meth (2,5-Dimethylimidazole){N,N',N'',N'''-[porphyrin-5,10,15,20-tetrayltetra(2,1-phenylene)]tetrakis(pyridine-3-carboxamide)}manganese(II) chlorobenzene disolvate By journals.iucr.org Published On :: 2024-06-04 In the title compound, [Mn(C68H44N12O4)(C5H8N2)]·2C6H5Cl, the central MnII ion is coordinated by four pyrrole N atoms of the porphyrin core in the basal sites and one N atom of the 2,5-dimethylimidazole ligand in the apical site. Two chlorobenzene solvent molecules are also present in the asymmetric unit. Due to the apical imidazole ligand, the Mn atom is displaced out of the 24-atom porphyrin mean plane by 0.66 Å. The average Mn—Np (p = porphyrin) bond length is 2.143 (8) Å, and the axial Mn—NIm (Im = 2,5-dimethylimidazole) bond length is 2.171 (8) Å. The structure displays intermolecular and intramolecular N—H⋯O, N—H⋯N, C—H⋯O and C—H⋯N hydrogen bonding. The crystal studied was refined as a two-component inversion twin. Full Article text
meth Triacetonitrile(1,4,7-trimethyl-1,4,7-triazacyclononane)cobalt(II) bis(tetraphenylborate) By journals.iucr.org Published On :: 2024-06-11 The title cobalt(II) complex, [Co(C2H3N)3(C9H21N3)](C24H20B)2 or [(tacn)Co(NCMe)3][BPh4]2, has been characterized by single-crystal X-ray diffraction. It incorporates the well-known macrocyclic tacn (1,4,7-trimethyl-1,4,7-triazacyclononane) ligand, which is coordinated facially to the metal center. The complex crystallizes in space group P21/c with Z = 4. The divalent cobalt ion exhibits a six-coordinate octahedral geometry by one tacn and three acetonitrile ligands. Two non-coordinating tetraphenylborate (BPh4−) anions are also present. Full Article text
meth Bis{(S)-(−)-N-[(2-biphenyl)methylidene]-1-(4-methoxyphenyl)ethylamine-κN}dichloridopalladium(II) By journals.iucr.org Published On :: 2024-06-16 The PdII complex bis{(S)-(−)-N-[(biphenyl-2-yl)methylidene]1-(4-methoxyphenyl)ethanamine-κN}dichloridopalladium(II), [PdCl2(C22H21NO)2], crystallizes in the monoclinic Sohncke space group P21 with a single molecule in the asymmetric unit. The coordination environment around the palladium is slightly distorted square planar. The N—Pd—Cl bond angles are 91.85 (19), 88.10 (17), 89.96 (18), and 90.0 (2)°, while the Pd—Cl and Pd—N bond lengths are 2.310 (2) and 2.315 (2) Å and 2.015 (2) and 2.022 (6) Å, respectively. The crystal structure features intermolecular N—H⋯Cl and intramolecular C—H⋯Pd interactions, which lead to the formation of a supramolecular framework structure. Full Article text
meth 6-[4-(tert-Butyldimethylsilyloxy)phenyl]-1-oxaspiro[2.5]heptane By journals.iucr.org Published On :: 2024-06-21 The title compound, C19H30O2Si, has triclinic (Poverline{1}) symmetry at 100 K. The O atom of the epoxide group has a pseudoaxial orientation and the dihedral angle between the cyclohexyl and benzene rings is 85.80 (8)°. The C—O—Si—Ct (t = tert-butyl) torsion angle is −177.40 (14)°. In the crystal, pairwise C—H⋯O links connect the molecules into inversion dimers featuring R22(8) loops. Full Article text
meth trans-Diaquatetrakis(tetrahydrofuran-κO)iron(II) μ-carbonyl-tetradecacarbonyltetrachlorido-μ-dimethylsilanediolato-tetragalliumtetrairon(7 Ga–Fe)(Fe–Fe) tetrahydro By journals.iucr.org Published On :: 2024-06-28 The title compound, [Fe(C4H8O)4(H2O)2][Fe4Ga4(C2H6O2Si)Cl4(CO)15]·4C4H8O, consists of an iron(II) cation octahedrally coordinated by two water molecules (trans) with four tetrahydrofurans (THF) at equatorial sites. Two additional THF molecules are hydrogen bonded to each of the water molecules. The dianion of the title compound is an organometallic butterfly complex with a dimethyl siloxane core and two iron-gallium fragments. The lengths of the iron to gallium metal–metal bonds range from 2.3875 (6) to 2.4912 (6) Å. Full Article text
meth [1-(Anthracen-9-ylmethyl)-1,4,7,10-tetraazacyclododecane]chloridozinc(II) nitrate By journals.iucr.org Published On :: 2024-07-12 In the title salt, [ZnCl(C23H30N4)]NO3, the central ZnII atom of the complex cation is coordinated in a square-pyramidal arrangement by four nitrogen atoms from cyclen (1,4,7,10-tetraazacyclododecane) in the basal plane and one chlorido ligand in the apical position. The anthracene group attached to cyclen contributes to the crystal packing through intermolecular T-shaped π interactions. Additionally, the nitrate anion participates in intermolecular N—H⋯O hydrogen bonds with cyclen. Full Article text
meth Dichloridotetrakis(3-methoxyaniline)nickel(II) By journals.iucr.org Published On :: 2024-08-13 The reaction of nickel(II) chloride with 3-methoxyaniline yielded dichloridotetrakis(3-methoxyaniline)nickel(II), [NiCl2(C7H9NO)4], as yellow crystals. The NiII ion is pseudo-octahedral with the chloride ions trans to each other. The four 3-methoxyaniline ligands differ primarily due to different conformations about the Ni—N bond, which also affect the hydrogen bonding. Intermolecular N—H⋯ Cl hydrogen bonds and short Cl⋯Cl contacts between molecules link them into chains parallel to the b axis. Full Article text
