met

[4-(4-Meth­oxy­phen­yl)-8-oxo-3-(phenyl­selan­yl)spiro­[4.5]deca-3,6,9-trien-2-yl]methyl­cyanamide

The title compound, C25H22N2O2Se, crystallizes in the space group P21/c with one mol­ecule in the asymmetric unit. The compound was synthesized by the addition of phenyl­selenyl bromide to a cyanamide. The phenyl­selenyl portion and the cyano group, as well as the ketone functional group in the cyclo­hexa-2,5-dien-1-one portion of the structure, are disordered, with occupancy factors of 0.555 (14) and 0.445 (14).




met

Benzene-1,2-diaminium bis­(4-methyl­benzene-1-sulfonate)

The structure of the title salt, C6H10N22+·2C7H7O3S−, consists of a unique benzene-1,2-diaminium dication charge balanced by a pair of crystallographically independent 4-methyl­benzene-1-sulfonate anions. The cations and anions are inter­linked by several N—H⋯O hydrogen bonds.




met

5-Methyl-4-(5-methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)-2-phenyl-1H-pyrazol-3(2H)-one

The title compound, C20H18N4O2, known as bis­pyrazolone, was crystallized from dimethyl sulfoxide. The structure has ortho­rhom­bic (Pbca) symmetry at 150 K, and displays both intra- and inter­molecular hydrogen bonding through C—H⋯O and N—H⋯O contacts, respectively. None of the phenyl and pyrazolone rings in the mol­ecule are coplanar. The dihedral angle between the pyrazolone rings is 66.18 (5)°.




met

N-[(E)-Quinolin-2-yl­methyl­idene]-1,2,4-triazol-4-amine hemihydrate

The title hemihydrate, C12H9N5·0.5H2O, was isolated from the condensation reaction of quinoline-2-carbaldehyde with 4-amino-4H-1,2,4-triazole. The Schiff base mol­ecule adopts an E configuration about the C=N bond and is approximately planar, with a dihedral angle between the quinoline ring system and the 1,2,4-triazole ring of 12.2 (1)°. In the crystal, one water mol­ecule bridges two Schiff base mol­ecules via O—H⋯N hydrogen bonds. The Schiff base mol­ecules are inter­connected by π–π stacking inter­actions [centroid-centroid distances of 3.7486 (7) and 3.9003 (7) Å] into columns along [1overline{1}0].




met

(3S,5R,6S)-Di­phenyl­methyl 1-oxo-6-bromo­penicillanate

In the title compound, C21H20BrNO4S, a key inter­mediate in the synthesis of the widely used β-lactamase inhibitor tazobactam, the five-membered thia­zolidine ring adopts an envelope conformation and the four-membered azetidine ring is in a distorted planar conformation. The crystal structure features C—H⋯O hydrogen bonds and a weak C—H⋯π inter­action.




met

Hydro­nium bis­(tri­fluoro­methane­sulfon­yl)amide–18-crown-6 (1/1)

The structure of the title compound, H3O+·C2F6NO4S2−·C12H24O6 or [H3O+·C12H24O6][N(SO2CF3)2−], which is an ionic liquid with a melting point of 341–343 K, has been determined at 113 K. The asymmetric unit consists of two crystallographically independent 18-crown-6 mol­ecules, two hydro­nium ions and two bis­(tri­fluoro­methane­sulfon­yl)amide anions; each 18-crown-6 mol­ecule complexes with a hydro­nium ion. In one 18-crown-6 mol­ecule, a part of the ring exhibits conformational disorder over two sets of sites with an occupancy ratio of 0.533 (13):0.467 (13). One hydro­nium ion is complexed with the ordered 18-crown-6 mol­ecule via O—H⋯O hydrogen bonds with H2OH⋯OC distances of 1.90 (6)–2.19 (7) Å, and the other hydro­nium ion with the disordered crown mol­ecule with distances of 1.85 (6)–2.36 (6) Å. The hydro­nium ions are also linked to the anions via O—H⋯F hydrogen bonds. The crystal studied was found to be a racemic twin with a component ratio of 0.55 (13):0.45 (13).




met

2,2'-[Methyl­enebis(sulfanedi­yl)]bis­(pyridine 1-oxide)

The title compound, C11H10N2O2S2, crystallizes with one complete mol­ecule in the asymmetric unit. In the crystal, weak hydrogen bonding is observed between the N-oxide moieties and several C—H units.




met

1,4-Bis­(4-meth­oxy­phen­yl)naphthalene

The title naphthalene derivative, C24H20O2, features 4-methy­oxy-substituted benzene rings in the 1 and 4 positions of the naphthalene ring system. There are two crystallographically independent mol­ecules (A and B) in asymmetric unit. The independent mol­ecules have very similar conformations in which the naphthalene ring systems are only slightly bent, exhibiting dihedral angles between the constituent benzene rings of 3.76 (15) and 3.39 (15)° for A and B, respectively. The pendent 4-methyoxybenzene rings are splayed out of the plane through the naphthalene ring system to which they are connected [range of dihedral angles = 59.63 (13) to 67.09 (13)°]. In the crystal, the mol­ecular packing is consolidated by inter­molecular C—H⋯π inter­actions, leading to supra­molecular chains along the b axis. The chains assemble without directional inter­actions between them.




met

6-[(tert-Butyl­dimethyl­sil­yl)­oxy]-3-ethenyl-7-meth­oxy-4-[(tri­methyl­sil­yl)ethyn­yl]naphtho­[2,3-c]furan-1(3H)-one

The tricyclic core in the title compound, C26H34O4Si2, shows disorder of the furan ring and deviates slightly from planarity, with the largest displacement from the least-squares plane [0.166 (2) Å] for the major disordered part of the methine C atom. To this C atom the likewise disordered vinyl group is attached, lying nearly perpendicular to the tricyclic core. In the crystal, mutual C—H⋯π inter­actions between the methine group of the furan ring and the central ring of the tricyclic core of an adjacent mol­ecule lead to inversion-related dimers.




