nuc

Neutral mononuclear indium(III) photosensitizers for CO2 photoreduction

Dalton Trans., 2024, 53,17772-17776
DOI: 10.1039/D4DT02595D, Communication
Zaichao Zhang, Li-Zhi Fu, Piao He, Xiao-Yi Yi
Neutral mononuclear indium(III) complexes (In-1–In-3) containing 2,6-di(1H-pyrrol-2-yl)pyridine and substituted dipyridylpyrrole pincer ligands are employed as photosensitizers in photocatalytic CO2 reduction.
The content of this RSS Feed (c) The Royal Society of Chemistry




nuc

Asymmetric triply bridged lanthanide binuclear clusters with distinctly different magnetic behaviors

Dalton Trans., 2024, Accepted Manuscript
DOI: 10.1039/D4DT02652G, Communication
Yue Yang, Yu-Xia Wang, Yu-Zhe Lei, Peng Cheng
Isomorphic binuclear clusters Gd and Dy with antiferromagnetic and ferromagnetic couplings are separately exhibiting single-molecule magnetic behavior and strong magnetocaloric entropy.
The content of this RSS Feed (c) The Royal Society of Chemistry




nuc

Detailed mechanism of DNA/RNA nucleobase substituting bridging ligand in diruthenium (II,III) and dirhodium (II,II) tetraacetato paddlewheel complexes: Protonation of the leaving acetate is crucial

Dalton Trans., 2024, Accepted Manuscript
DOI: 10.1039/D4DT02621G, Paper
Open Access
Iogann Tolbatov, Tiziano Marzo, Paolo Umari, Diego La Mendola, Alessandro Marrone
Paddlewheel complexes of bimetallic scaffolds are emerging metallic agents in the bioinorganic chemistry landscape. In the most commonly employed construct, these complexes are decorated by carboxylate moiety, prompting their possible...
The content of this RSS Feed (c) The Royal Society of Chemistry




nuc

Polyphosphazene-based hyper crosslinked polymers for efficient uranium ion removal from nuclear wastewater

Environ. Sci.: Water Res. Technol., 2024, 10,2961-2980
DOI: 10.1039/D4EW00614C, Paper
Rimsha Khalid, Isham Areej, Faiza Ashraf, Saqlain Raza, Amin Abid, Tayyab Ahsan, Bien Tan
This study focuses on the removal of uranium ions from nuclear wastewater by fabricating inorganic–organic hybrid cyclic and linear polyphosphazene based polymers.
The content of this RSS Feed (c) The Royal Society of Chemistry




nuc

L&T bags 'significant' order for global nuclear fusion project

The company classifies a 'significant order' as orders valued between ₹1,000 crore and ₹2,500 crore




nuc

India will ‘commission a nuclear power reactor every year’: NPCIL chief

An interview with B.C. Pathak on India’s nuclear power plans and strategy




nuc

Techno-functional, antioxidant, and amino acid characterization of hydrolyzed bioactive peptides from coconut (Cocos nucifera L.) meal protein

Food Funct., 2024, 15,11266-11279
DOI: 10.1039/D4FO02741H, Paper
Roshanak Zolqadri, Zahra Akbarbaglu, Khashayar Sarabandi, Seyed Hadi Peighambardoust, Seid Mahdi Jafari, Amin Mousavi Khaneghah
In this study, the techno-functional characteristics and nutritional value of coconut meal protein (CMP) and the obtained polypeptides by alcalase (H-Alc), trypsin (H-Try), pancreatin (H-Pan), and pepsin (H-pep) were investigated.
The content of this RSS Feed (c) The Royal Society of Chemistry




nuc

SOS - The San Onofre Syndrome, Nuclear Power's Legacy / Filmhub

[Place of publication not identified] : Filmhub, [2023]




nuc

An overview: dinuclear palladium complexes for organic synthesis

Catal. Sci. Technol., 2024, 14,6112-6154
DOI: 10.1039/D4CY00425F, Review Article
Sarita Yadav, Sangeeta Yadav, Mookan Natarajan, Kamal Kishore Pant, Ravi Tomar
From materials science and polymer chemistry to organic synthesis and medicinal chemistry, cross-coupling has influenced many scientific fields.
The content of this RSS Feed (c) The Royal Society of Chemistry




nuc

Effect of graphene electrode functionalization on machine learning-aided single nucleotide classification