meth Methyl 2-[(Z)-5-bromo-2-oxoindolin-3-ylidene]hydrazinecarbodithioate By journals.iucr.org Published On :: 2024-08-16 The title compound, C10H8BrN3OS2, a brominated dithiocarbazate imine derivative, was obtained from the condensation reaction of S-methyldithiocarbazate (SMDTC) and 5-bromoisatin. The essentially planar molecule exhibits a Z configuration, with the dithiocarbazate and 5-bromoisatin fragments located on the same sides of the C=N azomethine bond, which allows for the formation of an intramolecular N—H⋯Ob (b = bromoisatin) hydrogen bond generating an S(6) ring motif. In the crystal, adjacent molecules are linked by pairs of N—H⋯O hydrogen bonds, forming dimers characterized by an R22(8) loop motif. In the extended structure, molecules are linked into a three-dimensional network by C—H⋯S and C—H⋯Br hydrogen bonds, C—Br⋯S halogen bonds and aromatic π–π stacking. Full Article text
meth Bis[μ-3-(pyridin-2-yl)pyrazolato]bis[acetato(3,5-dimethyl-1H-pyrazole)nickel(II)] By journals.iucr.org Published On :: 2024-08-30 The title compound, [Ni2(C8H6N3)2(C2H3O2)2(C5H8N2)2] or [Ni(μ-OOCCH3)(2-PyPz)(Me2PzH)]2 (1) [2-PyPz = 3-(pyridin-2-yl) pyrazole; Me2PzH = 3,5-dimethyl pyrazole] was synthesized from Ni(OOCCH3)2·4H2O, 2-PyPzH, Me2PzH and triethylamine as a base. Compound 1 {[Ni2(C30H34N10Ni2O4)]} at 100 K has monoclinic (P21/n) symmetry and the molecules have crystallographic inversion symmetry. Molecules of 1 comprise an almost planar dinuclear NiII core with an N4O2 coordination environment. The equatorial plane consists of N3,O coordination derived from one of the bidentate acetate O atoms and three of the N atoms of the chelating 2-PyPz ligand while the axial positions are occupied by neutral Me2PzH and the second O atom of the acetate unit. The Ni atoms are bridged by the nitrogen atom of a deprotonated 2-PyPz ligand. Compound 1 exhibits various inter- and intramolecular C—H⋯O and N—H⋯O hydrogen bonds. Full Article text
meth μ-Chlorido-bis{[1-benzyl-3-(2,4,6-trimethylphenyl)imidazol-2-ylidene-κC]silver(I)} chloride 1,2-dichloroethane hemisolvate By journals.iucr.org Published On :: 2024-09-10 The title compound, [Ag2(C19H20N2)4]Cl·0.5C2H4Cl2, can be readily generated by treatment of (1-benzyl-3-(2,4,6-trimethylphenyl)imidazolium chloride with sodium bis(trimethylsilyl)amide followed by silver chloride. The molecular structure of the compound was confirmed using NMR spectroscopy and single-crystal X-ray diffraction analysis. The crystal structure of the title compound at 110 K has monoclinic (P21/c) symmetry. The represented silver compound is of interest with respect to antibacterial properties and the structure displays a series of weak intermolecular hydrogen-bonding interactions with the chloride counter-anion. Full Article text
meth Bis[2-(isoquinolin-1-yl)phenyl-κ2N,C1](2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline-κ2N,N')iridium(III) hexafluoridophosphate methanol monosolvate By journals.iucr.org Published On :: 2024-09-06 The title compound, [Ir(C15H10N)2(C19H12N4)]PF6·CH3OH, crystallizes in the C2/c space group with one monocationic iridium complex, one hexafluoridophosphate anion, and one methanol solvent molecule of crystallization in the asymmetric unit, all in general positions. The anion and solvent are linked to the iridium complex cation via hydrogen bonding. All bond lengths and angles fall into expected ranges compared to similar compounds. Full Article text
meth (E)-1-(3,4-Dimethoxyphenyl)-3-(1,3-diphenyl-1H-pyrazol-4-yl)prop-2-en-1-one By journals.iucr.org Published On :: 2024-09-06 In the title compound, C26H22N2O3, the dihedral angle between the benzene and pyrazole rings of the chalcone unit is 88.3 (1)°. The pyrazole ring has two attached phenyl rings that form dihedral angles with the pyrazole ring of 22.6 (2) and 40.0 (1)°. In the crystal, pairwise C—H⋯O hydrogen bonds generate R22(20) inversion dimers. Full Article text
meth Redetermined structure of methyl 3-{4,4-difluoro-2-[2-(methoxycarbonyl)ethyl]-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacen-6-yl}propionate By journals.iucr.org Published On :: 2024-09-17 In the title compound, C21H27BF2N2O4, a highly fluorescent boron–dipyrromethene dye, the methylpropionate moieties have different conformations. In the crystal, weak C—H⋯F and C—H⋯O interactions link the molecules. Some optical properties are presented. Full Article text