met

2-Amino­anilinium 4-methyl­benzene­sulfonate

In the extended structure of the title mol­ecular salt, C6H9N2+·C7H7O3S−, the cations and anions are linked by N—H⋯O hydrogen bonds to generate [010] chains.




met

[(1R*,3S*,4S*)-3-(2-Hy­droxy­benzo­yl)-1,2,3,4-tetra­hydro-1,4-ep­oxy­naphthalen-1-yl]methyl 4-nitro­benzoate

The relative stereo- and regiochemistry of the racemic title compound, C25H19NO7, were established from the crystal structure. The fused benzene ring forms dihedral angles of 77.3 (1) and 60.3 (1)° with the hy­droxy-substituted benzene ring and the nitro-substituted benzene ring, respectively. The dihedral angle between the hy­droxy-substituted benzene ring and the nitro-substituted benzene ring is 76.4 (1)°. An intra­molecular O—H⋯O hydrogen bond closes an S(6) ring. In the crystal, weak C—H⋯O hydrogen bonds connect the mol­ecules, forming layers parallel to (100). Within these layers, there are weak π–π stacking inter­actions with a ring centroid–ring centroid distance of 3.555 (1) Å.




met

Tris(1H-benzimidazol-2-ylmeth­yl)amine methanol tris­olvate

The structure of the tertiary amine tris­(1H-benzimidazol-2-ylmeth­yl)amine (C24H21N7, abbreviated ntb) has been previously reported twice as solvates, namely the monohydrate and the aceto­nitrile–methanol–water (1/0.5/1.5) solvate, both with the tripodal conformation formed via multiple hydrogen bonds. Now, we report the tri­methanol adduct, ntb·3CH3OH, where the amine has the stair conformation featuring one benzimidazole group oriented in the opposite direction from the other two. The asymmetric unit contains one-half amine, completed through the mirror plane m in space group Pmn21 to form the ntb mol­ecule, with the H atom for each imidazole moiety equally disordered between both N sites available in the imidazole ring. The asymmetric unit also contains one and a half methanol mol­ecules, one being placed in general position with the hy­droxy H atom disordered over two sites with occupancy ratio 1:1, while the other lies on the m mirror plane, and has thus its hy­droxy H atom disordered by symmetry. As in the previously reported solvates, all imine and amine groups of the ntb mol­ecules and the methanol mol­ecules are involved in N—H⋯O and O—H⋯N hydrogen bonds. In the title compound, however, the involved H atom is systematically a disordered H atom provided by an imidazole group or a methanol mol­ecule.




met

Bis(3-methyl-1-propyl-1H-imidazol-3-ium) bis­(4,6-disulfanidyl-4,6-disulfanyl­idene-1,2,3,5,4,6-tetra­thia­diphosphinane-κ3S2,S4,S6)nickel

The title salt, (PMIM)2[Ni(P2S8)2] (PMIM = 3-methyl-1-propyl-1H-imidazol-3-ium, C7H13N2+), consists of a nickel–thio­phosphate anion charge-balanced by a pair of crystallographically independent PMIM cations. It crystallizes in the monoclinic space group P21/n. The structure exhibits the known [Ni(P2S8)2]2− anion with two unique imidazolium cations in the asymmetric unit. Whereas one PMIM cation is well ordered, the other is disordered over two orientations with refined occupancies of 0.798 (2) and 0.202 (2). The salt was prepared directly from the elements in the ionic liquid [PMIM]CF3SO3. Whereas one of the PMIM cations is well behaved (it does not exhibit disorder even in the propyl side chain), the other is found in two overlapping positions. The refined occupancies for the two orientations are roughly 80:20. Here, too, there appears to be little disorder in the propyl arm.




met

[1–9-NαC]-Linusorb B3 (Cyclo­linopeptide A) dimethyl sulfoxide monosolvate

Crystals of the dimethyl sulfoxide (DMSO) solvate of [1–9-NαC]-linusorb B3 (Cyclo­linopeptide A; CLP-A; C57H84N9O9·C2H6OS), a cyclic polypeptide were obtained following peptide extraction and purification from flaxseed oil. There are four intramolecular N—H⋯O hydrogen bonds. In the crystal, the mol­ecules are linked in chains along the a axis by N—H⋯O hydrogen bonds. Each DMSO O atom accepts a hydrogen bond from an NH group at the Phe6 location in the CLP-A mol­ecule.




met

12,15-Dimethyl-8-oxa­tetra­cyclo­[8.8.0.02,7.011,16]octa­deca-1(18),2,4,6,11(16),12,14-heptaen-10-ol

In the title compound, C19H18O2, the pyran ring is in a half-chair conformation. The fused ring system comprising the benzene and cyclo­hexene rings is essentially planar (r.m.s. deviation = 0.053 Å) and forms a dihedral angle of 27.95 (6)° with the other benzene ring. In the crystal, O—H⋯O hydrogen bonds connect the mol­ecules into chains propagating along [001].




met

(E)-6-(Furan-2-yl­methyl­idene)-6,7,8,9-tetra­hydro­pyrido[2,1-b]quinazoline-11-thione

A quinazolinthione, C17H14N2OS, was synthesized by the condensation reaction of 6,7,8,9-tetra­hydro-11H-pyrido[2,1-b]quinazolin-11-thione with furfural. The mol­ecule crystallizes in the monoclinic system (Cc space group) and has an E configuration with respect to the exocyclic C=C bond. In the crystal, mol­ecules are linked through C—H⋯π(furan) inter­actions, forming zigzag chains propagating along the [001] direction.




met

7-Chloro-3-(4-methyl­benzene­sulfon­yl)pyrrolo[1,2-c]pyrimidine

In the title compound, C14H11ClN2O2S, the dihedral angle between the pyrrolo­[1,2-c]pyrimidine ring system (r.m.s. deviation = 0.008 Å) and the benzene ring is 80.2 (9)°. In the crystal, inversion dimers linked by pairs of C—H⋯O inter­actions generate R22(16) loops. Several aromatic π–π stacking inter­actions between the pyrrolo­[1,2-c]pyrimidine rings, as well as separately between the pyrrolo and pyrimidine groups [shortest centroid–centroid separation = 3.5758 (14) Å], help to consolidate the packing.




