met

Crystal structure of hexa-μ-chlorido-μ4-oxido-tetra­kis­{[1-(2-hy­droxy­eth­yl)-2-methyl-5-nitro-1H-imidazole-κN3]copper(II)} containing short NO2⋯NO2 contacts

The title tetra­nuclear copper complex, [Cu4Cl6O(C6H9N3O3)4] or [Cu4Cl6O­(MET)4] [MET is 1-(2-hy­droxy­eth­yl)-2-methyl-5-nitro-1H-imidazole or metronidazole], contains a tetra­hedral arrangement of copper(II) ions. Each copper atom is also linked to the other three copper atoms in the tetra­hedron via bridging chloride ions. A fifth coordination position on each metal atom is occupied by a nitro­gen atom of the monodentate MET ligand. The result is a distorted CuCl3NO trigonal–bipyramidal coordination polyhedron with the axial positions occupied by oxygen and nitro­gen atoms. The extended structure displays O—H⋯O hydrogen bonding, as well as unusual short O⋯N inter­actions [2.775 (4) Å] between the nitro groups of adjacent clusters that are oriented perpendicular to each other. The scattering contribution of disordered water and methanol solvent mol­ecules was removed using the SQUEEZE procedure [Spek (2015). Acta Cryst. C71, 9–16] in PLATON [Spek (2009). Acta Cryst. D65, 148–155].




met

(1R,2S,4r)-1,2,4-Tri­phenyl­cyclo­pentane-1,2-diol and (1R,2S,4r)-4-(2-meth­oxy­phen­yl)-1,2-di­phenyl­cyclo­pentane-1,2-diol: application as initiators for ring-opening polymerization of ∊-caprolactone

Reductive cyclization of 1,3,5-triphenyl- and 3-(2-meth­oxy­phen­yl)-1,5-di­phenyl­pentane-1,5-diones by zinc in acetic acid medium leads to the formation of 1,2,4-tri­phenyl­cyclo­pentane-1,2-diol [1,2,4-Ph3C5H5-1,2-(OH)2, C23H22O2, (I)] and 4-(2-meth­oxy­phen­yl)-1,2-di­phenyl­cyclo­pentane-1,2-diol [4-(2-MeOC6H4)-1,2-Ph2C5H5-1,2-(OH)2, C24H24O3, (II)]. Their single crystals have been obtained by crystallization from a THF/hexane solvent mixture. Diols (I) and (II) crystallize in ortho­rhom­bic (Pbca) and triclinic (Poverline{1}) space groups, respectively, at 150 K. Their asymmetric units comprise one [in the case of (I)] and three [in the case of (II)] crystallographically independent mol­ecules of the achiral (1R,2S,4r)-diol isomer. Each hydroxyl group is involved in one intra­molecular and one inter­molecular O—H⋯O hydrogen bond, forming one-dimensional chains. Compounds (I) and (II) have been used successfully as precatalyst activators for the ring-opening polymerization of ∊-caprolactone.




met

Mol­ecular and crystal structure of 5,9-dimethyl-5H-pyrano[3,2-c:5,6-c']bis­[2,1-benzo­thia­zin]-7(9H)-one 6,6,8,8-tetroxide di­methyl­formamide monosolvate

The title mol­ecule crystallizes as a di­methyl­formamide monosolvate, C19H14N2O6S2·C3H7NO. The mol­ecule was expected to adopt mirror symmetry but slightly different conformational characteristics of the condensed benzo­thia­zine ring lead to point group symmetry 1. In the crystal, mol­ecules form two types of stacking dimers with distances of 3.464 (2) Å and 3.528 (2) Å between π-systems. As a result, columns extending parallel to [100] are formed, which are connected to inter­mediate di­methyl­formamide solvent mol­ecules by C—H⋯O inter­actions.




met

Crystal structures of two CuII compounds: catena-poly[[chlorido­copper(II)]-μ-N-[eth­oxy(pyridin-2-yl)methyl­idene]-N'-[oxido(pyridin-3-yl)methyl­idene]hydrazine-κ4N,N',O:N''] and di-μ-chlorido-1:4κ2Cl:Cl-2:3κ2Cl:Cl-di­chlorido-2κ

Two CuII complexes [Cu(C14H13N4O2)Cl]n, I, and [Cu4(C8H10NO2)4Cl4]n, II, have been synthesized. In the structure of the mononuclear complex I, each ligand is coordinated to two metal centers. The basal plane around the CuII cation is formed by one chloride anion, one oxygen atom, one imino and one pyridine nitro­gen atom. The apical position of the distorted square-pyramidal geometry is occupied by a pyridine nitro­gen atom from a neighbouring unit, leading to infinite one-dimensional polymeric chains along the b-axis direction. Each chain is connected to adjacent chains by inter­molecular C—H⋯O and C—H⋯Cl inter­actions, leading to a three-dimensional network structure. The tetra­nuclear complex II lies about a crystallographic inversion centre and has one core in which two CuII metal centers are mutually inter­connected via two enolato oxygen atoms while the other two CuII cations are linked by a chloride anion and an enolato oxygen. An open-cube structure is generated in which the two open-cube units, with seven vertices each, share a side composed of two CuII ions bridged by two enolato oxygen atoms acting in a μ3-mode. The CuII atoms in each of the two CuO3NCl units are connected by one μ2-O and two μ3-O atoms from deprotonated hydroxyl groups and one chloride anion to the three other CuII centres. Each of the penta­coordinated CuII cations has a distorted NO3Cl square-pyramidal environment. The CuII atoms in each of the two CuO2NCl2 units are connected by μ2-O and μ3-O atoms from deprotonated alcohol hy­droxy groups and one chloride anion to two other CuII ions. Each of the penta­coordinated CuII cations has a distorted NO2Cl2 square-pyramidal environment. In the crystal, a series of intra­molecular C—H⋯O and C—H⋯Cl hydrogen bonds are observed in each tetra­nuclear monomeric unit, which is connected to four tetra­nuclear monomeric units by inter­molecular C—H⋯O hydrogen bonds, thus forming a planar two-dimensional structure in the (overline{1}01) plane.




met

Crystal structure and Hirshfeld surface analysis of di­iodido­{N'-[(E)-(phen­yl)(pyridin-2-yl-κN)methylidene]pyridine-2-carbohydrazide-κ2N',O}cadmium(II)

In each of the two independent mol­ecules in the asymmetric unit of the title compound, [CdI2(C18H14N4O)], the N,O,N'-tridentate N'-[(E)-(phen­yl)(pyridin-2-yl-κN)methyl­idene]pyridine-2-carbohydrazide ligand and two iodide anions form an I2N2O penta­coordination sphere, with a distorted square-pyramidal geometry, with an I atom in the apical position. Both mol­ecules feature an intra­molecular N—H⋯N hydrogen bond. In the crystal, weak aromatic π–π stacking inter­actions [centroid–centroid separation = 3.830 (2) Å] link the mol­ecules into dimers.




met

Crystal structure of (E)-N-cyclo­hexyl-2-(2-hy­droxy-3-methyl­benzyl­idene)hydrazine-1-carbo­thio­amide