Nanoscale, 2024, 16,20202-20215
DOI: 10.1039/D4NR02274B, Paper
Mohd Rashid, Milan Kumar Jena, Sneha Mittal, Biswarup Pathak
In this study, we explored the role of functionalized entities (C, H, N, and OH) in graphene electrodes using a machine learning (ML) framework integrated with the quantum transport method to achieve precise single DNA nucleotide identification.
The content of this RSS Feed (c) The Royal Society of Chemistry




nuc

Nucleic acid detection with single-base specificity integrating isothermal amplification and light-up aptamer probes

Nanoscale, 2024, 16,20067-20072
DOI: 10.1039/D4NR01638F, Communication
Jaekyun Baek, Jihyun Park, Youngeun Kim
CLASSIC is a label-free DNA detection platform with single-nucleotide specificity and attomolar sensitivity. This assay offers rapid and sequence-specific DNA analysis through single-strand conversion and split light-up aptamer probes.
The content of this RSS Feed (c) The Royal Society of Chemistry




nuc

Macroscopic chiral symmetry breaking in gelation of Fmoc-amino acids: homochiral selective secondary nucleation promoted by the choice of solvent or stirring

Nanoscale, 2024, Advance Article
DOI: 10.1039/D4NR04011B, Communication
Kentaro Tashiro
Homochiral selective secondary nucleation, promoted by the choice of solvent or stirring, was suggested as the key process for the emergence of macroscopic chiral symmetry breaking in the gelation of Fmoc amino acids.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




nuc

Aptamer-functionalized Nucleic Acid Nanotechnology for Biosensing, Bioimaging and Cancer Therapy

Nanoscale, 2024, Accepted Manuscript
DOI: 10.1039/D4NR04360J, Review Article
Xiaofang Zheng, Zhiyong Huang, Qiang Zhang, Guoli Li, Minghui Song, Ruizi Peng
Nucleic acids have enabled to fabricate self-assemblies and perform dynamic operations. Among different functional nucleic acids, aptamers can specifically bind to wide range of targets including proteins, viral antigens, living...
The content of this RSS Feed (c) The Royal Society of Chemistry




nuc

How chemistry helps track and detect nuclear materials

Chemists are designing better methods to analyze confiscated nuclear materials and to track nuclear activity remotely




nuc

CordenPharma extends oligonucleotides in Colorado




nuc

Hanford researchers demonstrate continuous process to vitrify waste from nuclear weapons production




nuc

Dynacure launches with $55 million and Ionis antisense oligonucleotide drug

The French startup will develop an RNA-targeted therapy for the rare muscle disease centronuclear myopathy




nuc

Flibe Energy gets DOE funding for nuclear research




nuc

Regulus cuts jobs after oligonucleotide safety setback




nuc

Nucleotide construction gets new chiral tool

Reagent developed through Scripps and BMS collaboration couples nucleosides with potential applications in antisense therapeutics




nuc

P Chidambaram writes: Bare-knuckle politics




nuc

Satellite images reveal North Korean leader Kim Jong-un's new nuclear facility

The United States think tank has earlier stated that North Korea is almost finished with the making of a ballistic missile facility having the capacity to test-fire intercontinental ballistic missiles.




nuc

The Separation of Nuclear Families under U.S. Immigration Law

Testimony of Demetrios G. Papademetriou, MPI President, before the Subcommittee on Immigration and Border Security, Committee on the Judiciary, U.S. House of Representatives.





nuc

Tidal Lagoon’s Next Plant May Produce Power on Par with Nuclear

The U.K. company planning the world’s first tidal-lagoon power station said its next plant may generate electricity at almost half the price.




nuc

Japan Anticipates Clean Energy Will Edge Out Nuclear Power

Japan anticipates that by 2030 clean energy such as solar and hydro will generate slightly more of the nation’s electricity than nuclear power plants.




nuc

Japan Anticipates Clean Energy Will Edge Out Nuclear Power

Japan anticipates that by 2030 clean energy such as solar and hydro will generate slightly more of the nation’s electricity than nuclear power plants.