met

Trimethyl 4,4',4''-(ethene-1,1,2-tri­yl)tribenzoate

The title compound, C26H22O6, is formed as the major product from the reaction between syn-1,2-bis­(pinacolatoboron)-1,2-bis­(4-methyl­carb­oxy­phen­yl)ethene and excess methyl 4-iodo­benzoate in basic DMSO using a palladium catalyst at 80°C via Suzuki coupling followed by protodeboronation. Crystals were grown by slow evaporation of a hexa­nes solution at room temperature.




met

Crystal structure of the Al8Cr5-type inter­metallic Al7.85Cr5.16

An aluminium-deficient Al8Cr5-type inter­metallic with formula Al7.85Cr5.16 (octa­aluminium penta­chromium) was uncovered when high-pressure sinter­ing of a mixture with composition Al11Cr4 was carried out. Structure analysis reveals that there are three co-occupied positions with refined occupancy factors for Al atoms being 0.958, 0.772 and 1/2. The present phase is confirmed to be isotypic with the previously reported rhombohedral Al8Cr5 ordered phase [Bradley & Lu (1937). Z. Kristallogr. 96, 20–37] and structurally closely related to the disordered phases of rhombohedral Al16Cr9.5 and cubic Al8Cr5.




met

6-Methyl-4-{[4-(tri­methyl­sil­yl)-1H-1,2,3-triazol-1-yl]meth­yl}-2H-chromen-2-one

In the title compound, C16H19N3O2Si, the dihedral angle between the coumarin ring system (r.m.s. deviation = 0.031 Å) and the triazole ring is 73.81 (8)°. In the crystal, mol­ecules are linked into [010] chains by weak C—H⋯O inter­actions.




met

Diaquatetra­kis(μ-3-meth­oxy­benzoato-κ2O1:O1')dicopper(II)

The asymmetric unit of the binuclear title compound, [Cu2(C8H7O3)4(H2O)2], comprises two halves of diaquatetra­kis­(μ-3-meth­oxy­benzoato-κ2O1:O1')dicopper(II) units. The paddle-wheel structure of each complex is completed by application of inversion symmetry, with the inversion centre situated at the midpoint between two CuII atoms in each dimer. The two CuII atoms of each centrosymmetric dimer are bridged by four 3-meth­oxy­benzoate anions resulting in Cu⋯Cu separations of 2.5961 (11) and 2.6060 (12) Å, respectively. The square-pyramidal coordination sphere of each CuII atom is completed by an apical water mol­ecule. Inter­molecular O—H⋯O hydrogen bonds of weak nature link the complexes into layers parallel to (100). The three-dimensional network structure is accomplished by C—H⋯O hydrogen bonds inter­linking adjacent layers.




met

5-MeO-DALT: the freebase of N,N-diallyl-5-meth­oxy­tryptamine

The title compound {systematic name: N-[2-(5-meth­oxy-1H-indol-3-yl)eth­yl]-N-(prop-2-en-1-yl)prop-2-en-1-amine), C17H22N2O, has a single tryptamine mol­ecule in the asymmetric unit. The mol­ecules are linked by strong N—H⋯N hydrogen bonds into zigzag chains with graph-set notation C(7) along the [010] direction.




met

Crystal structure of pirfenidone (5-methyl-1-phenyl-1H-pyridin-2-one): an active pharmaceutical ingredient (API)

The crystal structure of pirfenidone, C12H11NO [alternative name: 5-methyl-1-phenyl­pyridin-2(1H)-one], an active pharmaceutical ingredient (API) approved in Europe and Japan for the treatment of Idiopathic pulmonary fibrosis (IPF), is reported here for the first time. It was crystallized from toluene by the temperature gradient technique, and crystallizes in the chiral monoclinic space group P21. The phenyl and pyridone rings are inclined to each other by 50.30 (11)°. In the crystal, mol­ecules are linked by C–H⋯O hydrogen bonds involving the same acceptor atom, forming undulating layers lying parallel to the ab plane.




met

Crystal structure and DFT study of (E)-2-chloro-4-{[2-(2,4-di­nitro­phen­yl)hydrazin-1-yl­idene]meth­yl}phenol aceto­nitrile hemisolvate

The title Schiff base compound, C13H9ClN4O5·0.5CH3CN, crystallizes as an aceto­nitrile hemisolvate; the solvent mol­ecule being located on a twofold rotation axis. The mol­ecule is nearly planar, with a dihedral angle between the two benzene rings of 3.7 (2)°. The configuration about the C=N bond is E, and there is an intra­molecular N—H⋯Onitro hydrogen bond present forming an S(6) ring motif. In the crystal, mol­ecules are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming layers lying parallel to (10overline{1}). The layers are linked by C—H⋯Cl hydrogen bonds, forming a supra­molecular framework. Within the framework there are offset π–π stacking inter­actions [inter­centroid distance = 3.833 (2) Å] present involving inversion-related mol­ecules. The DFT study shows that the HOMO and LUMO are localized in the plane extending from the phenol ring to the 2,4-di­nitro­benzene ring, and the HOMO–LUMO gap is found to be 0.13061 a.u.




met

Crystal structure and Hirshfeld surface analysis of 4-[4-(1H-benzo[d]imidazol-2-yl)phen­oxy]phthalo­nitrile dimethyl sulfoxide monosolvate

This work presents the synthesis and structural characterization of [4-(1H-benzo[d]imidazol-2-yl)phen­oxy]phthalo­nitrile, a phthalo­nitrile derivative carrying a benzimidazole moiety. The compound crystallizes as its dimethyl sulfoxide monosolvate, C21H12N4O·(CH3)2SO. The dihedral angle between the two fused rings in the heterocyclic ring system is 2.11 (1)°, while the phenyl ring attached to the imidazole moiety is inclined by 20.7 (1)° to the latter. In the crystal structure, adjacent mol­ecules are connected by pairs of weak inter­molecular C—H⋯N hydrogen bonds into inversion dimers. N—H⋯O and C—H⋯O hydrogen bonds with R21(7) graph-set motifs are also formed between the organic mol­ecule and the disordered dimethyl sulfoxide solvent [occupancy ratio of 0.623 (5):0.377 (5) for the two sites of the sulfur atom]. Hirshfeld surface analysis and fingerprint plots were used to investigate the inter­molecular inter­actions in the crystalline state.