meth (1R,2S,4aR,6S,8R,8aS)-1-(3-Hydroxypropanoyl)-1,3,6,8-tetramethyl-1,2,4a,5,6,7,8,8a-octahydronaphthalene-2-carboxylic acid By journals.iucr.org Published On :: 2024-09-17 The molecular structure of C18H28O4, (+)-diplodiatoxin, is described, whereby the absolute configuration of the structure of diplodiatoxin has been confirmed by single-crystal X-ray diffraction. Diplodiatoxin crystallizes in the chiral P43212 space group with one molecule in the asymmetric unit. Full Article text
meth 1,4-Dimethylpiperazine-2,3-dione By journals.iucr.org Published On :: 2024-10-04 In the title compound, C6H10N2O2, the piperazine-2,3-dione ring adopts a half-chair conformation. In the crystal, the molecules are linked by weak C—H⋯O hydrogen bonds, forming (010) sheets. Full Article text
meth [(1,2,5,6-η)-Cycloocta-1,5-diene](1-ethyl-4-isobutyl-1,2,4-triazol-5-ylidene)(triphenylphosphane)iridium(I) tetrafluoridoborate dichloromethane hemisolvate By journals.iucr.org Published On :: 2024-09-30 A new triazole-based N-heterocyclic carbene IrI cationic complex with a tetrafluoridoborate counter-anion and hemi-solvating dichloromethane, [Ir(C8H12)(C8H15N3)(C18H15P)]BF4·0.5CH2Cl2, has been synthesized and structurally characterized. There are two independent ion pairs in the asymmetric unit and one dichloromethane solvent molecule per two ion pairs. The cationic complex exhibits a distorted square-planar conformation around the IrI atom, formed by a bidentate cycloocta-1,5,diene (COD) ligand, a triphenylphosphane ligand, and an N-heterocyclic carbene (NHC). There are several close non-standard H⋯F hydrogen-bonding interactions that orient the tetrafluoridoborate anions with respect to the IrI complex molecules. The complex shows promising catalytic activity in transfer hydrogenation reactions. The structure was refined as a non-merohedral twin, and one of the COD molecules is statistically disordered. Full Article text
meth Methyl 2-[(Z)-5-methyl-2-oxoindolin-3-ylidene]hydrazinecarbodithioate By journals.iucr.org Published On :: 2024-10-08 The title dithiocarbazate imine, C11H11N3OS2, was obtained from the condensation reaction of S-methyldithiocarbazate (SMDTC) and 5-methylisatin. It shows a Z configuration about the imine C=N bond, which is associated with an intramolecular N—H⋯O hydrogen bond that closes an S(6) ring. In the crystal, inversion dimers linked by pairwise N—H⋯O hydrogen bonds generate R22(8) loops. The extended structure features C—H⋯S contacts as well as reciprocal carbonyl–carbonyl (C=O⋯C=O) interactions. Full Article text
meth (Z)-N-(2,6-Diisopropylphenyl)-1-[(2-methoxyphenyl)amino]methanimine oxide By journals.iucr.org Published On :: 2024-10-21 The molecular structure of the title compound, C20H26N2O2 reveals non-co-planarity between the central formamidine backbone and each of the outer methoxy- and i-propyl- substituted benzene rings with dihedral angles of 7.88 (15) and 81.17 (15)°, respectively, indicating significant twists in the molecule. In the crystal, intermolecular C—H⋯O interactions, forming an R34(30) graph set, occur within a two-dimensional layer that extends along the ac plane. Full Article text
meth (Z)-N-(2,6-Dimethylphenyl)-1-[(2-methoxyphenyl)amino]methanimine oxide methanol monosolvate By journals.iucr.org Published On :: 2024-10-21 In the title solvate, C16H18N2O2·CH4O, the dihedral angles between the formamidine backbone and the pendant 2-methoxyphenyl and 2,6-dimethylphenyl groups are 14.84 (11) and 81.61 (12)°, respectively. In the crystal, the components are linked by C—H⋯O, O—H⋯O and C—H⋯ π hydrogen bonds, generating a supramolecular chain that extends along the crystallographic a-axis direction. Full Article text
meth (1H-Benzodiazol-2-ylmethyl)diethylamine By journals.iucr.org Published On :: 2024-10-31 In the crystal of the title compound, C12H17N3, the molecules are linked by N—H⋯N hydrogen bonds, generating a C(4) chain extending along the c-axis direction. One of the ethyl groups is disordered over two sets of sites with a refined occupancy ratio of 0.582 (15):0.418 (15). Full Article text
meth meso-5,15-Bis[3-(isopropylidenegalactopyranoxy)phenyl]-10,20-bis(4-methylphenyl)porphyrin By journals.iucr.org Published On :: 2024-10-24 The crystal structure of a glycosylated porphyrin (P_Gal2) system, C70H70N4O12, where two isopropylidene protected galactose moieties are attached to the meso position of a substituted tetraaryl porphyrin is reported. This structure reveals that the parent porphyrin is planar, with the galactose moieties positioned above and below the porphyrin macrocycle. This orientation likely prevents porphyrin–porphyrin H-type aggregation, potentially enhancing its efficiency as a photosensitizer in photodynamic therapy. Notable non-bonding C—H⋯O and C—H⋯π interactions among adjacent P_Gal2 systems are observed in this crystal network. Additionally, the tolyl groups of each porphyrin can engage in π–π interactions with the delocalized π-systems of neighboring porphyrins. Full Article text