The asymmetric unit of the title compound, C15H21N3OS, comprises of two crystallographically independent mol­ecules (A and B). Each mol­ecule consists of a cyclo­hexane ring and a 2-hy­droxy-3-methyl­benzyl­idene ring bridged by a hydrazinecarbo­thio­amine unit. Both mol­ecules exhibit an E configuration with respect to the azomethine C=N bond. There is an intra­molecular O—H⋯N hydrogen bond in each mol­ecule forming an S(6) ring motif. The cyclo­hexane ring in each mol­ecule has a chair conformation. The benzene ring is inclined to the mean plane of the cyclo­hexane ring by 47.75 (9)° in mol­ecule A and 66.99 (9)° in mol­ecule B. The mean plane of the cyclo­hexane ring is inclined to the mean plane of the thio­urea moiety [N—C(=S)—N] by 55.69 (9) and 58.50 (8)° in mol­ecules A and B, respectively. In the crystal, the A and B mol­ecules are linked by N—H⋯S hydrogen bonds, forming `dimers'. The A mol­ecules are further linked by a C—H⋯π inter­action, hence linking the A–B units to form ribbons propagating along the b-axis direction. The conformation of a number of related cyclo­hexa­nehydrazinecarbo­thio­amides are compared to that of the title compound.




met

5-Methyl-1,3-phenyl­ene bis­[5-(di­methyl­amino)­naphthalene-1-sulfonate]: crystal structure and DFT calculations

The title compound, C31H30N2S2O6, possesses crystallographically imposed twofold symmetry with the two C atoms of the central benzene ring and the C atom of its methyl substituent lying on the twofold rotation axis. The two dansyl groups are twisted away from the plane of methyl­phenyl bridging unit in opposite directions. The three-dimensional arrangement in the crystal is mainly stabilized by weak hydrogen bonds between the sulfonyl oxygen atoms and the hydrogen atoms from the N-methyl groups. Stacking of the dansyl group is not observed. From the DFT calculations, the HOMO–LUMO energy gap was found to be 2.99 eV and indicates n→π* and π→π* transitions within the mol­ecule.




met

Crystal structure and Hirshfeld surface analysis of 2-[(2-oxo-2H-chromen-4-yl)­oxy]acetic acid dimethyl sulfoxide monosolvate

The title compound, C11H8O5·(CH3)2SO, is a new coumarin derivative. The asymmetric unit contains two coumarin mol­ecules (A and B) and two di­methyl­sulfoxide solvent mol­ecules (A and B). The dihedral angle between the pyran and benzene rings in the chromene moiety is 3.56 (2)° for mol­ecule A and 1.83 (2)° for mol­ecule B. In mol­ecule A, the dimethyl sulfoxide sulfur atom is disordered over two positions with a refined occupancy ratio of 0.782 (5):0.218 (5). In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains running along the c-axis direction. The chains are linked by C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. In addition, there are also C—H⋯π and π–π inter­actions present within the layers. The inter­molecular contacts in the crystal have been analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots, which indicate that the most important contributions to the packing are from H⋯H (33.9%) and O⋯H/H⋯O (41.2%) contacts.




met

Crystal structures of two new isocoumarin derivatives: 8-amino-6-methyl-3,4-diphenyl-1H-isochromen-1-one and 8-amino-3,4-diethyl-6-methyl-1H-isochromen-1-one

The title compounds, 8-amino-6-methyl-3,4-diphenyl-1H-isochromen-1-one, C22H17NO2, (I), and 8-amino-3,4-diethyl-6-methyl-1H-isochromen-1-one, C14H17NO2, (II), are new isocoumarin derivatives in which the isochromene ring systems are planar. Compound II crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. In I, the two phenyl rings are inclined to each other by 56.41 (7)° and to the mean plane of the 1H-isochromene ring system by 67.64 (6) and 44.92 (6)°. In both compounds, there is an intra­molecular N—H⋯O hydrogen bond present forming an S(6) ring motif. In the crystal of I, mol­ecules are linked by N—H⋯π inter­actions, forming chains along the b-axis direction. A C—H⋯π inter­action links the chains to form layers parallel to (100). The layers are then linked by a second C—H⋯π inter­action, forming a three-dimensional structure. In the crystal of II, the two independent mol­ecules (A and B) are linked by N—H⋯O hydrogen bonds, forming –A–B–A–B– chains along the [101] direction. The chains are linked into ribbons by C—H⋯π inter­actions involving inversion-related A mol­ecules. The latter are linked by offset π–π inter­actions [inter­centroid distances vary from 3.506 (1) to 3.870 (2) Å], forming a three-dimensional structure.




met

Crystal structure of 2-(methyl­amino)­tropone

The title compound, 2-(methyl­amino)­cyclo­hepta-2,4,6-trien-1-one, C8H9NO, crystallizes in the monoclinic space group P21/c, with three independent mol­ecules in the asymmetric unit. The planarity of the mol­ecules is indicated by planes fitted through the seven ring carbon atoms. Small deviations from the planes, with an extremal r.m.s. deviation of 0.0345 Å, are present. In complexes of transition metals with similar ligands, the large planar seven-membered aromatic rings have shown to improve the stability of the complex. Two types of hydrogen-bonding inter­actions, C—H⋯O and N—H⋯O, are observed, as well as bifurcation of these inter­actions. The N—H⋯O inter­actions link mol­ecules to form infinite chains. The packing of mol­ecules in the unit cell shows a pattern of overlapping aromatic rings, forming column-like formations. π–π inter­actions are observed between the overlapping aromatic rings at 3.4462 (19) Å from each other.




met

(E)-6,6'-(Diazene-1,2-di­yl)bis­(1,10-phenanthrolin-5-ol) tri­chloro­methane disolvate: a superconjugated ligand

Phenanthroline ligands are important metal-binding mol­ecules which have been extensively researched for applications in both material science and medicinal chemistry. Azo­benzene and its derivatives have received significant attention because of their ability to be reversibly switched between the E and Z forms and so could have applications in optical memory and logic devices or as mol­ecular machines. Herein we report the formation and crystal structure of a highly unusual novel diazo-diphenanthroline compound, C24H14N6O2·2CHCl3.




met

N,N'-Bis(pyridin-4-ylmeth­yl)oxalamide benzene monosolvate: crystal structure, Hirshfeld surface analysis and computational study

The asymmetric unit of the title 1:1 solvate, C14H14N4O2·C6H6 [systematic name of the oxalamide mol­ecule: N,N'-bis­(pyridin-4-ylmeth­yl)ethanedi­amide], comprises a half mol­ecule of each constituent as each is disposed about a centre of inversion. In the oxalamide mol­ecule, the central C2N2O2 atoms are planar (r.m.s. deviation = 0.0006 Å). An intra­molecular amide-N—H⋯O(amide) hydrogen bond is evident, which gives rise to an S(5) loop. Overall, the mol­ecule adopts an anti­periplanar disposition of the pyridyl rings, and an orthogonal relationship is evident between the central plane and each terminal pyridyl ring [dihedral angle = 86.89 (3)°]. In the crystal, supra­molecular layers parallel to (10overline{2}) are generated owing the formation of amide-N—H⋯N(pyrid­yl) hydrogen bonds. The layers stack encompassing benzene mol­ecules which provide the links between layers via methyl­ene-C—H⋯π(benzene) and benzene-C—H⋯π(pyrid­yl) inter­actions. The specified contacts are indicated in an analysis of the calculated Hirshfeld surfaces. The energy of stabilization provided by the conventional hydrogen bonding (approximately 40 kJ mol−1; electrostatic forces) is just over double that by the C—H⋯π contacts (dispersion forces).




met

Crystal structure and Hirshfeld surface analysis of (E)-4-{[2,2-di­chloro-1-(4-meth­oxy­phen­yl)ethen­yl]diazen­yl}benzo­nitrile