met

Crystal structure, Hirshfeld surface analysis and HOMO–LUMO analysis of (E)-N'-(3-hy­droxy-4-meth­oxy­benzyl­idene)nicotinohydrazide monohydrate

The mol­ecule of the title Schiff base compound, C14H13N3O3·H2O, displays a trans configuration with respect to the C=N bond. The dihedral angle between the benzene and pyridine rings is 29.63 (7)°. The crystal structure features inter­molecular N—H⋯O, C—H⋯O, O—H⋯O and O—H⋯N hydrogen-bonding inter­actions, leading to the formation of a supramolecular framework. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (37.0%), O⋯H/H⋯O (23.7%)), C⋯H/H⋯C (17.6%) and N⋯H/H⋯N (11.9%) inter­actions. The title compound has also been characterized by frontier mol­ecular orbital analysis.




met

Crystal structure and Hirshfeld surface analysis of a conformationally unsymmetrical bis­chalcone: (1E,4E)-1,5-bis­(4-bromo­phen­yl)penta-1,4-dien-3-one

In the title bis­chalcone, C17H12Br2O, the olefinic double bonds are almost coplanar with their attached 4-bromo­phenyl rings [torsion angles = −10.2 (4) and −6.2 (4)°], while the carbonyl double bond is in an s-trans conformation with with respect to one of the C=C bonds and an s-cis conformation with respect to the other [C=C—C=O = 160.7 (3) and −15.2 (4)°, respectively]. The dihedral angle between the 4-bromo­phenyl rings is 51.56 (2)°. In the crystal, mol­ecules are linked into a zigzag chain propagating along [001] by weak C—H⋯π inter­actions. The conformations of related bis­chalcones are surveyed and a Hirshfeld surface analysis is used to investigate and qu­antify the inter­molecular contacts.




met

N-[2-(Tri­fluoro­meth­yl)phen­yl]maleamic acid: crystal structure and Hirshfeld surface analysis

The title mol­ecule, C11H8F3NO3, adopts a cis configuration across the –C=C– double bond in the side chain and the dihedral angle between the phenyl ring and side chain is 47.35 (1)°. The –COOH group adopts a syn conformation (O=C—O—H = 0°), unlike the anti conformation observed in related maleamic acids. In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds are connected via N—H⋯O hydrogen bonds and C—H⋯O inter­actions into (100) sheets, which are cross-linked by another C—H⋯O inter­action to result in a three-dimensional network. The Hirshfeld surface fingerprint plots show that the highest contribution to surface contacts arises from O⋯H/H⋯O contacts (26.5%) followed by H⋯F/F⋯H (23.4%) and H⋯H (17.3%).




met

Crystal structure and Hirshfeld surface analysis of (Z)-6-[(2-hy­droxy-4-methyl­anilino)­methyl­idene]-4-methyl­cyclo­hexa-2,4-dien-1-one

The title compound, C15H15NO2, is a Schiff base that exists in the keto–enamine tautomeric form and adopts a Z configuration. The mol­ecule is almost planar, with the two phenyl rings twisted relative to each other by 9.60 (18)°. There is an intra­molecular N—H⋯O hydrogen bond present forming an S(6) ring motif. In the crystal, pairs of O—H⋯O hydrogen bonds link adjacent mol­ecules into inversion dimers with an R22(18) ring motif. The dimers are linked by very weak π–π inter­actions, forming layers parallel to (overline{2}01). Hirshfeld surface analysis, two-dimensional fingerprint plots and the mol­ecular electrostatic potential surfaces were used to analyse the inter­molecular inter­actions, indicating that the most important contributions for the crystal packing are from H⋯H (55.2%), C⋯H/H⋯C (22.3%) and O⋯H/H⋯O (13.6%) inter­actions.




met

Crystal structures and Hirshfeld surface analyses of 4,4'-{[1,3-phenyl­enebis(methyl­ene)]bis­(­oxy)}bis­(3-meth­oxy­benzaldehyde) and 4,4'-{[(1,4-phenyl­ene­bis(methyl­ene)]bis­(­oxy)}bis­(

The title compounds, C24H22O6 (I) and C24H22O6 (II), each crystallize with half a mol­ecule in the asymmetric unit. The whole mol­ecule of compound (I) is generated by twofold rotation symmetry, the twofold axis bis­ecting the central benzene ring. The whole mol­ecule of compound (II) is generated by inversion symmetry, the central benzene ring being located on an inversion center. In (I), the outer benzene rings are inclined to each other by 59.96 (10)° and by 36.74 (9)° to the central benzene ring. The corresponding dihedral angles in (II) are 0.0 and 89.87 (12)°. In the crystal of (I), mol­ecules are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming ribbons propagating along the [10overline{1}] direction. In the crystal of (II), mol­ecules are linked by C—H⋯O hydrogen bonds, forming a supra­molecular framework. The Hirshfeld surface analyses indicate that for both compounds the H⋯H contacts are the most significant, followed by O⋯H/H⋯O and C⋯H/H⋯C contacts.




met

Crystal structure and Hirshfeld surface analysis of (Z)-6-[(2-hy­droxy-5-nitro­anilino)methyl­idene]-4-methyl­cyclo­hexa-2,4-dien-1-one

The title compound, C14H12N2O4, is a Schiff base that exists in the keto–enamine tautomeric form and adopts a Z configuration. The mol­ecule is almost planar, the rings making a dihedral angle of 4.99 (7)°. The mol­ecular structure is stabilized by an intra­molecular N—H⋯O hydrogen bond forming an S(6) ring motif. In the crystal, inversion-related mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming dimers with an R22(18) ring motif. The dimers are linked by pairs of C—H⋯O contacts with an R22(10) ring motif, forming ribbons extended along the [2overline{1}0] direction. Hirshfeld surface analysis, two-dimensional fingerprint plots and the mol­ecular electrostatic potential surfaces were used to analyse the inter­molecular inter­actions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯H (33.9%), O⋯H/H⋯O (29.8%) and C⋯H/H⋯C (17.3%) inter­actions.