meth Relationship between synthesis method–crystal structure–melting properties in cocrystals: the case of caffeine–citric acid By journals.iucr.org Published On :: 2024-05-07 The influence of the crystal synthesis method on the crystallographic structure of caffeine–citric acid cocrystals was analyzed thanks to the synthesis of a new polymorphic form of the cocrystal. In order to compare the new form to the already known forms, the crystal structure of the new cocrystal (C8H10N4O2·C6H8O7) was solved by powder X-ray diffraction thanks to synchrotron experiments. The structure determination was performed using `GALLOP', a recently developed hybrid approach based on a local optimization with a particle swarm optimizer, particularly powerful when applied to the structure resolution of materials of pharmaceutical interest, compared to classical Monte-Carlo simulated annealing. The final structure was obtained through Rietveld refinement, and first-principles density functional theory (DFT) calculations were used to locate the H atoms. The symmetry is triclinic with the space group Poverline{1} and contains one molecule of caffeine and one molecule of citric acid per asymmetric unit. The crystallographic structure of this cocrystal involves different hydrogen-bond associations compared to the already known structures. The analysis of these hydrogen bonds indicates that the cocrystal obtained here is less stable than the cocrystals already identified in the literature. This analysis is confirmed by the determination of the melting point of this cocrystal, which is lower than that of the previously known cocrystals. Full Article text
meth Using cocrystals as a tool to study non-crystallizing molecules: crystal structure, Hirshfeld surface analysis and computational study of the 1:1 cocrystal of (E)-N-(3,4-difluorophenyl)-1-(pyridin-4-yl)methanimine and acetic By journals.iucr.org Published On :: 2024-07-05 Using a 1:1 cocrystal of (E)-N-(3,4-difluorophenyl)-1-(pyridin-4-yl)methanimine with acetic acid, C12H8F2N2·C2H4O2, we investigate the influence of F atoms introduced to the aromatic ring on promoting π–π interactions. The cocrystal crystallizes in the triclinic space group P1. Through crystallographic analysis and computational studies, we reveal the molecular arrangement within this cocrystal, demonstrating the presence of hydrogen bonding between the acetic acid molecule and the pyridyl group, along with π–π interactions between the aromatic rings. Our findings highlight the importance of F atoms in promoting π–π interactions without necessitating full halogenation of the aromatic ring. Full Article text
meth Crystal structure elucidation of a geminal and vicinal bis(trifluoromethanesulfonate) ester By journals.iucr.org Published On :: 2024-06-14 Geminal and vicinal bis(trifluoromethanesulfonate) esters are highly reactive alkylene synthons used as potent electrophiles in the macrocyclization of imidazoles and the transformation of bypyridines to diquat derivatives via nucleophilic substitution reactions. Herein we report the crystal structures of methylene (C3H2F6O6S2) and ethylene bis(trifluoromethanesulfonate) (C4H4F6O6S2), the first examples of a geminal and vicinal bis(trifluoromethanesulfonate) ester characterized by single-crystal X-ray diffraction (SC-XRD). With melting points slightly below ambient temperature, both reported bis(trifluoromethanesulfonate)s are air- and moisture-sensitive oils and were crystallized at 277 K to afford two-component non-merohedrally twinned crystals. The dominant interactions present in both compounds are non-classical C—H⋯O hydrogen bonds and intermolecular C—F⋯F—C interactions between trifluoromethyl groups. Molecular electrostatic potential (MEP) calculations by DFT-D3 helped to quantify the polarity between O⋯H and F⋯F contacts to rationalize the self-sorting of both bis(trifluoromethanesulfonate) esters in polar (non-fluorous) and non-polar (fluorous) domains within the crystal structure. Full Article text
meth 3-[(Benzo-1,3-dioxol-5-yl)amino]-4-methoxycyclobut-3-ene-1,2-dione: polymorphism and twinning of a precursor to an antimycobacterial squaramide By journals.iucr.org Published On :: 2024-07-05 The title compound, 3-[(benzo-1,3-dioxol-5-yl)amino]-4-methoxycyclobut-3-ene-1,2-dione, C12H9NO5 (3), is a precursor to an antimycobacterial squaramide. Block-shaped crystals of a monoclinic form (3-I, space group P21/c, Z = 8, Z' = 2) and needle-shaped crystals of a triclinic form (3-II, space group P-1, Z = 4, Z' = 2) were found to crystallize concomitantly. In both crystal forms, R22(10) dimers assemble through N—H⋯O=C hydrogen bonds. These dimers are formed from crystallographically unique molecules in 3-I, but exhibit crystallographic Ci symmetry in 3-II. Twinning by pseudomerohedry was encountered in the crystals of 3-II. The conformations of 3 in the solid forms 3-I and 3-II are different from one another but are similar for the unique molecules in each polymorph. Density functional theory (DFT) calculations on the free molecule of 3 indicate that a nearly planar conformation is preferred. Full Article text