nuc

Iran's Zarif said draft nuclear plan could develop from Vienna talks

Iran wants to work toward a draft agreement on a comprehensive solution to a lingering nuclear row with Western powers, the foreign minister said Tuesday.




nuc

Iranian nuclear talks described as useful; more scheduled for April

Iran's deputy foreign minister said nuclear negotiations in Vienna were useful and another round of talks was scheduled over the course of three days in April.




nuc

Obama optimistic about prospects for Iranian nuclear agreement

There's a chance for Iran to reach a comprehensive nuclear agreement that would benefit its people if the rights steps are taken, President Obama said Thursday.




nuc

Work at North Korea missile, nuclear sites ongoing, Johns Hopkins says

Researchers at Johns Hopkins University said Thursday work was ongoing at North Korean nuclear and missile sites, but no imminent threat is apparent.




nuc

Woman Takes Nuclear Revenge Against Company

This woman took a truly nuclear revenge against a company that was up to all kinds of no good. The best part about this revenge, other than the fact that she brought justice to the company, was her added touch of subscribing everyone at the company to hundreds of different email alerts. She left the operation in complete and utter chaos. 




nuc

Need Nuclear Power Plant?

NEED POWER PLANT? A PRAGMATIC APPROACH IS NEED OF THE HOUR

Electric power is a growing need in a developing...




nuc

TN: 800 workers stage protest at nuclear plant




nuc

Lockdown in Tamil Nadu: 800 guest workers stage protest at Kudankulam Nuclear Power Plant, attack cops

Lockdown in Tamil Nadu: 800 guest workers stage protest at Kudankulam Nuclear Power Plant, attack cops




nuc

Automated nucleic acid chain tracing in real time

A method is presented for the automatic building of nucleotide chains into electron density which is fast enough to be used in interactive model-building software. Likely nucleotides lying in the vicinity of the current view are located and then grown into connected chains in a fraction of a second. When this development is combined with existing tools, assisted manual model building is as simple as or simpler than for proteins.




nuc

Crystal structure of the nucleoid-associated protein Fis (PA4853) from Pseudomonas aeruginosa

Factor for inversion stimulation (Fis) is a versatile bacterial nucleoid-associated protein that can directly bind and bend DNA to influence DNA topology. It also plays crucial roles in regulating bacterial virulence factors and in optimizing bacterial adaptation to various environments. Fis from Pseudomonas aeruginosa (PA4853, referred to as PaFis) has recently been found to be required for virulence by regulating the expression of type III secretion system (T3SS) genes. PaFis can specifically bind to the promoter region of exsA, which functions as a T3SS master regulator, to regulate its expression and plays an essential role in transcription elongation from exsB to exsA. Here, the crystal structure of PaFis, which is composed of a four-helix bundle and forms a homodimer, is reported. PaFis shows remarkable structural similarities to the well studied Escherichia coli Fis (EcFis), including an N-terminal flexible loop and a C-terminal helix–turn–helix (HTH) motif. However, the critical residues for Hin-catalyzed DNA inversion in the N-terminal loop of EcFis are not conserved in PaFis and further studies are required to investigate its exact role. A gel-electrophoresis mobility-shift assay showed that PaFis can efficiently bind to the promoter region of exsA. Structure-based mutagenesis revealed that several conserved basic residues in the HTH motif play essential roles in DNA binding. These structural and biochemical studies may help in understanding the role of PaFis in the regulation of T3SS expression and in virulence.




nuc

Bis(μ2-4-nitro­phenolato)bis­(4-nitro­phenolato)di-μ3-oxido-octaphenyltetra­tin chloro­form sesquisolvate [+ solvate]: a tetra­nuclear stannoxane

The title tetra­nuclear stannoxane, [Sn4(C6H5)8(C6H4NO3)4O2]·1.5CHCl3·solvent, crystallized with two independent complex mol­ecules, A and B, in the asymmetric unit together with 1.5 mol­ecules of chloro­form. There is also a region of disordered electron density, which was corrected for using the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18]. The oxo-tin core of each complex is in a planar `ladder' arrangement and each Sn atom is fivefold SnO3C2 coordinated, with one tin centre having an almost perfect square-pyramidal coordination geometry, while the other three Sn centres have distorted shapes. In the crystal, the complex mol­ecules are arranged in layers, composed of A or B complexes, lying parallel to the bc plane. The complex mol­ecules are linked by a number of C—H⋯O hydrogen bonds within the layers and between the layers, forming a supra­molecular three-dimensional structure.