met

2-[(4-Bromo­phen­yl)sulfan­yl]-2-meth­oxy-1-phenyl­ethan-1-one: crystal structure, Hirshfeld surface analysis and computational chemistry

The title compound, C15H13BrO2S, comprises three different substituents bound to a central (and chiral) methine-C atom, i.e. (4-bromo­phen­yl)sulfanyl, benzaldehyde and meth­oxy residues: crystal symmetry generates a racemic mixture. A twist in the mol­ecule is evident about the methine-C—C(carbon­yl) bond as evidenced by the O—C—C—O torsion angle of −20.8 (7)°. The dihedral angle between the bromo­benzene and phenyl rings is 43.2 (2)°, with the former disposed to lie over the oxygen atoms. The most prominent feature of the packing is the formation of helical supra­molecular chains as a result of methyl- and methine-C—H⋯O(carbon­yl) inter­actions. The chains assemble into a three-dimensional architecture without directional inter­actions between them. The nature of the weak points of contacts has been probed by a combination of Hirshfeld surface analysis, non-covalent inter­action plots and inter­action energy calculations. These point to the importance of weaker H⋯H and C—H⋯C inter­actions in the consolidation of the structure.




met

The crystal structure of (RS)-7-chloro-2-(2,5-di­meth­oxy­phen­yl)-2,3-di­hydro­quinazolin-4(1H)-one: two hydrogen bonds generate an elegant three-dimensional framework structure

In the title compound, C61H15ClN2O3, the heterocyclic ring adopts an envelope conformation, folded across the N⋯N line, with the 2,5-di­meth­oxy­phenyl unit occupying a quasi-axial site. There are two N—H⋯O hydrogen bonds in the structure: one hydrogen bond links mol­ecules related by a 41 screw axis to form a C(6) chain, and the other links inversion-related pairs of mol­ecules to form an R22(8) ring. The ring motif links all of the chains into a continuous three-dimensional framework structure. Comparisons are made with the structures of some related compounds.




met

Hirshfeld surface analysis and crystal structure of N-(2-meth­oxy­phen­yl)acetamide

The title compound, C9H11NO2, was obtained as unexpected product from the reaction of (4-{2-benz­yloxy-5-[(E)-(3-chloro-4-methyl­phen­yl)diazen­yl]benzyl­idene}-2-phenyl­oxazol-5(4H)-one) with 2-meth­oxy­aniline in the presence of acetic acid as solvent. The amide group is not coplanar with the benzene ring, as shown by the C—N—C—O and C—N—C—C torsion angles of −2.5 (3) and 176.54 (19)°, respectively. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (53.9%), C⋯H/H⋯C (21.4%), O⋯H/H⋯O (21.4%) and N⋯H/H⋯N (1.7%) inter­actions.




met

Crystal structure of methyl α-l-rhamno­pyranosyl-(1→2)-α-l-rhamno­pyran­oside monohydrate

The title compound, C13H24O9·H2O, a structural model for part of bacterial O-anti­gen polysaccharides from Shigella flexneri and Escherichia coli, crystallizes with four independent disaccharide mol­ecules and four water mol­ecules in the asymmetric unit. The conformation at the glycosidic linkage joining the two rhamnosyl residues is described by the torsion angles φH of 39, 30, 37 and 37°, and ψH of −32, −35, −31 and −32°, which are the major conformation region known to be populated in an aqueous solution. The hexo­pyran­ose rings have the 1C4 chair conformation. In the crystal, the disaccharide and water mol­ecules are associated through O—H⋯O hydrogen bonds, forming a layer parallel to the bc plane. The layers stack along the a axis via hydro­phobic inter­actions between the methyl groups.




met

Crystal structure of bis(μ-{2-[(5-bromo-2-oxido­benzyl­idene)amino]­eth­yl}sulfanido-κ3N,O,S){2,2'-[(3,4-di­thia­hexane-1,6-di­yl)bis­(nitrilo­methanylyl­idene)]bis­(4-bromo­phenolato)-κ4O,N,N',O

The title binuclear CoIII complex, [Co2(C9H8BrNOS)2(C18H16Br2N2O2S2)]·C3H7NO, with a Schiff base ligand formed in situ from cyste­amine (2-amino­ethane­thiol) and 5-bromo­salicyl­aldehyde crystallizes in the space group P21. It was found that during the synthesis the ligand undergoes spontaneous oxidation, forming the new ligand H2L' having an S—S bond. Thus, the asymmetric unit consists of one Co2(L)2(L') mol­ecule and one DMF solvent mol­ecule. Each CoIII ion has a slightly distorted octa­hedral S2N2O2 coordination geometry. In the crystal, the components are linked into a three-dimensional network by several S⋯ Br, C⋯ Br, C—H⋯Br, short S⋯C (essentially shorter than the sum of the van der Waals radii for the atoms involved) contacts as well by weak C—H⋯O hydrogen bonds. The crystal studied was refined as an inversion twin.




met

Bis(4-acet­oxy-N,N-di­methyl­tryptammonium) fumarate: a new crystalline form of psilacetin, an alternative to psilocybin as a psilocin prodrug

The title compound (systematic name: bis­{2-[4-(acet­yloxy)-1H-indol-3-yl]ethan-1-aminium} but-2-enedioate), 2C14H19N2O2+·C4H2O42−, has a single protonated psilacetin cation and one half of a fumarate dianion in the asymmetric unit. There are N—H⋯O hydrogen bonds between the ammonium H atoms and the fumarate O atoms, as well as N—H⋯O hydrogen bonds between the indole H atoms and the fumarate O atoms. The hydrogen bonds hold the ions together in infinite one-dimensional chains along [111].