meth Occupational modulation in the (3+1)-dimensional incommensurate structure of (2S,3S)-2-amino-3-hydroxy-3-methyl-4-phenoxybutanoic acid dihydrate By journals.iucr.org Published On :: 2024-08-08 The incommensurately modulated structure of (2S,3S)-2-amino-3-hydroxy-3-methyl-4-phenoxybutanoic acid dihydrate (C11H15NO4·2H2O or I·2H2O) is described in the (3+1)-dimensional superspace group P212121(0β0)000 (β = 0.357). The loss of the three-dimensional periodicity is ascribed to the occupational modulation of one positionally disordered solvent water molecule, where the two positions are related by a small translation [ca 0.666 (9) Å] and ∼168 (5)° rotation about one of its O—H bonds, with an average 0.624 (3):0.376 (3) occupancy ratio. The occupational modulation of this molecule arises due to the competition between the different hydrogen-bonding motifs associated with each position. The structure can be very well refined in the average approximation (all satellite reflections disregarded) in the space group P212121, with the water molecule refined as disordered over two positions in a 0.625 (16):0.375 (16) ratio. The refinement in the commensurate threefold supercell approximation in the space group P1121 is also of high quality, with the six corresponding water molecules exhibiting three different occupancy ratios averaging 0.635:0.365. Full Article text
meth Coordination variety of phenyltetrazolato and dimethylamido ligands in dimeric Ti, Zr, and Ta complexes By journals.iucr.org Published On :: 2024-08-23 Three structurally diverse 5-phenyltetrazolato (Tz) Ti, Zr, and Ta complexes, namely, (C2H8N)[Ti2(C7H5N4)5(C2H6N)4]·1.45C6H6 or (Me2NH2)[Ti2(NMe2)4(2,3-μ-Tz)3(2-η1-Tz)2]·1.45C6H6, (1·1.45C6H6), [Zr2(C7H5N4)6(C2H6N)2(C2H7N)2]·1.12C6H6·0.382CH2Cl2 or [Zr2(Me2NH)2(NMe2)2(2,3-μ-Tz)3(2-η1-Tz)2(1,2-η2-Tz)]·1.12C6H6·0.38CH2Cl2 (2·1.12C6H6·0.38CH2Cl2), and (C2H8N)2[Ta2(C7H5N4)8(C2H6N)2O]·0.25C7H8 or (Me2NH2)2[Ta2(NMe2)2(2,3-μ-Tz)2(2-η1-Tz)6O]·0.25C7H8 (3·0.25C7H8), where TzH is 5-phenyl-1H-tetrazole, have been synthesized and structurally characterized. All three complexes are dinuclear; the Ti center in 1 is six-coordinate, whereas the Zr and Ta atoms in 2 and 3 are seven-coordinate. The coordination environments of the Ti centers in 1 are similar, and so are the ligations of the Ta centers in 3. In contrast, the two Zr centers in 2 bear a different number of ligands, one of which is a bidentate η2-5-phenyltetrazolato ligand that has not been observed previously for d-block elements. The dimethylamido ligand, present in the starting materials, remained unchanged, or was converted to dimethylamine and dimethylammonium during the synthesis. Dimethylamine coordinates as a neutral ligand, whereas dimethylammonium is retained as a hydrogen-bonded entity bridging Tz ligands. Full Article text
meth Methods in molecular photocrystallography By journals.iucr.org Published On :: 2024-09-04 Over the last three decades, the technology that makes it possible to follow chemical processes in the solid state in real time has grown enormously. These studies have important implications for the design of new functional materials for applications in optoelectronics and sensors. Light–matter interactions are of particular importance, and photocrystallography has proved to be an important tool for studying these interactions. In this technique, the three-dimensional structures of light-activated molecules, in their excited states, are determined using single-crystal X-ray crystallography. With advances in the design of high-power lasers, pulsed LEDs and time-gated X-ray detectors, the increased availability of synchrotron facilities, and most recently, the development of XFELs, it is now possible to determine the structures of molecules with lifetimes ranging from minutes down to picoseconds, within a single crystal, using the photocrystallographic technique. This review discusses the procedures for conducting successful photocrystallographic studies and outlines the different methodologies that have been developed to study structures with specific lifetime ranges. The complexity of the methods required increases considerably as the lifetime of the excited state shortens. The discussion is supported by examples of successful photocrystallographic studies across a range of timescales and emphasises the importance of the use of complementary analytical techniques in order to understand the solid-state processes fully. Full Article text
