure determination and electron density maps with differently prepared samples are discussed, to evaluate this new method. Full Article text
als Takagi–Taupin dynamical X-ray diffraction simulations of asymmetric X-ray diffraction from crystals: the effects of surface undulations By journals.iucr.org Published On :: Dynamical X-ray diffraction simulations of very asymmetric diffraction from single crystals of silicon were made to accompany an experimental rocking-curve topography study reported in a seperate paper. Effects on rocking curves were found and are reported. The development of Uragami [(1969), J. Phys. Soc. Jpn, 27, 147–154] for Takagi–Taupin simulations was followed and applied to the case of both convex and concave surface undulations. Full Article text
als Pattern matching indexing of Laue and monochromatic serial crystallography data for applications in Materials Science By journals.iucr.org Published On :: An algorithm, based on the matching of q-vectors pairs, is combined with three-dimensional pattern matching using a nearest-neighbors approach to index Laue and monochromatic serial crystallography data recorded on small unit cell samples. Full Article text
als GIWAXS-SIIRkit: Scattering Intensity, Indexing, and Refraction Calculation Toolkit for Grazing Incidence Wide Angle X-ray Scattering of Organic Materials By journals.iucr.org Published On :: A software package for Grazing Incident Wide Angle X-ray Scattering (GIWAXS) geared toward weakly ordered materials, including: scattering intensity normalization/uncertainty, scattering pattern indexing, and refractive shift correction. Full Article text
als Hydrogen/deuterium exchange behavior in tetragonal hen egg-white lysozyme crystals affected by solution state By journals.iucr.org Published On :: Neutron crystal structure analysis of hen egg-white lysozyme hydrogen/deuterium exchanged before crystallization were performed by the joint X-ray and neutron refinement. The differences in hydrogen/deuterium exchange behavior between this study and previous ones were observed. Full Article text
als Forthcoming article in Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials By journals.iucr.org Published On :: Full Article Still image
als New research reveals our galaxy is much larger than we thought By insider.si.edu Published On :: Mon, 06 Jul 2009 17:50:22 +0000 New measurements show that the Milky Way is bigger and more massive than previous data suggested, putting us on equal footing with our neighbor. Specifically, the Milky Way is 15 percent larger in size and contains 50 percent more mass. That is the cosmic equivalent of a 5-foot-5, 140-pound man suddenly bulking up to the size of a 6-foot-3, 210-pound NFL linebacker. The post New research reveals our galaxy is much larger than we thought appeared first on Smithsonian Insider. Full Article Research News Science & Nature Space astronomy astrophysics galaxies Milky Way Smithsonian Astrophysical Observatory
als Golden years at the Zoo: Veterinarians work to help animals live longer, stay healthy By insider.si.edu Published On :: Thu, 27 Aug 2009 11:53:04 +0000 Successes in animal health care presents many new challenges for veterinarians. Longer life spans in captivity mean zoo animals are now experiencing age-related health problems that their zoo predecessors never lived long enough to develop—like diabetes in cheetahs, arthritis in big cats and dental issues for coatis. The post Golden years at the Zoo: Veterinarians work to help animals live longer, stay healthy appeared first on Smithsonian Insider. Full Article Animals Science & Nature conservation biology Smithsonian's National Zoo veterinary medicine
als A dry spring in Panama means more sulfur butterflies, study reveals By insider.si.edu Published On :: Fri, 02 Oct 2009 13:38:10 +0000 A new census of tropical sulfur butterflies (Aphrissa statira) migrating across the Panama Canal has revealed the central role that weather plays in determining why populations of these lemon-yellow insects vary from year to year. The post A dry spring in Panama means more sulfur butterflies, study reveals appeared first on Smithsonian Insider. Full Article Research News Science & Nature biodiversity conservation conservation biology Tropical Research Institute
als Census reveals 1,200 howler monkeys living on Barro Colorado Island By insider.si.edu Published On :: Tue, 04 May 2010 18:27:55 +0000 Long before dawn on a recent morning, Katie Milton and a group of stalwart volunteers, each armed with flashlight and compass, spread out into the jungle to take up positions at 35 listening stations marked on maps of the island. The post Census reveals 1,200 howler monkeys living on Barro Colorado Island appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature conservation mammals primates Tropical Research Institute
als Scientists find ultrasonic calls of bats also serve a social function By insider.si.edu Published On :: Thu, 17 Jun 2010 18:10:20 +0000 The new study suggests that echolocation calls also serve a social function--bats listen to the ultrasonic calls of other bats to identify roost mates, bats of the same species, members of the opposite sex and intruders to their territory. The post Scientists find ultrasonic calls of bats also serve a social function appeared first on Smithsonian Insider. Full Article Research News Science & Nature bats mammals Tropical Research Institute
als Study reveals road salt may promote health and well-being of roadside ant colonies By insider.si.edu Published On :: Mon, 30 Aug 2010 14:37:18 +0000 To understand the effects of road salting on ants, Michael Kaspari of the Smithsonian Tropical Research Institute and the University of Oklahoma led a team that looked at how ant colonies are affected by these conditions; their research is published in a recent issue of the journal Ecological Entomology. The post Study reveals road salt may promote health and well-being of roadside ant colonies appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature ants biodiversity insects Tropical Research Institute
als GPS and camera traps to replace radio antennas in tracking animals on Barro Colorado Island By insider.si.edu Published On :: Tue, 07 Dec 2010 16:03:40 +0000 On the Smithsonian Tropical Research Institute's Barro Colorado Island in the Panama Canal, staff members are taking down a network of seven tall Automated Radio Telemetry System towers used to track animals wearing radio-transmitters. Scientists on the island are switching to GPS and camera trap systems to produce more data with less infrastructure. The post GPS and camera traps to replace radio antennas in tracking animals on Barro Colorado Island appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature camera traps climate change conservation conservation biology technology Tropical Research Institute
als Smithsonian instrument reveals Sun’s innermost corona By insider.si.edu Published On :: Tue, 04 Jan 2011 18:03:51 +0000 An instrument on board NASA's Solar Dynamics Observatory, developed by Smithsonian scientists, is giving unprecedented views of the Sun's innermost corona 24 hours a day, 7 days a week. The post Smithsonian instrument reveals Sun’s innermost corona appeared first on Smithsonian Insider. Full Article Research News Science & Nature astronomy astrophysics Center for Astrophysics | Harvard & Smithsonian Smithsonian Astrophysical Observatory solar eclipse Sun
als Rising ocean temperatures and acidity may deliver deadly one-two punch to the world’s corals By insider.si.edu Published On :: Mon, 24 Jan 2011 17:43:02 +0000 A recent experiment by scientists at the Smithsonian Tropical Research Institute in Panama has revealed just how rising atmospheric carbon dioxide will deliver a one-two […] The post Rising ocean temperatures and acidity may deliver deadly one-two punch to the world’s corals appeared first on Smithsonian Insider. Full Article Marine Science Research News Science & Nature biodiversity carbon dioxide climate change coral reefs ocean acidification Tropical Research Institute
als New study examines how planetesimals influence the development of a planetary system By insider.si.edu Published On :: Mon, 31 Jan 2011 20:09:38 +0000 In a new paper, Harvard-Smithsonian Center for Astrophysics astronomer Hagai Perets studies the role of binary planetesimals--clumps that orbit each other and jointly mature via three basic processes. The post New study examines how planetesimals influence the development of a planetary system appeared first on Smithsonian Insider. Full Article Research News Science & Nature Space planets