met

Crystal structures of butyl 2-amino-5-hy­droxy-4-(4-nitro­phen­yl)benzo­furan-3-carboxyl­ate and 2-meth­oxy­ethyl 2-amino-5-hy­droxy-4-(4-nitro­phen­yl)benzo­furan-3-carboxyl­ate

The title benzo­furan derivatives 2-amino-5-hy­droxy-4-(4-nitro­phen­yl)benzo­furan-3-carboxyl­ate (BF1), C19H18N2O6, and 2-meth­oxy­ethyl 2-amino-5-hy­droxy-4-(4-nitro­phen­yl)benzo­furan-3-carboxyl­ate (BF2), C18H16N2O7, recently attracted attention because of their promising anti­tumoral activity. BF1 crystallizes in the space group Poverline{1}. BF2 in the space group P21/c. The nitro­phenyl group is inclined to benzo­furan moiety with a dihedral angle between their mean planes of 69.2 (2)° in BF1 and 60.20 (6)° in BF2. A common feature in the mol­ecular structures of BF1 and BF2 is the intra­molecular N—H⋯Ocarbon­yl hydrogen bond. In the crystal of BF1, the mol­ecules are linked head-to-tail into a one-dimensional hydrogen-bonding pattern along the a-axis direction. In BF2, pairs of head-to-tail hydrogen-bonded chains of mol­ecules along the b-axis direction are linked by O—H⋯Ometh­oxy hydrogen bonds. In BF1, the butyl group is disordered over two orientations with occupancies of 0.557 (13) and 0.443 (13).




met

Crystal structure of 210,220-bis­(2,6-di­chloro­phen­yl)-4,7,12,15-tetra­oxa-2(5,15)-nickel(II)porpyhrina-1,3(1,2)-dibenzena-cyclo­hepta­deca­phane-9-yne di­chloro­methane monosolvate

The asymmetric unit of the title compound, [Ni(C52H34Cl4N4O4)]·CH2Cl2, consists of two discrete complexes, which show significant differences in the conformation of the side chain. Each NiII cation is coordinated by four nitro­gen atoms of a porphyrin mol­ecule within a square-planar coordination environment. Weak intra­molecular C—H⋯Cl and C—H⋯O inter­actions stabilize the mol­ecular conformation. In the crystal structure, discrete complexes are linked by C—H⋯Cl hydrogen-bonding inter­actions. In addition, the two unique di­chloro­methane solvate mol­ecules (one being disordered) are hydrogen-bonded to the Cl atoms of the chloro­phenyl groups of the porphyrin mol­ecules, thus stabilizing the three-dimensional arrangement. The crystal exhibits pseudo-ortho­rhom­bic metrics, but structure refinements clearly show that the crystal system is monoclinic and that the crystal is twinned by pseudo-merohedry.




met

Crystal structure of N-(di­phenyl­phosphor­yl)-2-meth­oxy­benzamide

In the title compound, C20H18NO3P, the C=O and P=O groups of the carbacyl­amido­phosphate (CAPh) fragments are located in a synclinal position relative to each other and are pre-organized for bidentate chelate coordination of metal ions. The N—H group is involved in the formation of an intra­molecular hydrogen bond. In the crystal, mol­ecules do not form strong inter­molecular inter­actions but the mol­ecules are linked via weak C—H⋯π inter­actions, forming chains along [001].




met

Synthesis, crystal structure and Hirshfeld surface analysis of 2-chloro-3-[(E)-(2-phenyl­hydrazinyl­idene)meth­yl]quinoline

A new quinoline-based hydrazone, C16H12ClN3, was synthesized by a condensation reaction of 2-chloro-3-formyl­quinoline with phenyl­hydrazine. The quinoline ring system is essentially planar (r.m.s. deviation = 0.012 Å), and forms a dihedral angle of 8.46 (10)° with the phenyl ring. The mol­ecule adopts an E configuration with respect to the central C=N bond. In the crystal, mol­ecules are linked by a C—H⋯π-phenyl inter­action, forming zigzag chains propagating along the [10overline{3}] direction. The N—H hydrogen atom does not participate in hydrogen bonding but is directed towards the phenyl ring of an adjacent mol­ecule, so linking the chains via weak N—H⋯π inter­actions to form of a three-dimensional structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (35.5%), C⋯H/H⋯C (33.7%), Cl⋯H/H⋯Cl (12.3%), N⋯H/H⋯N (9.5%) contacts.




met

Structure and Hirshfeld surface analysis of the salt N,N,N-trimethyl-1-(4-vinyl­phen­yl)methanaminium 4-vinyl­benzene­sulfonate

In the title compound, the asymmetric unit comprises an N,N,N-trimethyl-1-(4-vinyl­phen­yl)methanaminium cation and a 4-vinyl­benzene­sulfonate anion, C12H18N+·C8H7O3S−. The salt has a polymerizable vinyl group attached to both the cation and the anion. The methanaminium and vinyl substituents on the benzene ring of the cation subtend angles of 86.6 (3) and 10.5 (9)° to the ring plane, while the anion is planar excluding the sulfonate O atoms. The vinyl substituent on the benzene ring of the cation is disordered over two sites with a refined occupancy ratio of 0.542 (11):0.458 (11). In the crystal, C—H⋯O hydrogen bonds dominate the packing and combine with a C—H⋯π(ring) contact to stack the cations and anions along the a-axis direction. Hirshfeld surface analysis of the salt and of the individual cation and anion components is also reported.




met

Crystal structure and Hirshfeld surface analysis of (2E)-3-(4-chloro-3-fluoro­phen­yl)-1-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one