meth Characterization of novel mevalonate kinases from the tardigrade Ramazzottius varieornatus and the psychrophilic archaeon Methanococcoides burtonii By journals.iucr.org Published On :: 2024-02-27 Mevalonate kinase is central to the isoprenoid biosynthesis pathway. Here, high-resolution X-ray crystal structures of two mevalonate kinases are presented: a eukaryotic protein from Ramazzottius varieornatus and an archaeal protein from Methanococcoides burtonii. Both enzymes possess the highly conserved motifs of the GHMP enzyme superfamily, with notable differences between the two enzymes in the N-terminal part of the structures. Biochemical characterization of the two enzymes revealed major differences in their sensitivity to geranyl pyrophosphate and farnesyl pyrophosphate, and in their thermal stabilities. This work adds to the understanding of the structural basis of enzyme inhibition and thermostability in mevalonate kinases. Full Article text
meth Protonation of histidine rings using quantum-mechanical methods By journals.iucr.org Published On :: 2024-07-25 Histidine can be protonated on either or both of the two N atoms of the imidazole moiety. Each of the three possible forms occurs as a result of the stereochemical environment of the histidine side chain. In an atomic model, comparing the possible protonation states in situ, looking at possible hydrogen bonding and metal coordination, it is possible to predict which is most likely to be correct. A more direct method is described that uses quantum-mechanical methods to calculate, also in situ, the minimum geometry and energy for comparison, and therefore to more accurately identify the most likely protonation state. Full Article text
meth Cryo2RT: a high-throughput method for room-temperature macromolecular crystallography from cryo-cooled crystals By journals.iucr.org Published On :: 2024-07-25 Advances in structural biology have relied heavily on synchrotron cryo-crystallography and cryogenic electron microscopy to elucidate biological processes and for drug discovery. However, disparities between cryogenic and room-temperature (RT) crystal structures pose challenges. Here, Cryo2RT, a high-throughput RT data-collection method from cryo-cooled crystals that leverages the cryo-crystallography workflow, is introduced. Tested on endothiapepsin crystals with four soaked fragments, thaumatin and SARS-CoV-2 3CLpro, Cryo2RT reveals unique ligand-binding poses, offers a comparable throughput to cryo-crystallography and eases the exploration of structural dynamics at various temperatures. Full Article text
meth Solving protein structures by combining structure prediction, molecular replacement and direct-methods-aided model completion By journals.iucr.org Published On :: 2024-01-13 Highly accurate protein structure prediction can generate accurate models of protein and protein–protein complexes in X-ray crystallography. However, the question of how to make more effective use of predicted models for completing structure analysis, and which strategies should be employed for the more challenging cases such as multi-helical structures, multimeric structures and extremely large structures, both in the model preparation and in the completion steps, remains open for discussion. In this paper, a new strategy is proposed based on the framework of direct methods and dual-space iteration, which can greatly simplify the pre-processing steps of predicted models both in normal and in challenging cases. Following this strategy, full-length models or the conservative structural domains could be used directly as the starting model, and the phase error and the model bias between the starting model and the real structure would be modified in the direct-methods-based dual-space iteration. Many challenging cases (from CASP14) have been tested for the general applicability of this constructive strategy, and almost complete models have been generated with reasonable statistics. The hybrid strategy therefore provides a meaningful scheme for X-ray structure determination using a predicted model as the starting point. Full Article text
meth Benchmarking predictive methods for small-angle X-ray scattering from atomic coordinates of proteins using maximum likelihood consensus data By journals.iucr.org Published On :: 2024-07-10 Stimulated by informal conversations at the XVII International Small Angle Scattering (SAS) conference (Traverse City, 2017), an international team of experts undertook a round-robin exercise to produce a large dataset from proteins under standard solution conditions. These data were used to generate consensus SAS profiles for xylose isomerase, urate oxidase, xylanase, lysozyme and ribonuclease A. Here, we apply a new protocol using maximum likelihood with a larger number of the contributed datasets to generate improved consensus profiles. We investigate the fits of these profiles to predicted profiles