In the title compound, C16H11Cl2N3O, the 4-meth­oxy-substituted benzene ring makes a dihedral angle of 41.86 (9)° with the benzene ring of the benzo­nitrile group. In the crystal, mol­ecules are linked into layers parallel to (020) by C—H⋯O contacts and face-to-face π–π stacking inter­actions [centroid–centroid distances = 3.9116 (14) and 3.9118 (14) Å] between symmetry-related aromatic rings along the a-axis direction. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from Cl⋯H/H⋯Cl (22.8%), H⋯H (21.4%), N⋯H/H⋯N (16.1%), C⋯H/H⋯C (14.7%) and C⋯C (9.1%) inter­actions.




met

Syntheses, crystal structures and Hirshfeld surface analyses of (3aR,4S,7R,7aS)-2-(perfluoro­pyridin-4-yl)-3a,4,7,7a-tetra­hydro-4,7-methano­iso­indole-1,3-dione and (3aR,4S,7R,7aS)-2-[(perfluoro­pyridin-4-yl)­oxy]-3a,4,7,7a-

The syntheses and crystal structures of the title compounds, C14H8F4N2O2 and C14H8F4N2O3, are reported. In each crystal, the packing is driven by C—H⋯F inter­tactions, along with a variety of C—H⋯O, C—O⋯π, and C—F⋯π contacts. Hirshfeld surface analysis was conducted to aid in the visualization of these various influences on the packing: they showed that the largest contributions to the surface contacts arise from H⋯F/F⋯H inter­actions, followed by H⋯H and O⋯H/H⋯O.




met

Crystal structure, Hirshfeld surface analysis and corrosion inhibition study of 3,6-bis­(pyridin-2-yl)-4-{[(3aS,5S,5aR,8aR,8bS)-2,2,7,7-tetra­methyl­tetra­hydro-5H-bis­[1,3]dioxolo[4,5-b:4',5'-d]pyran-5-yl)meth­oxy]meth­

In the title compound, C27H30N4O6·H2O, the two dioxolo rings are in envelope conformations, while the pyran ring is in a twisted-boat conformation. The pyradizine ring is oriented at dihedral angles of 9.23 (6) and 12.98 (9)° with respect to the pyridine rings, while the dihedral angle between the two pyridine rings is 13.45 (10)°. In the crystal, O—Hwater⋯Opyran, O—Hwater⋯Ometh­oxy­meth­yl and O—Hwater⋯Npyridazine hydrogen bonds link the mol­ecules into chains along [010]. In addition, weak C—Hdioxolo⋯Odioxolo hydrogen bonds and a weak C—Hmeth­oxy­meth­yl⋯π inter­action complete the three-dimensional structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (55.7%), H⋯C/C⋯H (14.6%), H⋯O/O⋯H (14.5%) and H⋯N/N⋯H (9.6%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Electrochemical measurements are also reported.




met

Crystal structure of (15,20-bis­(2,3,4,5,6-penta­fluoro­phen­yl)-5,10-{(pyridine-3,5-di­yl)bis­[(sulfane­diyl­methyl­ene)[1,1'-biphen­yl]-4',2-di­yl]}porph­yrin­ato)nickel(II) di­chloro

The crystal structure of the title compound, [Ni(C63H31F10N5S2)]·xCH2Cl2 (x > 1/2), consists of Ni–porphyrin complexes that are located in general positions and di­chloro­methane solvent mol­ecules that are disordered around centers of inversion. The NiII ions are in a square-pyramidal (CN5) coordination, with four porphyrin N atoms in the equatorial and a pyridine N atom in the apical position and are shifted out of the porphyrine N4 plane towards the coordinating pyridine N atom. The pyridine substituent is not exactly perpendicular to the N4 plane with an angle of inter­section between the planes planes of 80.48 (6)°. The di­chloro­methane solvent mol­ecules are hydrogen bonded to one of the four porphyrine N atoms. Two complexes are linked into dimers by two symmetry-equivalent C—H⋯S hydrogen bonds. These dimers are closely packed, leading to cavities in which additional di­chloro­methane solvent mol­ecules are embedded. These solvent mol­ecules are disordered and because no reasonable split model was found, the data were corrected for disordered solvent using the PLATON SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18].




met

(3,5-Di­methyl­adamantan-1-yl)ammonium methane­sulfonate (memanti­nium mesylate): synthesis, structure and solid-state properties

The asymmetric unit of the title compound, C12H22N+·CH3O3S−, consists of three (3,5-di­methyl­adamantan-1-yl)ammonium cations, C12H22N+, and three methane­sulfonate anions, CH3O3S−. In the crystal, the cations and anions associate via N—H⋯O hydrogen bonds into layers, parallel to the (001) plane, which include large supra­molecular hydrogen-bonded rings.




met

The crystal structures of {LnCu5}3+ (Ln = Gd, Dy and Ho) 15-metallacrown-5 complexes and a reevaluation of the isotypic EuIII analogue

Three new isotypic heteropolynuclear complexes, namely penta­aqua­carbonato­penta­kis­(glycinehydroxamato)nitrato­penta­copper(II)lanthanide(III) x-hydrate, [LnCu5(GlyHA)5(CO3)(NO3)(H2O)5]·xH2O (GlyHA2− is glycine­hydrox­amate, N-hy­droxy­glycinamidate or amino­aceto­hydroxamate, C2H4N2O22−), with lanthanide(III) (LnIII) = gadolinium (Gd, 1, x = 3.5), dysprosium (Dy, 2, x = 3.28) and holmium (Ho, 3, x = 3.445), within a 15-metallacrown-5 class were obtained on reaction of lanthanide(III) nitrate, copper(II) acetate and sodium glycinehydroxamate. Complexes 1–3 contain five copper(II) ions and five bridging GlyHA2− anions, forming a [CuGlyHA]5 metallamacrocyclic core. The LnIII ions are coordinated to the metallamacrocycle through five O-donor hydroxamates. The electroneutrality of complexes 1–3 is achieved by a bidentate carbonate anion coordinated to the LnIII ion and a monodentate nitrate anion coordinated apically to one of the copper(II) ions of the metallamacrocycle. The lattice parameters of complexes 1–3 are similar to those previously reported for an EuIII–CuII 15-metallacrown-5 complex with glycine­hydroxamate of proposed composition [EuCu5(GlyHA)5(OH)(NO3)2(H2O)4]·3.5H2O [Stemmler et al. (1999). Inorg. Chem. 38, 2807–2817]. High-quality X-ray data obtained for 1–3 have allowed a re-evaluation of the X-ray data solution proposed earlier for the EuCu5 complex and suggest that the formula is actually [EuCu5(GlyHA)5(CO3)(NO3)(H2O)5]·3.5H2O.




met

2-Methyl-4-(4-nitro­phen­yl)but-3-yn-2-ol: crystal structure, Hirshfeld surface analysis and computational chemistry study

The di-substituted acetyl­ene residue in the title compound, C11H11NO3, is capped at either end by di-methyl­hydroxy and 4-nitro­benzene groups; the nitro substituent is close to co-planar with the ring to which it is attached [dihedral angle = 9.4 (3)°]. The most prominent feature of the mol­ecular packing is the formation, via hy­droxy-O—H⋯O(hy­droxy) hydrogen bonds, of hexa­meric clusters about a site of symmetry overline{3}. The aggregates are sustained by 12-membered {⋯OH}6 synthons and have the shape of a flattened chair. The clusters are connected into a three-dimensional architecture by benzene-C—H⋯O(nitro) inter­actions, involving both nitro-O atoms. The aforementioned inter­actions are readily identified in the calculated Hirshfeld surface. Computational chemistry indicates there is a significant energy, primarily electrostatic in nature, associated with the hy­droxy-O—H⋯O(hy­droxy) hydrogen bonds. Dispersion forces are more important in the other identified but, weaker inter­molecular contacts.