The mol­ecular structure of the title compound, C17H14ClFO3, consists of a 4-chloro-3-fluoro­phenyl ring and a 3,4-di­meth­oxy­phenyl ring linked via a prop-2-en-1-one spacer. The mol­ecule has an E configuration about the C=C bond and the carbonyl group is syn with respect to the C=C bond. The F and H atoms at the meta positions of the 4-chloro-3-fluoro­phenyl ring are disordered over two orientations, with an occupancy ratio of 0.785 (3):0.215 (3). In the crystal, mol­ecules are linked via pairs of C—H⋯O inter­actions with an R22(14) ring motif, forming inversion dimers. The dimers are linked into a tape structure running along [10overline{1}] by a C—H⋯π inter­action. The inter­molecular contacts in the crystal were further analysed using Hirshfield surface analysis, which indicates that the most significant contacts are H⋯H (25.0%), followed by C⋯H/H⋯C (20.6%), O⋯H/H⋯O (15.6%), Cl⋯H/H⋯Cl (10.7%), F⋯H/H⋯F (10.4%), F⋯C/C⋯F (7.2%) and C⋯C (3.0%).




met

Crystal structure of N,N'-bis­[3-(methyl­sulfan­yl)prop­yl]-1,8:4,5-naphthalene­tetra­carb­oxy­lic di­imide

The title compound, C22H22N2O4S2, was synthesized by the reaction of 1,4,5,8-naphthalene­tetra­carb­oxy­lic dianhydride with 3-(methyl­sulfan­yl)propyl­amine. The whole mol­ecule is generated by an inversion operation of the asymmetric unit. This mol­ecule has an anti form with the terminal methyl­thio­propyl groups above and below the aromatic di­imide plane, where four intra­molecular C—H⋯O and C—H⋯S hydrogen bonds are present and the O⋯H⋯S angle is 100.8°. DFT calculations revealed slight differences between the solid state and gas phase structures. In the crystal, C—H⋯O and C—H⋯S hydrogen bonds link the mol­ecules into chains along the [2overline20] direction. adjacent chains are inter­connected by π–π inter­actions, forming a two-dimensional network parallel to the (001) plane. Each two-dimensional layer is further packed in an ABAB sequence along the c-axis direction. Hirshfeld surface analysis shows that van der Waals inter­actions make important contributions to the inter­molecular contacts. The most important contacts found in the Hirshfeld surface analysis are H⋯H (44.2%), H⋯O/O⋯H (18.2%), H⋯C/C⋯H (14.4%), and H⋯S/S⋯H (10.2%).




met

Synthesis, characterization, and crystal structure of aqua­bis­(4,4'-dimeth­oxy-2,2'-bi­pyridine)[μ-(2R,3R)-tartrato(4−)]dicopper(II) octa­hydrate

Typical electroless copper baths (ECBs), which are used to chemically deposit copper on printed circuit boards, consist of an aqueous alkali hydroxide solution, a copper(II) salt, formaldehyde as reducing agent, an l-(+)-tartrate as complexing agent, and a 2,2'-bi­pyridine derivative as stabilizer. Actual speciation and reactivity are, however, largely unknown. Herein, we report on the synthesis and crystal structure of aqua-1κO-bis­(4,4'-dimeth­oxy-2,2'-bi­pyri­dine)-1κ2N,N';2κ2N,N'-[μ-(2R,3R)-2,3-dioxidosuccinato-1κ2O1,O2:2κ2O3,O4]dicopper(II) octa­hydrate, [Cu2(C12H12N2O2)2(C4H2O6)(H2O)]·8H2O, from an ECB mock-up. The title compound crystallizes in the Sohncke group P21 with one chiral dinuclear complex and eight mol­ecules of hydrate water in the asymmetric unit. The expected retention of the tartrato ligand's absolute configuration was confirmed via determination of the absolute structure. The complex mol­ecules exhibit an ansa-like structure with two planar, nearly parallel bi­pyridine ligands, each bound to a copper atom that is connected to the other by a bridging tartrato `handle'. The complex and water mol­ecules give rise to a layered supra­molecular structure dominated by alternating π stacks and hydrogen bonds. The understanding of structures ex situ is a first step on the way to prolonged stability and improved coating behavior of ECBs.




met

Crystal structure, DFT and MEP study of (E)-2-[(2-hy­droxy-5-meth­oxy­benzyl­idene)amino]­benzo­nitrile

The asymmetric unit of the title compound, C15H12N2O2, contains two crystallographically independent mol­ecules in which the dihedral angles between the benzene rings in each are 13.26 (5) and 7.87 (5)°. An intra­molecular O—H⋯N hydrogen bonds results in the formation of an S(6) ring motif. In the crystal, mol­ecules are linked by weak C—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to (011). In addition, π–π stacking inter­actions with centroid–centroid distances in the range 3.693 (2)–3.931 (2) Å complete the three-dimensional network.




met

Crystal structures of two bis-carbamoyl­methyl­phosphine oxide (CMPO) compounds

Two bis-carbamoyl­methyl­phosphine oxide compounds, namely {[(3-{[2-(di­phen­yl­phosphino­yl)ethanamido]­meth­yl}benz­yl)carbamo­yl]meth­yl}di­phenyl­phos­phine oxide, C36H34N2O4P2, (I), and diethyl [({2-[2-(di­eth­oxy­phosphino­yl)ethanamido]­eth­yl}carbamo­yl)meth­yl]phospho­nate, C14H30N2O8P2, (II), were synthesized via nucleophilic acyl substitution reactions between an ester and a primary amine. Hydrogen-bonding inter­actions are present in both crystals, but these inter­actions are intra­molecular in the case of compound (I) and inter­molecular in compound (II). Intra­molecular π–π stacking inter­actions are also present in the crystal of compound (I) with a centroid–centroid distance of 3.9479 (12) Å and a dihedral angle of 9.56 (12)°. Inter­molecular C—H⋯π inter­actions [C⋯centroid distance of 3.622 (2) Å, C—H⋯centroid angle of 146°] give rise to supra­molecular sheets that lie in the ab plane. Key geometric features for compound (I) involve a nearly planar, trans-amide group with a C—N—C—C torsion angle of 169.12 (17)°, and a torsion angle of −108.39 (15)° between the phosphine oxide phospho­rus atom and the amide nitro­gen atom. For compound (II), the electron density corresponding to the phosphoryl group was disordered, and was modeled as two parts with a 0.7387 (19):0.2613 (19) occupancy ratio. Compound (II) also boasts a trans-amide group that approaches planarity with a C—N—C—C torsion angle of −176.50 (16)°. The hydrogen bonds in this structure are inter­molecular, with a D⋯A distance of 2.883 (2) Å and a D—H⋯A angle of 175.0 (18)° between the amide hydrogen atom and the P=O oxygen atom. These non-covalent inter­actions create ribbons that run along the b-axis direction.