nuc

Crystal structure of a binuclear mixed-valence ytterbium complex containing a 2-anthracene-substituted phenoxide ligand

Reaction of 2-(anthracen-9-yl)phenol (HOPhAn, 1) with divalent Yb[N(SiMe3)2]2·2THF in THF–toluene mixtures affords the mixed-valence YbII–YbIII dimer {[2-(anthracen-9-yl)phenolato-κO]bis­(tetra­hydro­furan)­ytterbium(III)}-tris­[μ-2-(anthracen-9-yl)phenolato]-κ4O:O;κO:1,2-η,κO-{[2-(anthracen-9-yl)phenolato-κO]ytterbium(II)} toluene tris­olvate, [Yb2(C20H13O)5(C4H8O)2]·3C7H7 or [YbIII(THF)2(OPhAn)](μ-OPhAn)3[YbII(OPhAn)]·3C7H7 (2), as the major product. It crystallized as a toluene tris­olvate. The Yb—O bond lengths in the crystal structure of this dimer clearly identify the YbII and YbIII centres. Inter­estingly, the formally four-coordinate YbII centre shows a close contact with one anthracene C—C bond of a bridging OPhAn ligand, bringing the formal coordination number to five.




nuc

Crystal and mol­ecular structures of a binuclear mixed ligand complex of silver(I) with thio­cyanate and 1H-1,2,4-triazole-5(4H)-thione

The complete mol­ecule of the binuclear title complex, bis­[μ-1H-1,2,4-triazole-5(4H)-thione-κ2S:S]bis­{(thio­cyanato-κS)[1H-1,2,4-triazole-5(4H)-thione-κS]silver(I)}, [Ag2(SCN)2(C2H3N3S)4], is generated by crystallographic inversion symmetry. The independent triazole-3-thione ligands employ the exocyclic-S atoms exclusively in coordination. One acts as a terminal S-ligand and the other in a bidentate (μ2) bridging mode to provide a link between two AgI centres. Each AgI atom is also coordinated by a terminal S-bound thio­cyanate ligand, resulting in a distorted AgS4 tetra­hedral coordination geometry. An intra­molecular N—H⋯S(thio­cyanate) hydrogen bond is noted. In the crystal, amine-N—H⋯S(thione), N—H⋯N(triazol­yl) and N—H⋯N(thio­cyanate) hydrogen bonds give rise to a three-dimensional architecture. The packing is consolidated by triazolyl-C—H⋯S(thio­cyanate), triazolyl-C—H⋯N(thiocyanate) and S⋯S [3.2463 (9) Å] inter­actions as well as face-to-face π–π stacking between the independent triazolyl rings [inter-centroid separation = 3.4444 (15) Å]. An analysis of the calculated Hirshfeld surfaces shows the three major contributors are due to N⋯H/H⋯N, S⋯H/H⋯S and C⋯H/H⋯C contacts, at 35.8, 19.4 and 12.7%, respectively; H⋯H contacts contribute only 7.6% to the overall surface.




nuc

The first coordination compound of deprotonated 2-bromo­nicotinic acid: crystal structure of a dinuclear paddle-wheel copper(II) complex

A copper(II) dimer with the deprotonated anion of 2-bromo­nicotinic acid (2-BrnicH), namely, tetrakis(μ-2-bromonicotinato-κ2O:O')bis[aquacopper(­II)](Cu—Cu), [Cu2(H2O)2(C6H3BrNO2)4] or [Cu2(H2O)2(2-Brnic)4], (1), was prepared by the reaction of copper(II) chloride dihydrate and 2-bromo­nicotinic acid in water. The copper(II) ion in 1 has a distorted square-pyramidal coordination environment, achieved by four carboxyl­ate O atoms in the basal plane and the water mol­ecule in the apical position. The pair of symmetry-related copper(II) ions are connected into a centrosymmetric paddle-wheel dinuclear cluster [Cu⋯Cu = 2.6470 (11) Å] via four O,O'-bridging 2-bromo­nicotinate ligands in the syn-syn coordination mode. In the extended structure of 1, the cluster mol­ecules are assembled into an infinite two-dimensional hydrogen-bonded network lying parallel to the (001) plane via strong O—H⋯O and O—H⋯N hydrogen bonds, leading to the formation of various hydrogen-bond ring motifs: dimeric R22(8) and R22(16) loops and a tetra­meric R44(16) loop. The Hirshfeld surface analysis was also performed in order to better illustrate the nature and abundance of the inter­molecular contacts in the structure of 1.