met

Crystal structure of tetra-μ-acetato-bis­[(5-amino-2-methyl­sulfanyl-1,3,4-thia­diazole-κN1)copper(II)]

The reaction of 2-methyl­thio-5-amino-1,3,4-thia­diazole (Me-SNTD; C3H5N3S2) with copper(II) acetate monohydrate [Cu(OAc)2·H2O; C4H8CuO5] resulted in the formation of the title binuclear compound, [Cu2(C2H3O2)4(C3H5N3S2)2] or [Cu2(OAc)4(Me-SNTD)2]. The structure has triclinic (P overline{1}) symmetry with a crystallographic inversion centre located at the midpoint of the line connecting the Cu atoms in the dimer. These two Cu atoms of the dimer [Cu⋯Cu = 2.6727 (6) Å] are held together by four carboxyl­ate groups. Each Cu atom is further coordinated to the N atom of an Me-SNTD mol­ecule and exhibits a Jahn–Teller-distorted octa­hedral geometry. The dimers are connected into infinite chains by hydrogen bonds between the NH (Me-SNTD) and the carboxyl­ate groups of neighbouring mol­ecules, generating an R22(12) ring motif. The mol­ecules are further linked by C—H⋯π inter­actions between the thia­diazole rings and the methyl groups of the acetate units.




met

Six 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines: similar mol­ecular structures but different patterns of supra­molecular assembly

Six new 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines have been prepared, using coupling reactions between benzoic acids and N-(4-meth­oxy­phen­yl)piperazine. There are no significant hydrogen bonds in the structure of 1-benzoyl-4-(4-meth­oxy­phen­yl)piperazine, C18H20N2O2, (I). The mol­ecules of 1-(2-fluoro­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19FN2O2, (II), are linked by two C—H⋯O hydrogen bonds to form chains of rings, which are linked into sheets by an aromatic π–π stacking inter­action. 1-(2-Chloro­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19ClN2O2, (III), 1-(2-bromo­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19BrN2O2, (IV), and 1-(2-iodo­benzo­yl)-4-(4-meth­oxyphen­yl)piperazine, C18H19IN2O2, (V), are isomorphous, but in (III) the aroyl ring is disordered over two sets of atomic sites having occupancies of 0.942 (2) and 0.058 (2). In each of (III)–(V), a combination of two C—H⋯π(arene) hydrogen bonds links the mol­ecules into sheets. A single O—H⋯O hydrogen bond links the mol­ecules of 1-(2-hy­droxy­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H20N2O3, (VI), into simple chains. Comparisons are made with the structures of some related compounds.




met

Crystal structure and Hirshfeld surface analysis of a new di­thio­glycoluril: 1,4-bis­(4-meth­oxy­phen­yl)-3a-methyl­tetra­hydro­imidazo[4,5-d]imidazole-2,5(1H,3H)-di­thione

In the title di­thio­glycoluril derivative, C19H20N4O3S2, there is a difference in the torsion angles between the thio­imidazole moiety and the meth­oxy­phenyl groups on either side of the mol­ecule [C—N—Car—Car = 116.9 (2) and −86.1 (3)°, respectively]. The N—C—N bond angle on one side of the di­thio­glycoluril moiety is slightly smaller compared to that on the opposite side, [110.9 (2)° cf. 112.0 (2)°], probably as a result of the steric effect of the methyl group. In the crystal, N—H⋯S hydrogen bonds link adjacent mol­ecules to form chains propagating along the c-axis direction. The chains are linked by C—H⋯S hydrogen bonds, forming layers parallel to the bc plane. The layers are then linked by C—H⋯π inter­actions, leading to the formation of a three-dimensional supra­molecular network. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to investigate the mol­ecular inter­actions in the crystal.




met

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 4-[(prop-2-en-1-yl­oxy)meth­yl]-3,6-bis­(pyridin-2-yl)pyridazine

The title compound, C18H16N4O, consists of a 3,6-bis­(pyridin-2-yl)pyridazine moiety linked to a 4-[(prop-2-en-1-yl­oxy)meth­yl] group. The pyridine-2-yl rings are oriented at a dihedral angle of 17.34 (4)° and are rotated slightly out of the plane of the pyridazine ring. In the crystal, C—HPyrd⋯NPyrdz (Pyrd = pyridine and Pyrdz = pyridazine) hydrogen bonds and C—HPrp­oxy⋯π (Prp­oxy = prop-2-en-1-yl­oxy) inter­actions link the mol­ecules, forming deeply corrugated layers approximately parallel to the bc plane and stacked along the a-axis direction. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (48.5%), H⋯C/C⋯H (26.0%) and H⋯N/N⋯H (17.1%) contacts, hydrogen bonding and van der Waals inter­actions being the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HPyrd⋯NPyrdz hydrogen-bond energy is 64.3 kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




met

Syntheses and crystal structures of 2-methyl-1,1,2,3,3-penta­phenyl-2-sila­propane and 2-methyl-1,1,3,3-tetra­phenyl-2-silapropan-2-ol

The sterically hindered silicon compound 2-methyl-1,1,2,3,3-penta­phenyl-2-sila­propane, C33H30Si (I), was prepared via the reaction of two equivalents of di­phenyl­methyl­lithium (benzhydryllithium) and di­chloro­methyl­phenyl­silane. This bis­benzhydryl-substituted silicon compound was then reacted with tri­fluoro­methane­sulfonic acid, followed by hydrolysis with water to give the silanol 2-methyl-1,1,3,3-tetra­phenyl-2-silapropan-2-ol, C27H26OSi (II). Key geometric features for I are the Si—C bond lengths that range from 1.867 (2) to 1.914 (2) Å and a τ4 descriptor for fourfold coordination around the Si atom of 0.97 (indicating a nearly perfect tetra­hedron). Key geometric features for compound II include Si—C bond lengths that range from 1.835 (4) to 1.905 (3) Å, a Si—O bond length of 1.665 (3) Å, and a τ4 descriptor for fourfold coordination around the Si atom of 0.96. In compound II, there is an intra­molecular C—H⋯O hydrogen bond present. In the crystal of I, mol­ecules are linked by two pairs of C—H⋯π inter­actions, forming dimers that are linked into ribbons propagating along the b-axis direction. In the crystal of II, mol­ecules are linked by C—H⋯π and O—H⋯π inter­actions that result in the formation of ribbons that run along the a-axis direction.




met

The fumarate salts of the N-isopropyl-N-methyl derivatives of DMT and psilocin

The solid-state structures of the salts of two substituted tryptamines, namely N-isopropyl-N-methyl­tryptaminium (MiPT) fumarate {systematic name: [2-(1H-indol-3-yl)eth­yl](meth­yl)propan-2-yl­aza­nium 3-carb­oxy­prop-2-enoate}, C14H21N2+·C4H3O4−, and 4-hy­droxy-N-isopropyl-N-methyl­tryptaminium (4-HO-MiPT) fumarate monohydrate {systematic name: [2-(4-hy­droxy-1H-indol-3-yl)eth­yl](meth­yl)propan-2-yl­aza­nium 3-carb­oxy­prop-2-enoate monohydrate}, C14H21N2O+·C4H3O4−·H2O, are reported. Both salts possess a proton­ated tryptammonium cation and a 3-carb­oxy­acrylate (hydrogen fumarate) anion in the asymmetric unit; the 4-HO-MiPT structure also contains a water mol­ecule of crystallization. Both cations feature disorder of the side chain over two orientations, in a 0.630 (3):0.370 (3) ratio for MiPT and a 0.775 (5):0.225 (5) ratio for 4-HO-MiPT. In both extended structures, N—H⋯O and O—H⋯O hydrogen bonds generate infinite two-dimensional networks.