from atomic coordinates that incorporate different models to account for the contribution to the scattering of water molecules of hydration surrounding proteins in solution. Programs using an implicit, shell-type hydration layer generally optimize fits to experimental data with the aid of two parameters that adjust the volume of the bulk solvent excluded by the protein and the contrast of the hydration layer. For these models, we found the error-weighted residual differences between the model and the experiment generally reflected the subsidiary maxima and minima in the consensus profiles that are determined by the size of the protein plus the hydration layer. By comparison, all-atom solute and solvent molecular dynamics (MD) simulations are without the benefit of adjustable parameters and, nonetheless, they yielded at least equally good fits with residual differences that are less reflective of the structure in the consensus profile. Further, where MD simulations accounted for the precise solvent composition of the experiment, specifically the inclusion of ions, the modelled radius of gyration values were significantly closer to the experiment. The power of adjustable parameters to mask real differences between a model and the structure present in solution is demonstrated by the results for the conformationally dynamic ribonuclease A and calculations with pseudo-experimental data. This study shows that, while methods invoking an implicit hydration layer have the unequivocal advantage of speed, care is needed to understand the influence of the adjustable parameters. All-atom solute and solvent MD simulations are slower but are less susceptible to false positives, and can account for thermal fluctuations in atomic positions, and more accurately represent the water molecules of hydration that contribute to the scattering profile. Full Article text
meth From formulation to structure: 3D electron diffraction for the structure solution of a new indomethacin polymorph from an amorphous solid dispersion By journals.iucr.org Published On :: 2024-08-28 3D electron diffraction (3DED) is increasingly employed to determine molecular and crystal structures from micro-crystals. Indomethacin is a well known, marketed, small-molecule non-steroidal anti-inflammatory drug with eight known polymorphic forms, of which four structures have been elucidated to date. Using 3DED, we determined the structure of a new ninth polymorph, σ, found within an amorphous solid dispersion, a product formulation sometimes used for active pharmaceutical ingredients with poor aqueous solubility. Subsequently, we found that σ indomethacin can be produced from direct solvent evaporation using dichloromethane. These results demonstrate the relevance of 3DED within drug development to directly probe product formulations. Full Article text
meth Crystal structure and Hirshfeld surface analysis of (2Z)-3-oxo-N-phenyl-2-[(1H-pyrrol-2-yl)methylidene]butanamide monohydrate By journals.iucr.org Published On :: 2023-11-14 In the title compound, C15H14N2O2·H2O, the 1H-pyrrole ring makes a dihedral angle of 59.95 (13)° with the phenyl ring. In the crystal, the molecules are connected by C—H⋯O hydrogen bonds into layers parallel to the (020) plane, while two molecules are connected to the water molecule by two N—H⋯O hydrogen bonds and one molecule by an O—H⋯O hydrogen bond. C—H⋯π and π–π interactions further link the molecules into chains extending in the [overline{1}01] direction and stabilize the molecular packing. According to a Hirshfeld surface study, H⋯H (49.4%), C⋯H/H⋯C (23.2%) and O⋯H/H⋯O (20.0%) interactions are the most significant contributors to the crystal packing. Full Article text
meth Synthesis, structure and Hirshfeld surface analysis of 1,3-bis[(1-octyl-1H-1,2,3-triazol-4-yl)methyl]-1H-benzo[d]imidazol-2(3H)-one By journals.iucr.org Published On :: 2023-11-21 The title molecule, C29H44N8O, adopts a conformation resembling a two-bladed fan with the octyl chains largely in fully extended conformations. In the crystal, C—H⋯O hydrogen bonds form chains of molecules extending along the b-axis direction, which are linked by weak C—H⋯N hydrogen bonds and C—H⋯π interactions to generate a three-dimensional network. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (68.3%), H⋯N/N⋯H (15.7%) and H⋯C/C⋯H (10.4%) interactions. Full Article text