nuc

The crystal structures and Hirshfeld surface analyses of a cadmium(II) and a zinc(II) mononuclear complex of the new tetrakis-substituted pyrazine ligand N,N',N'',N'''-[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis

The whole mol­ecule of the cadmium(II) complex, di­iodido­{N,N',N'',N'''-[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(N-methyl­aniline)-κ3N2,N1,N6}cadmium(II), [CdI2(C36H40N6)], (I), of the ligand N,N',N'',N'''-[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(N-methyl­aniline) (L), is generated by a twofold rotation symmetry; the twofold axis bis­ects the cadmium atom and the nitro­gen atoms of the pyrazine ring. The ligand coordinates in a mono-tridentate manner and the cadmium atom has a fivefold CdN3I2 coordination environment with a distorted shape. In the zinc(II) complex, dichlorido{N,N',N'',N'''-[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(N-methyl­aniline)-κ3N2,N1,N6}zinc(II) di­chloro­methane 0.6-solvate, [ZnCl2(C36H40N6)]·0.6CH2Cl2, (II), ligand L also coordinates in a mono-tridentate manner and the zinc atom has a fivefold ZnN3Cl2 coordination environment with a distorted shape. It crystallized as a partial di­chloro­methane solvate. In the crystal of I, the complex mol­ecules are linked by weak C—H⋯I contacts, forming ribbons propagating along [100]. In the crystal of II, the complex mol­ecules are linked by a series of C—H⋯π inter­actions, forming layers lying parallel to the (1overline{1}1) plane. In the crystals of both compounds there are metal–halide⋯π(pyrazine) contacts present. The Hirshfeld analyses confirm the importance of the C—H⋯halide contacts in the crystal packing of both compounds.




nuc

Syntheses and crystal structures of a new pyrazine dicarboxamide ligand, N2,N3-bis­(quinolin-8-yl)pyrazine-2,3-dicarboxamide, and of a copper perchlorate binuclear complex

The title pyrazine dicarboxamide ligand, N2,N3-bis­(quinolin-8-yl)pyrazine-2,3-dicarboxamide (H2L1), C24H16N6O2, has a twisted conformation with the outer quinoline groups being inclined to the central pyrazine ring by 9.00 (6) and 78.67 (5)°, and by 79.94 (4)° to each other. In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming layers parallel to the (10overline{1}) plane, which are in turn linked by offset π–π inter­actions [inter­centroid distances 3.4779 (9) and 3.6526 (8) Å], forming a supra­molecular three-dimensional structure. Reaction of the ligand H2L1 with Cu(ClO4)2 in aceto­nitrile leads to the formation of the binuclear complex, [μ-(3-{hy­droxy[(quinolin-8-yl)imino]­meth­yl}pyrazin-2-yl)[(quinolin-8-yl)imino]­methano­lato]bis­[diaceto­nitrile­copper(II)] tris­(per­chlor­ate) aceto­nitrile disolvate, [Cu2(C24H15N6O2)(CH3CN)4](ClO4)3·2CH3CN or [Cu2(HL1−)(CH3CN)4](ClO4)3·2CH3CN (I). In the cation of complex I, the ligand coordinates to the copper(II) atoms in a bis-tridentate fashion. A resonance-assisted O—H⋯O hydrogen bond is present in the ligand; the position of this H atom was located in a difference-Fourier map. Both copper(II) atoms are fivefold coordinate, being ligated by three N atoms of the ligand and by the N atoms of two aceto­nitrile mol­ecules. The first copper atom has a perfect square-pyramidal geometry while the second copper atom has a distorted shape. In the crystal, the cation and perchlorate anions are linked by a number of C—H⋯O hydrogen bonds, forming a supra­molecular three-dimensional structure.