met

Crystal structure of (E)-3-(2-hy­droxy-4-methyl­phen­yl)-1-(2,4,6-tri­meth­oxy­phen­yl)prop-2-en-1-one

The title chalcone derivative, C19H20O5, adopts a trans configuration with respect to the olefinic C=C double bond. The 2-hy­droxy-4-methyl­phenyl ring is coplanar with the attached enone bridge [torsion angle = −179.96 (14)°], where this plane is nearly perpendicular to the 2,4,6-tri­meth­oxy­phenyl ring [dihedral angle = 75.81 (8)°]. In the crystal, mol­ecules are linked into chains propagating along [010] by an O—H⋯O hydrogen bond. These chains are further connected into centrosymmetric dimer chains via weak C—H⋯O inter­actions. The conformations of related chalcone derivatives are surveyed and all of these structures adopt a skeleton with two almost orthogonal aromatic rings.




met

Absolute structure of (3aS,5S,7aS,7bS,9aR,10R,12aR,12bS)-7b-hy­droxy-4,4,7a,9a,12a-penta­methyl-10-[(2'R)-6-methyl­heptan-2-yl]-2,8,9-trioxo­octa­deca­hydro­benzo[d]indeno­[4,5-b]azepin-5-yl acetate from 62-year-old

The structure of the title compound, C32H51NO6, was determined from 62-year-old crystals at room temperature and refined with 100 K data in a monoclinic (C2) space group. This compound with a triterpenoid structure, now confirmed by this study, played an important role in the determination of the structure of lanosterol. The mol­ecules pack in linear O—H⋯O hydrogen-bonded chains along the short axis (b), while parallel chains display weak van der Waals inter­actions that explain the needle-shaped crystal morphology. The structure exhibits disorder of the flexible methyl­heptane chain at one end of the main mol­ecule with a small void around it. Crystals of the compounds were resistant to data collection for decades with the available cameras and Mo Kα radiation single-crystal diffractometer in our laboratory until a new instrument with Cu Kα radiation operating at 100 K allowed the structure to be solved and refined.




met

Synthesis, characterization, crystal structure and supra­molecularity of ethyl (E)-2-cyano-3-(3-methyl­thio­phen-2-yl)acrylate and a new polymorph of ethyl (E)-2-cyano-3-(thio­phen-2-yl)acrylate

The synthesis, crystal structure and structural motif of two thio­phene-based cyano­acrylate derivatives, namely, ethyl (E)-2-cyano-3-(3-methyl­thio­phen-2-yl)acrylate (1), C11H11NO2S, and ethyl (E)-2-cyano-3-(thio­phen-2-yl)acrylate (2), C10H9NO2S, are reported. Derivative 1 crystallized with two independent molecules in the asymmetric unit, and derivative 2 represents a new monoclinic (C2/m) polymorph. The mol­ecular conformations of 1 and the two polymorphs of 2 are very similar, as all non-H atoms are planar except for the methyl of the ethyl groups. The inter­molecular inter­actions and crystal packing of 1 and 2 are described and compared with that of the reported monoclinic (C2/m) polymorph of derivative 2 [Castro Agudelo et al. (2017). Acta Cryst. E73, 1287–1289].




met

Crystal structure of tetra­methyl­ammonium 1,1,7,7-tetra­cyano­hepta-2,4,6-trienide

The title compound, C4H12N+·C11H5N4−, contains one tetra­methyl­ammonium cation and one 1,1,7,7-tetra­cyano­hepta-2,4,6-trienide anion in the asymmetric unit. The anion is in an all-trans conjugated C=C bonds conformation. Two terminal C(CN)2 di­nitrile moieties are slightly twisted from the polymethine main chain to which they are attached [C(CN)2/C5 dihedral angles = 6.1 (2) and 7.1 (1)°]. The C—C bond distances along the hepta­dienyl chain vary in the narrow range 1.382 (2)–1.394 (2) Å, thus indicating the significant degree of conjugation. In the crystal, the anions are linked into zigzag chains along the [10overline{1}] direction by C—H⋯N(nitrile) short contacts. The anti­parallel chains stack along the [110] direction with alternating separations between the neighboring anions in stacks of 3.291 and 3.504 Å. The C—H⋯N short contacts and stacking inter­actions combine to link the anions into layers parallel to the (overline{1}01) plane and separated by columns of tetra­methyl­ammonium cations.




met

Crystal structure, Hirshfeld surface analysis and computational studies of 5-[(prop-2-en-1-yl)sulfan­yl]-1-[2-(tri­fluoro­meth­yl)phen­yl]-1H-tetra­zole

The title compound, C11H9F3N4S, was synthesized from 2-(tri­fluoro­meth­yl)aniline by a multi-step reaction. It crystallizes in the non-centrosymmetric space group Pna21, with one mol­ecule in the asymmetric unit, and is constructed from a pair of aromatic rings [2-(tri­fluoro­meth­yl)phenyl and tetra­zole], which are twisted by 76.8 (1)° relative to each other because of significant steric hindrance of the tri­fluoro­methyl group at the ortho position of the benzene ring. In the crystal, very weak C—H⋯N and C—H⋯F hydrogen bonds and aromatic π–π stacking inter­actions link the mol­ecules into a three-dimensional network. To further analyse the inter­molecular inter­actions, a Hirshfeld surface analysis, as well as inter­action energy calculations, were performed.




met

Crystal structure and Hirshfeld surface analysis of 4-(4-methyl­benz­yl)-6-phenyl­pyridazin-3(2H)-one

In this paper, we describe the synthesis of a new di­hydro-2H-pyridazin-3-one derivative. The mol­ecule, C18H16N2O, is not planar; the benzene and pyridazine rings are twisted with respect to each other, making a dihedral angle of 11.47 (2)°, and the toluene ring is nearly perpendicular to the pyridazine ring, with a dihedral angle of 89.624 (1)°. The mol­ecular conformation is stabilized by weak intra­molecular C—H⋯N contacts. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into inversion dimers with an R22(8) ring motif. The inter­molecular inter­actions were investigated using Hirshfeld surface analysis and two-dimensional (2D) fingerprint plots, revealing that the most important contributions for the crystal packing are from H⋯H (56.6%), H⋯C/C⋯H (22.6%), O⋯H/H⋯O (10.0%) and N⋯C/C⋯N (3.5%) inter­actions.




met

The crystal structures and Hirshfeld surface analyses of four 3,5-diacetyl-2-methyl-2,3-di­hydro-1,3,4-thia­diazol-2-yl derivatives

The title compounds, 4-(5-acetamido-3-acetyl-2-methyl-2,3-di­hydro-1,3,4-thia­diazol-2-yl)phenyl benzoate, C20H19N3O4S (I), 4-(5-acetamido-3-acetyl-2-methyl-2,3-di­hydro-1,3,4-thia­diazol-2-yl)phenyl isobutyrate 0.25-hydrate, C17H21N3O4S·0.25H2O (II), 4-(5-acetamido-3-acetyl-2-methyl-2,3-di­hydro-1,3,4-thia­diazol-2-yl)phenyl propionate, C16H19N3O4S (III) and 4-(5-acetamido-3-acetyl-2-methyl-2,3-di­hydro-1,3,4-thia­diazol-2-yl)phenyl cinnamate chloro­form hemisolvate, C22H21N3O4S·0.5CHCl3 (IV), all crystallize with two independent mol­ecules (A and B) in the asymmetric unit in the triclinic Poverline{1} space group. Compound II crystallizes as a quaterhydrate, while compound IV crystallizes as a chloro­form hemisolvate. In compounds I, II, III (mol­ecules A and B) and IV (mol­ecule A) the five-membered thia­diazole ring adopts an envelope conformation, with the tetra­substituted C atom as the flap. In mol­ecule B of IV this ring is flat (r.m.s. deviation 0.044 Å). The central benzene ring is in general almost normal to the mean plane of the thia­diazole ring in each mol­ecule, with dihedral angles ranging from 75.8 (1) to 85.5 (2)°. In the crystals of all four compounds, the A and B mol­ecules are linked via strong N—H⋯O hydrogen bonds and generate centrosymmetric four-membered R44(28) ring motifs. There are C—H⋯O hydrogen bonds present in the crystals of all four compounds, and in I and II there are also C—H⋯π inter­actions present. The inter­molecular contacts in the crystals of all four compounds were analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots.