met

Two isomers of [1-benzyl-4-(pyridin-2-yl-κN)-1H-1,2,3-triazole-κN3]di­chlorido­bis­(dimethyl sulfoxide-κS)ruthenium(II)

The structures of two isomers of the title compound, [RuCl2(C14H12N4)(C2H6OS)2], 2 and 3, are reported. Isomers 2 and 3 are produced by reaction of the pyridyl­triazole ligand 1-benzyl-4-(pyridin-2-yl)-1H-1,2,3-triazole (bpt) (1) with fac-[RuCl2(DMSO-S)3(DMSO-O)]. Reaction in acetone produces ca 95% 2, which is the OC-6-14 isomer, with cis DMSO and trans chlorido ligands, and 5% 3 (the OC-6-32 isomer, with cis DMSO and cis chlorido ligands, and the pyridyl moiety of bpt trans to DMSO). Reaction in refluxing toluene initially forms 2, which slowly isomerizes to 3.




met

Crystal structures of trans-di­aqua­(3-R-1,3,5,8,12-penta­aza­cyclo­tetra­deca­ne)copper(II) isophthalate hydrates (R = benzyl or pyridin-3-ylmethyl)

The asymmetric units of the title compounds, trans-di­aqua­(3-benzyl-1,3,5,8,12-penta­aza­cyclo­tetra­decane-κ4N1,N5,N8,N12)copper(II) isophthalate monohydrate, [Cu(C16H29N5)(H2O)2](C8H4O4)·H2O, (I), and trans-di­aqua­[3-(pyridin-3-ylmeth­yl)-1,3,5,8,12-penta­aza­cyclo­tetra­decane-κ4N1,N5,N8,N12]copper(II) iso­phthalate 0.9-hydrate, [Cu(C15H28N6)(H2O)2](C8H4O4)·0.9H2O, (II) consist of one di­aqua macrocyclic cation, one di­carboxyl­ate anion and uncoordinated water mol­ecule(s). In each compound, the metal ion is coordinated by the four secondary N atoms of the macrocyclic ligand and the mutually trans O atoms of the water mol­ecules in a tetra­gonally distorted octa­hedral geometry. The average equatorial Cu—N bond lengths are significantly shorter than the average axial Cu—O bond lengths [2.020 (9) versus 2.495 (12) Å and 2.015 (4) versus 2.507 (7) Å for (I) and (II), respectively]. The coordinated macrocyclic ligand in the cations of both compounds adopts the most energetically favorable trans-III conformation. In the crystals, the complex cations and counter-anions are connected via hydrogen-bonding inter­actions between the N—H groups of the macrocycles and the O—H groups of coordinated water mol­ecules as the proton donors and the O atoms of the carboxyl­ate as the proton acceptors. Additionally, as a result of O—H⋯O hydrogen bonding with the coordinated and water mol­ecules of crystallization, the isophthalate dianions form layers lying parallel to the (overline{1}01) and (100) planes in (I) and (II), respectively.




met

Synthesis, detailed geometric analysis and bond-valence method evaluation of the strength of π-arene bonding of two isotypic cationic prehnitene tin(II) complexes: [{1,2,3,4-(CH3)4C6H2}2Sn2Cl2][MCl4]2 (M = Al and Ga)

From solutions of prehnitene and the ternary halides (SnCl)[MCl4] (M = Al, Ga) in chloro­benzene, the new cationic SnII–π-arene complexes catena-poly[[chlorido­aluminate(III)]-tri-μ-chlorido-4':1κ2Cl,1:2κ4Cl-[(η6-1,2,3,4-tetra­meth­yl­benzene)­tin(II)]-di-μ-chlorido-2:3κ4Cl-[(η6-1,2,3,4-tetra­methyl­benzene)­tin(II)]-di-μ-chlorido-3:4κ4Cl-[chlorido­aluminate(III)]-μ-chlorido-4:1'κ2Cl], [Al2Sn2Cl10(C10H14)2]n, (1) and catena-poly[[chlorido­gallate(III)]-tri-μ-chlor­ido-4':1κ2Cl,1:2κ4Cl-[(η6-1,2,3,4-tetra­methyl­benzene)­tin(II)]-di-μ-chlorido-2:3κ4Cl-[(η6-1,2,3,4-tetra­methyl­benzene)­tin(II)]-di-μ-chlorido-3:4κ4Cl-[chlor­ido­gallate(III)]-μ-chlorido-4:1'κ2Cl], [Ga2Sn2Cl10(C10H14)2]n, (2), were isolated. In these first main-group metal–prehnitene complexes, the distorted η6 arene π-bonding to the tin atoms of the Sn2Cl22+ moieties in the centre of [{1,2,3,4-(CH3)4C6H2}2Sn2Cl2][MCl4]2 repeating units (site symmetry overline{1}) is characterized by: (i) a significant ring slippage of ca 0.4 Å indicated by the dispersion of Sn—C distances [1: 2.881 (2)–3.216 (2) Å; 2: 2.891 (3)–3.214 (3) Å]; (ii) the non-methyl-substituted arene C atoms positioned closest to the SnII central atom; (iii) a pronounced tilt of the plane of the arene ligand against the plane of the central (Sn2Cl2)2+ four-membered ring species [1: 15.59 (11)°, 2: 15.69 (9)°]; (iv) metal–arene bonding of medium strength as illustrated by application of the bond-valence method in an indirect manner, defining the π-arene bonding inter­action of the SnII central atoms as s(SnII—arene) = 2 − Σs(SnII—Cl), that gives s(SnII—arene) = 0.37 and 0.38 valence units for the aluminate and the gallate, respectively, indicating that comparatively strong main-group metal–arene bonding is present and in line with the expectation that [AlCl4]− is the slightly weaker coordinating anion as compared to [GaCl4]−.