nuc

A binuclear CuII/CaII thio­cyanate complex with a Schiff base ligand derived from o-vanillin and ammonia

The new heterometallic complex, aqua-1κO-bis­(μ2-2-imino­methyl-6-meth­oxy­phenolato-1κ2O1,O6:2κ2O1,N)bis­(thio­cyanato-1κN)calcium(II)copper(II), [CaCu(C8H8NO2)2(NCS)2(H2O)], has been synthesized using a one-pot reaction of copper powder, calcium oxide, o-vanillin and ammonium thio­cyanate in methanol under ambient conditions. The Schiff base ligand (C8H9NO2) is generated in situ from the condensation of o-vanillin and ammonia, which is released from the initial NH4SCN. The title compound consists of a discrete binuclear mol­ecule with a {Cu(μ-O)2Ca} core, in which the Cu⋯Ca distance is 3.4275 (6) Å. The coordination geometries of the four-coordinate copper atom in the [CuN2O2] chromophore and the seven-coordinate calcium atom in the [CaO5N2] chromophore can be described as distorted square planar and penta­gonal bipyramidal, respectively. In the crystal, O—H⋯S hydrogen bonds between the coordinating water mol­ecules and thio­cyanate groups form a supra­molecular chain with a zigzag-shaped calcium skeleton.




nuc

Probing the structural pathway of conformational polymorph nucleation by comparing a series of α,ω-alkanedicarboxylic acids

Herein the nucleation pathway of conformational polymorphs was revealed by studying the relationships and distinctions among a series of α,ω-alkanedicarboxylic acids [HOOC–(CH2)n−2–COOH, named DAn, where n = 5, 7, 9, 11, 13, 15] in the solid state and in solution. Their polymorphic outcomes, with the exception of DA5, show solvent dependence: form I with conformation I crystallizes from solvents with hydrogen-bond donating (HBD) ability, whereas form II with conformation II crystallizes preferentially from solvents with no HBD ability. In contrast, form II of DA5 does not crystallize in any of the solvents used. Quantum mechanical computation showed that there is no direct conformational link between the solvents and the resultant polymorphic outcomes. Surprisingly, solute aggregates were found in no-HBD solvents by Fourier transform infrared spectroscopy, and only monomers could be detected in HBD solvents, suggesting stronger solvation. Furthermore, it was found that all six compounds including DA5 followed the same pattern in solution. Moreover, crystal-packing efficiency calculations and stability tests stated that dimorphs of DA5 bear a greater stability difference than others. These suggest that the rearrangement from conformation II to I could not be limited by hard desolvation in HBD solvents, where form I was also obtained. In other systems, metastable II was produced in the same solvents, probably as a result of the rearrangement being limited by hard desolvation. In this work, a comparative study uncovers the proposed nucleation pathway: difficulty in desolvation has a remarkable effect on the result of rearrangement and nucleation outcome.




nuc

A structural study of TatD from Staphylococcus aureus elucidates a putative DNA-binding mode of a Mg2+-dependent nuclease

TatD has been thoroughly investigated as a DNA-repair enzyme and an apoptotic nuclease, and still-unknown TatD-related DNases are considered to play crucial cellular roles. However, studies of TatD from Gram-positive bacteria have been hindered by an absence of atomic detail and the resulting inability to determine function from structure. In this study, an X-ray crystal structure of SAV0491, which is the TatD enzyme from the Gram-positive bacterium Staphylococcus aureus (SaTatD), is reported at a high resolution of 1.85 Å with a detailed atomic description. Although SaTatD has the common TIM-barrel fold shared by most TatD-related homologs, and PDB entry 2gzx shares 100% sequence identity with SAV0491, the crystal structure of SaTatD revealed a unique binding mode of two phosphates interacting with two Ni2+ ions. Through a functional study, it was verified that SaTatD has Mg2+-dependent nuclease activity as a DNase and an RNase. In addition, structural comparison with TatD homologs and the identification of key residues contributing to the binding mode of Ni2+ ions and phosphates allowed mutational studies to be performed that revealed the catalytic mechanism of SaTatD. Among the key residues composing the active site, the acidic residues Glu92 and Glu202 had a critical impact on catalysis by SaTatD. Furthermore, based on the binding mode of the two phosphates and structural insights, a putative DNA-binding mode of SaTatD was proposed using in silico docking. Overall, these findings may serve as a good basis for understanding the relationship between the structure and function of TatD proteins from Gram-positive bacteria and may provide critical insights into the DNA-binding mode of SaTatD.