met

The structure and Hirshfeld surface analysis of the salt 3-methacryl­amido-N,N,N-tri­methyl­propan-1-aminium 2-acryl­amido-2-methyl­propane-1-sulfonate

The title salt, C10H21N2O+·C7H12NO4S−, comprises a 3-methacryl­amido-N,N,N-tri­methyl­propan-1-aminium cation and a 2-acryl­amido-2-methyl­propane-1-sulfonate anion. The salt crystallizes with two unique cation–anion pairs in the asymmetric unit of the ortho­rhom­bic unit cell. The crystal studied was an inversion twin with a 0.52 (4):0.48 (4) domain ratio. In the crystal, the cations and anions stack along the b-axis direction and are linked by an extensive series of N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network. Hirshfeld surface analysis was carried out on both the asymmetric unit and the two individual salts. The contribution of inter­atomic contacts to the surfaces of the individual cations and anions are also compared.




met

Crystal structures and Hirshfeld surface analyses of (E)-N'-benzyl­idene-2-oxo-2H-chromene-3-carbo­hydrazide and the disordered hemi-DMSO solvate of (E)-2-oxo-N'-(3,4,5-trimeth­oxybenzyl­idene)-2H-chromene-3-carbohydrazide: lattice ene

The crystal structures of the disordered hemi-DMSO solvate of (E)-2-oxo-N'-(3,4,5-tri­meth­oxy­benzyl­idene)-2H-chromene-3-carbohydrazide, C20H18N2O6·0.5C2H6OS, and (E)-N'-benzyl­idene-2-oxo-2H-chromene-3-carbohydrazide, C17H12N2O3 (4: R = C6H5), are discussed. The non-hydrogen atoms in compound [4: R = (3,4,5-MeO)3C6H2)] exhibit a distinct curvature, while those in compound, (4: R = C6H5), are essential coplanar. In (4: R = C6H5), C—H⋯O and π–π intra­molecular inter­actions combine to form a three-dimensional array. A three-dimensional array is also found for the hemi-DMSO solvate of [4: R = (3,4,5-MeO)3C6H2], in which the mol­ecules of coumarin are linked by C—H⋯O and C—H⋯π inter­actions, and form tubes into which the DMSO mol­ecules are cocooned. Hirshfeld surface analyses of both compounds are reported, as are the lattice energy and inter­molecular inter­action energy calculations of compound (4: R = C6H5).




met

Crystal structure of (1S,2R)-2-[(3R,4S)-3-methyl-4-phenyl-1,2,3,4-tetra­hydro­isoquinolin-2-yl]-1,2-di­phenyl­ethanol

The synthesis and crystal structure of the title compound, C30H29NO, are described. This compound is a member of the chiral di­hydro­iso­quinoline-derived family, used as building blocks for functional materials and as source of chirality in asymmetric synthesis, and was isolated as one of two diastereomeric β-amino alcohols, the title mol­ecule being found to be the (S,R) diastereoisomer. In the crystal, mol­ecules are packed in a herringbone manner parallel to (103) and (10overline{3}) via weak C—H⋯O and C—H⋯π(ring) inter­actions. Hirshfeld surface analysis showed that the surface contacts are predominantly H⋯H inter­actions (ca 75%). The crystal studied was refined as a two-component inversion twin.




met

Crystal structure and Hirshfeld surface analysis of 2-hy­droxy-7-meth­oxy-1,8-bis­(2,4,6-tri­chloro­benzo­yl)naphthalene

In the title compound, C25H12Cl6O4, the two carbonyl groups are oriented in a same direction with respect to the naphthalene ring system and are situated roughly parallel to each other, while the two 2,4,6-tri­chloro­benzene rings are orientated in opposite directions with respect to the naphthalene ring system: the carbonyl C—(C=O)—C planes subtend dihedral angles of 45.54 (15) and 30.02 (15)° to the naphthalene ring system are. The dihedral angles formed by the carbonyl groups and the benzene rings show larger differences, the C=O vectors being inclined to the benzene rings by 46.39 (16) and 79.78 (16)°. An intra­molecular O—H⋯O=C hydrogen bond forms an S(6) ring motif. In the crystal, no effective inter­molecular hydrogen bonds are found; instead, O⋯Cl and C⋯Cl close contacts are observed along the 21 helical-axis direction. The Hirshfeld surface analysis reveals several weak interactions, the major contributor being Cl⋯H/H⋯Cl contacts.




met

2-{(1E)-[(E)-2-(2,6-Di­chloro­benzyl­idene)hydrazin-1-yl­idene]meth­yl}phenol: crystal structure, Hirshfeld surface analysis and computational study

The title Schiff base compound, C14H10Cl2N2O, features an E configuration about each of the C=N imine bonds. Overall, the mol­ecule is approximately planar with the dihedral angle between the central C2N2 residue (r.m.s. deviation = 0.0371 Å) and the peripheral hy­droxy­benzene and chloro­benzene rings being 4.9 (3) and 7.5 (3)°, respectively. Nevertheless, a small twist is evident about the central N—N bond [the C—N—N—C torsion angle = −172.7 (2)°]. An intra­molecular hy­droxy-O—H⋯N(imine) hydrogen bond closes an S(6) loop. In the crystal, π–π stacking inter­actions between hy­droxy- and chloro­benzene rings [inter-centroid separation = 3.6939 (13) Å] lead to a helical supra­molecular chain propagating along the b-axis direction; the chains pack without directional inter­actions between them. The calculated Hirshfeld surfaces point to the importance of H⋯H and Cl⋯H/H⋯Cl contacts to the overall surface, each contributing approximately 29% of all contacts. However, of these only Cl⋯H contacts occur at separations less than the sum of the van der Waals radii. The aforementioned π–π stacking inter­actions contribute 12.0% to the overall surface contacts. The calculation of the inter­action energies in the crystal indicates significant contributions from the dispersion term.




met

Crystal structure of 4-bromo-N-[(3,6-di-tert-butyl-9H-carbazol-1-yl)methyl­idene]aniline

In the title compound, C27H29BrN2, the carbazole ring system is essentially planar, with an r.m.s. deviation of 0.0781 (16) Å. An intra­molecular N—H⋯N hydrogen bond forms an S(6) ring motif. One of the tert-butyl substituents shows rotational disorder over two sites with occupancies of 0.592 (3) and 0.408 (3). In the crystal, two mol­ecules are associated into an inversion dimer through a pair of C—H⋯π inter­actions. The dimers are further linked by another pair of C—H⋯π inter­actions, forming a ribbon along the c-axis direction. A C—H⋯π inter­action involving the minor disordered component and the carbazole ring system links the ribbons, generating a network sheet parallel to (100).




met

Crystal structure and mol­ecular Hirshfeld surface analysis of acenaphthene derivatives obeying the chlorine–methyl exchange rule