nuc

Molecular conformational evolution mechanism during nucleation of crystals in solution

Nucleation of crystals from solution is fundamental to many natural and industrial processes. In this work, the molecular mechanism of conformational polymorphism nucleation and the links between the molecular conformation in solutions and in crystals were investigated in detail by using 5-nitro­furazone as the model compound. Different polymorphs were prepared, and the conformations in solutions obtained by dissolving different polymorphs were analysed and compared. The solutions of 5-nitro­furazone were proven to contain multiple conformers through quantum chemical computation, Raman spectra analysis, 2D nuclear Overhauser effect spectroscopy spectra analysis and molecular dynamics simulation. The conformational evolution and desolvation path was illustrated according to the 1H NMR spectra of solutions with different concentrations. Finally, based on all the above analysis, the molecular conformational evolution path during nucleation of 5-nitro­furazone was illustrated. The results presented in this work shed a new light on the molecular mechanism of conformational polymorphism nucleation in solution.




nuc

The flavin mononucleotide cofactor in α-hydroxyacid oxidases exerts its electrophilic/nucleophilic duality in control of the substrate-oxidation level

The Y128F single mutant of p-hydroxymandelate oxidase (Hmo) is capable of oxidizing mandelate to benzoate via a four-electron oxidative decarboxylation reaction. When benzoylformate (the product of the first two-electron oxidation) and hydrogen peroxide (an oxidant) were used as substrates the reaction did not proceed, suggesting that free hydrogen peroxide is not the committed oxidant in the second two-electron oxidation. How the flavin mononucleotide (FMN)-dependent four-electron oxidation reaction takes place remains elusive. Structural and biochemical explorations have shed new light on this issue. 15 high-resolution crystal structures of Hmo and its mutants liganded with or without a substrate reveal that oxidized FMN (FMNox) possesses a previously unknown electrophilic/nucleophilic duality. In the Y128F mutant the active-site perturbation ensemble facilitates the polarization of FMNox to a nucleophilic ylide, which is in a position to act on an α-ketoacid, forming an N5-acyl-FMNred dead-end adduct. In four-electron oxidation, an intramolecular disproportion­ation reaction via an N5-alkanol-FMNred C'α carbanion intermediate may account for the ThDP/PLP/NADPH-independent oxidative decarboxylation reaction. A synthetic 5-deaza-FMNox cofactor in combination with an α-hydroxyamide or α-ketoamide biochemically and structurally supports the proposed mechanism.




nuc

Insight into the role of pre-assembly and desolvation in crystal nucleation: a case of p-nitro­benzoic acid

As one of the most important phenomena in crystallization, the crystal nucleation process has always been the focus of research. In this work, influences of pre-assembly species and the desolvation process on the crystal nucleation process were studied. p-Nitro­benzoic acid (PNBA) was taken as a model compound to investigate the relationship between solution chemistry and nucleation kinetics in seven different solvents. One unsolvated form and four solvates of PNBA were obtained and one of the solvates was newly discovered. The nucleation behaviours and nucleation kinetics of PNBA in the seven solvents were studied and analyzed. Density functional theory (DFT) and solvation energy calculation were adopted to evaluate the strength of solute–solvent interactions. Vibrational spectroscopy combined with molecular simulation was applied to reveal the pre-assembly species in the solution. Based on these results, a comprehensive understanding of the relationship between molecular structure, crystal structure, solution chemistry and nucleation dynamics was proposed and discussed. It was found that the structural similarity between solution chemistry and crystal structure, the interaction between specific sites and the overall strength of solvation will jointly affect the nucleation process.




nuc

Solid/liquid-interface-dependent synthesis and immobilization of copper-based particles nucleated by X-ray-radiolysis-induced photochemical reaction