Instances of crystal structures that remain isomorphous in spite of some minor changes in their respective mol­ecules, such as change in a substituent atom/group, can provide insights into the factors that govern crystal packing. In this context, an accurate description of the crystal structures of an isomorphous pair that differ from each other only by a chlorine–methyl substituent, viz. 5''-(2-chloro­benzyl­idene)-4'-(2-chloro­phen­yl)-1'-methyl­dispiro­[acenaphthene-1,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione, C34H28Cl2N2O2, (I), and its analogue 1'-methyl-5''-(2-methyl­benzyl­idene)-4'-(2-methyl­phen­yl)di­spiro­[acenaphthene-1,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione, C36H34N2O2, (II), is presented. While there are two C—H⋯O weak inter­molecular inter­actions present in both (I) and (II), the change of substituent from chlorine to methyl has given rise to an additional weak C—H⋯O inter­molecular inter­action that is relatively stronger than the other two. However, the presence of the stronger C—H⋯O inter­action in (II) has not disrupted the validity of the chloro-methyl exchange rule. Details of the crystal structures and Hirshfeld analyses of the two compounds are presented.




met

Crystal structure of (15,20-bis­(2,3,4,5,6-penta­fluoro­phen­yl)-5,10-{(4-methyl­pyridine-3,5-di­yl)bis­[(sulfanediyl­methyl­ene)[1,1'-biphen­yl]-4',2-di­yl]}porphyrinato)nickel(II) di­chloro

The title compound, [Ni(C64H33F10N5S2)]·xCH2Cl2, consists of discrete NiII porphyrin complexes, in which the five-coordinate NiII cations are in a distorted square-pyramidal coordination geometry. The four porphyrin nitro­gen atoms are located in the basal plane of the pyramid, whereas the pyridine N atom is in the apical position. The porphyrin plane is strongly distorted and the NiII cation is located above this plane by 0.241 (3) Å and shifted in the direction of the coordinating pyridine nitro­gen atom. The pyridine ring is not perpendicular to the N4 plane of the porphyrin moiety, as observed for related compounds. In the crystal, the complexes are linked via weak C—H⋯F hydrogen bonds into zigzag chains propagating in the [001] direction. Within this arrangement cavities are formed, in which highly disordered di­chloro­methane solvate mol­ecules are located. No reasonable structural model could be found to describe this disorder and therefore the contribution of the solvent to the electron density was removed using the SQUEEZE option in PLATON [Spek (2015). Acta Cryst. C71, 9–18].




met

3,3-Bis(2-hy­droxy­eth­yl)-1-(4-methyl­benzoyl)thio­urea: crystal structure, Hirshfeld surface analysis and computational study

In the title tri-substituted thio­urea derivative, C13H18N2O3S, the thione-S and carbonyl-O atoms lie, to a first approximation, to the same side of the mol­ecule [the S—C—N—C torsion angle is −49.3 (2)°]. The CN2S plane is almost planar (r.m.s. deviation = 0.018 Å) with the hy­droxy­ethyl groups lying to either side of this plane. One hy­droxy­ethyl group is orientated towards the thio­amide functionality enabling the formation of an intra­molecular N—H⋯O hydrogen bond leading to an S(7) loop. The dihedral angle [72.12 (9)°] between the planes through the CN2S atoms and the 4-tolyl ring indicates the mol­ecule is twisted. The experimental mol­ecular structure is close to the gas-phase, geometry-optimized structure calculated by DFT methods. In the mol­ecular packing, hydroxyl-O—H⋯O(hydrox­yl) and hydroxyl-O—H⋯S(thione) hydrogen bonds lead to the formation of a supra­molecular layer in the ab plane; no directional inter­actions are found between layers. The influence of the specified supra­molecular inter­actions is apparent in the calculated Hirshfeld surfaces and these are shown to be attractive in non-covalent inter­action plots; the inter­action energies point to the important stabilization provided by directional O—H⋯O hydrogen bonds.




met

The crystal structure of the zwitterionic co-crystal of 2,4-di­chloro-6-{[(3-hy­droxy­prop­yl)azaniumyl]­meth­yl}phenolate and 2,4-di­chloro­phenol

The title compound, C10H13Cl2NO2·C6H4Cl2O, was formed from the incomplete Mannich condensation reaction of 3-amino­propan-1-ol, formaldehyde and 2,4-di­chloro­phenol in methanol. This resulted in the formation of a co-crystal of the zwitterionic Mannich base, 2,4-di­chloro-6-{[(3-hy­droxy­prop­yl)azaniumyl]­meth­yl}phenolate and the unreacted 2,4-di­chloro­phenol. The compound crystallizes in the monoclinic crystal system (in space group Cc) and the asymmetric unit contains a mol­ecule each of the 2,4-di­chloro­phenol and 2,4-di­chloro-6-{[(3-hy­droxy­prop­yl)azaniumyl]­meth­yl}phenolate. Examination of the crystal structure shows that the two components are clearly linked together by hydrogen bonds. The packing patterns are most inter­esting along the b and the c axes, where the co-crystal in the unit cell packs in a manner that shows alternating aromatic di­chloro­phenol fragments and polar hydrogen-bonded channels. The 2,4-di­chloro­phenol rings stack on top of one another, and these are held together by π–π inter­actions. The crystal studied was refined as an inversion twin.




met

The crystal structure of ((cyclo­hexyl­amino){(Z)-2-[(E)-5-meth­oxy-3-nitro-2-oxido­benzyl­idene-κO]hydrazin-1-yl­idene-κN2}methane­thiol­ato-κS)(dimethyl sulfoxide-κS)platinum(II): a supra­molecular two-dimens

The PtII atom in the title complex, [Pt(C15H18N4O4S)(C2H6OS)], exists within a square-planar NS2O donor set provided by the N, S, O atoms of the di-anionic tridentate thio­semicarbazo ligand and a dimethyl sulfoxide S atom. The two chelate rings are coplanar, subtending a dihedral angle of 1.51 (7)°. The maximum deviation from an ideal square-planar geometry is seen in the five-membered chelate ring with an S—Pt—S bite angle of 96.45 (2)°. In the crystal, mol­ecules are linked via N—H⋯O, C—H⋯O, C—H⋯N and C—H⋯π inter­actions into two-dimensional networks lying parallel to the ab plane. The conformations of related cyclo­hexyl­hydrazine-1-carbo­thio­amide ligands are compared to that of the title compound.




met

Twelve 4-(4-meth­oxy­phen­yl)piperazin-1-ium salts containing organic anions: supra­molecular assembly in one, two and three dimensions

Twelve 4-(4-meth­oxy­phen­yl)piperazin-1-ium salts containing organic anions have been prepared and structurally characterized. The monohydrated benzoate, 4-fluoro­benzoate, 4-chloro­benzoate and 4-bromo­benzoate salts, C11H17N2O+·C7H5O2−·H2O (I), C11H17N2O+·C7H4FO2−·H2O (II), C11H17N2O+·C7H4ClO2−·H2O (III), and C11H17N2O+·C7H4BrO2−·H2O (IV), respectively, are isomorphous and all exhibit disorder in the 4-meth­oxy­phenyl unit: the components are linked by N—H⋯O and O—H⋯O hydrogen bond to form chains of rings. The unsolvated 2-hy­droxy­benzoate, pyridine-3-carboxyl­ate and 2-hy­droxy-3,5-di­nitro­benzoate salts, C11H17N2O+·C7H5O3− (V), C11H17N2O+·C6H4NO2− (VI) and C11H17N2O+·C7H3N2O7− (VII), respectively, are all fully ordered: the components of (V) are linked by multiple N—H⋯O hydrogen bonds to form a chain of rings; those of (VI) are linked into a three-dimensional framework by a combination of N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds and those of (VII), where the anion has a structure reminiscent of the picrate anion, are linked into a three-dimensional array by N—H⋯O and C—H⋯O hydrogen bonds. The hydrogensuccinate and hydrogenfumarate salts, C11H17N2O+·C4H5O4− (VIII) and C11H17N2O+·C4H3O3− (IX), respectively, are isomorphous, and both exhibit disorder in the anionic component: N—H⋯O and O—H⋯O hydrogen bonds link the ions into sheets, which are further linked by C—H⋯π(arene) inter­actions. The anion of the hydrogenmaleate salt, C11H17N2O+·C4H3O3− (X), contains a very short and nearly symmetrical O⋯H⋯O hydrogen bond, and N—H⋯O hydrogen bonds link the anions into chains of rings. The ions in the tri­chloro­acetate salt, C11H17N2O+·C2Cl3O2− (XI), are linked into simple chains by N—H⋯O hydrogen bonds. In the hydrated chloranilate salt, 2C11H17N2O+·C6Cl2O42−·2H2O (XII), which crystallizes as a non-merohedral twin, the anion lies across a centre of inversion in space group P21/n, and a combination of N—H⋯O and O—H⋯O hydrogen bonds generates complex sheets. Comparisons are made with the structures of some related compounds.




met

Crystal structure and Hirshfeld surface analysis of 2,2''',6,6'''-tetra­meth­oxy-3,2':5',3'':6'',3'''-quaterpyridine

In the title compound, C24H22N4O4, the four pyridine rings are tilted slightly with respect to each other. The dihedral angles between the inner and outer pyridine rings are 12.51 (8) and 9.67 (9)°, while that between inner pyridine rings is 20.10 (7)°. Within the mol­ecule, intra­molecular C—H⋯O and C—H⋯N contacts are observed. In the crystal, adjacent mol­ecules are linked by π–π stacking inter­actions between pyridine rings and weak C—H⋯π inter­actions between a methyl H atom and the centroid of a pyridine ring, forming a two-dimensional layer structure extending parallel to the ac plane. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (52.9%) and H⋯C/C⋯H (17.3%) contacts.




met

Crystal structure and Hirshfeld surface analysis of 3-(cyclo­propyl­meth­oxy)-4-(di­fluoro­meth­oxy)-N-(pyridin-2-ylmeth­yl)benzamide

The title compound, C18H18F2N2O3, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. They differ essentially in the orientation of the pyridine ring with respect to the benzene ring; these two rings are inclined to each other by 53.3 (2)° in mol­ecule A and by 72.9 (2)° in mol­ecule B. The 3-(cyclo­propyl­meth­oxy) side chain has an extended conformation in both mol­ecules. The two mol­ecules are linked by a pair of C—H⋯O hydrogen bonds and two C—H⋯π inter­actions, forming an A–B unit. In the crystal, this unit is linked by N—H⋯O hydrogen bonds, forming a zigzag –A–B–A–B– chain along [001]. The chains are linked by C—H⋯N and C—H⋯F hydrogen bonds to form layers parallel to the ac plane. Finally, the layers are linked by a third C—H⋯π inter­action, forming a three-dimensional structure. The major contributions to the Hirshfeld surface are those due to H⋯H contacts (39.7%), followed by F⋯H/H⋯F contacts (19.2%).




met

Crystal structure and Hirshfeld surface analysis of 2-[(1,3-benzoxazol-2-yl)sulfan­yl]-N-(2-meth­oxy­phen­yl)acetamide

In the title compound, C16H14N2O3S, the 1,3-benzoxazole ring system is essentially planar (r.m.s deviation = 0.004 Å) and makes a dihedral angle of 66.16 (17)° with the benzene ring of the meth­oxy­phenyl group. Two intra­molecular N—H⋯O and N—H⋯N hydrogen bonds occur, forming S(5) and S(7) ring motifs, respectively. In the crystal, pairs of C—H⋯O hydrogen bonds link the mol­ecules into inversion dimers with R22(14) ring motifs, stacked along the b-axis direction. The inversion dimers are linked by C—H⋯π and π–π-stacking inter­actions [centroid-to-centroid distances = 3.631 (2) and 3.631 (2) Å], forming a three-dimensional network. Two-dimensional fingerprint plots associated with the Hirshfeld surface show that the largest contributions to the crystal packing come from H⋯H (39.3%), C⋯H/H⋯C (18.0%), O⋯H/H⋯O (15.6) and S⋯H/H⋯S (10.2%) inter­actions.




met

In situ deca­rbonylation of N,N-di­methyl­formamide to form di­methyl­ammonium cations in the hybrid framework compound {[(CH3)2NH2]2[Zn{O3PC6H2(OH)2PO3}]}n

The title phospho­nate-based organic–inorganic hybrid framework, poly[bis(dimethylammonium) [(μ4-2,5-dihydroxybenzene-1,4-diphosphonato)zinc(II)]], {(C2H8N)2[Zn(C6H4O8P2)]}n, was formed unexpectedly when di­methyl­ammonium cations were formed from the in situ deca­rbonylation of the N,N-di­methyl­formamide solvent. The framework is built up from ZnO4 tetra­hedra and bridging di­phospho­nate tetra-anions to generate a three-dimensional network comprising [100] channels occupied by the (CH3)2NH2+ cations. Within the channels, an array of N—H⋯O hydrogen bonds help to establish the structure. In addition, intra­molecular O—H⋯O hydrogen bonds between the appended –OH groups of the phenyl ring and adjacent PO32− groups are observed.




met

Crystal structure, Hirshfeld surface analysis and physicochemical characterization of bis­[4-(di­methyl­amino)­pyridinium] di-μ-chlorido-bis[di­chlorido­mercurate(II)]

The title mol­ecular salt, (C7H11N2)2[Hg2Cl6], crystallizes with two 4-(di­methyl­amino)­pyridinium cations (A and B) and two half hexa­chlorido­dimercurate(II) anions in the asymmetric unit. The organic cations exhibit essentially the same features with an almost planar pyridyl ring (r.m.s. deviations of 0.0028 and 0.0109 Å), which forms an inclined dihedral angle with the dimethyamino group [3.06 (1) and 1.61 (1)°, respectively]. The di­methyl­amino groups in the two cations are planar, and the C—N bond lengths are shorter than that in 4-(di­methyl­amino)­pyridine. In the crystal, mixed cation–anion layers lying parallel to the (010) plane are formed through N—H⋯Cl hydrogen bonds and adjacent layers are linked by C—H⋯Cl hydrogen bonds, forming a three-dimensional network. The analyses of the calculated Hirshfeld surfaces confirm the relevance of the above inter­molecular inter­actions, but also serve to further differentiate the weaker inter­molecular inter­actions formed by the organic cations and inorganic anions, such as π–π and Cl⋯Cl inter­actions. The powder XRD data confirms the phase purity of the crystalline sample. Furthermore, the vibrational absorption bands were identified by IR spectroscopy and the optical properties were studied by using optical UV–visible absorption spectroscopy.




met

Crystal structure of tetra­kis­(tetra­hydro­furan-κO)bis­(tri­fluoro­methane­sulfonato-κO)iron(II)

The title compound, [Fe(CF3SO3)2(C4H8O)4], is octa­hedral with two tri­fluoro­methane­sulfonate ligands in trans positions and four tetra­hydro­furane mol­ecules in the equatorial plane. By the conformation of the ligands the complex is chiral in the crystal packing. The compound crystallizes in the Sohncke space group P212121 and is enanti­omerically pure. The packing of the mol­ecules is determined by weak C—H⋯O hydrogen bonds. The crystal studied was refined as a two-component inversion twin.