meth Synthesis, crystal structure and Hirshfeld analysis of trans-bis(2-{1-[(6R,S)-3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl]ethylidene}-N-methylhydrazinecarbothioamidato-κ2N2,S)palladium(II) ethanol mon By journals.iucr.org Published On :: 2023-11-16 The reaction between the (R,S)-fixolide 4-methylthiosemicarbazone and PdII chloride yielded the title compound, [Pd(C20H30N3S)2]·C2H6O {common name: trans-bis[(R,S)-fixolide 4-methylthiosemicarbazonato-κ2N2S]palladium(II) ethanol monosolvate}. The asymmetric unit of the title compound consists of one bis-thiosemicarbazonato PdII complex and one ethanol solvent molecule. The thiosemicarbazononato ligands act as metal chelators with a trans configuration in a distorted square-planar geometry. A C—H⋯S intramolecular interaction, with graph-set motif S(6), is observed and the coordination sphere resembles a hydrogen-bonded macrocyclic environment. Additionally, one C—H⋯Pd anagostic interaction can be suggested. Each ligand is disordered over the aliphatic ring, which adopts a half-chair conformation, and two methyl groups [s.o.f. = 0.624 (2):0.376 (2)]. The disorder includes the chiral carbon atoms and, remarkably, one ligand has the (R)-isomer with the highest s.o.f. value atoms, while the other one shows the opposite, the atoms with the highest s.o.f. value are associated with the (S)-isomer. The N—N—C(=S)—N fragments of the ligands are approximately planar, with the maximum deviations from the mean plane through the selected atoms being 0.0567 (1) and −0.0307 (8) Å (r.m.s.d. = 0.0403 and 0.0269 Å) and the dihedral angle with the respective aromatic rings amount to 46.68 (5) and 50.66 (4)°. In the crystal, the complexes are linked via pairs of N—H⋯S interactions, with graph-set motif R22(8), into centrosymmetric dimers. The dimers are further connected by centrosymmetric pairs of ethanol molecules, building mono-periodic hydrogen-bonded ribbons along [011]. The Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are [atoms with highest/lowest s.o.f.s considered separately]: H⋯H (81.6/82.0%), H⋯C/C⋯H (6.5/6.4%), H⋯N/N⋯H (5.2/5.0%) and H⋯S/S⋯H (5.0/4.9%). Full Article text
meth An octanuclear nickel(II) pyrazolate cluster with a cubic Ni8 core and its methyl- and n-octyl-functionalized derivatives By journals.iucr.org Published On :: 2023-11-30 The molecular and crystal structure of a discrete [Ni8(μ4-OH)6(μ-4-Rpz)12]2− (R = H; pz = pyrazolate anion, C3H3N2−) cluster with an unprecedented, perfectly cubic arrangement of its eight Ni centers is reported, along with its lower-symmetry alkyl-functionalized (R = methyl and n-octyl) derivatives. Crystals of the latter two were obtained with two identical counter-ions (Bu4N+), whereas the crystal of the complex with the parent pyrazole ligand has one Me4N+ and one Bu4N+ counter-ion. The methyl derivative incorporates 1,2-dichloroethane solvent molecules in its crystal structure, whereas the other two are solvent-free. The compounds are tetrabutylazanium tetramethylazanium hexa-μ4-hydroxido-dodeca-μ2-pyrazolato-hexahedro-octanickel, (C16H36N)(C4H12N)[Ni8(C3H3N2)12(OH)6] or (Bu4N)(Me4N)[Ni8(μ4-OH)6(μ-pz)12] (1), bis(tetrabutylazanium) hexa-μ4-hydroxido-dodeca-μ2-(4-methylpyrazolato)-hexahedro-octanickel 1,2-dichloroethane 7.196-solvate, (C16H36N)2[Ni8(C4H5N2)12(OH)6]·7.196C2H4Cl2 or (Bu4N)2[Ni8(μ4-OH)6(μ-4-Mepz)12]·7.196(ClCH2CH2Cl) (2), and bis(tetrabutylazanium) hexa-μ4-hydroxido-dodeca-μ2-(4-octylpyrazolato)-hexahedro-octanickel, (C16H36N)2[Ni8(C11H19N2)12(OH)6] or (Bu4N)2[Ni8(μ4-OH)6(μ-4-nOctpz)12] (3). All counter-ions are disordered (with the exception of one Bu4N+ in 3). Some of the octyl chains of 3 (the crystal is twinned by non-merohedry) are also disordered. Various structural features are discussed and contrasted with those of other known [Ni8(μ4-OH)6(μ-4-Rpz)12]2− complexes, including extended three-dimensional metal–organic frameworks. In all three structures, the Ni8 units are lined up in columns. Full Article text
meth Crystal structure and antimycobacterial evaluation of 2-(cyclohexylmethyl)-7-nitro-5-(trifluoromethyl)benzo[d]isothiazol-3(2H)-one By journals.iucr.org Published On :: 2023-11-30 The title compound, C15H15F3N2O3S, crystallizes in the monoclinic system, space group I2/a, with Z = 8. As expected, the nine-membered heterobicyclic system is virtually planar and the cyclohexyl group adopts a chair conformation. There is structural evidence for intramolecular N—S⋯O chalcogen bonding between the benzisothiazolinone S atom and one O atom of the nitro group, approximately aligned along the extension of the covalent N—S bond [N—S⋯O = 162.7 (1)°]. In the crystal, the molecules form centrosymmetric dimers through C—H⋯O weak hydrogen bonding between a C—H group of the electron-deficient benzene ring and the benzothiazolinone carbonyl O atom with an R22(10) motif. In contrast to the previously described N-acyl 7-nitro-5-(trifluoromethyl)benzo[d]isothiazol-3(2H)-ones, the title N-cyclohexylmethyl analogue does not inhibit growth of Mycobacterium aurum and Mycobacterium smegmatis in vitro. Full Article text
meth Synthesis, crystal structure and computational analysis of 2,7-bis(4-chlorophenyl)-3,3-dimethyl-1,4-diazepan-5-one By journals.iucr.org Published On :: 2023-11-30 In the title compound, C19H20Cl2N2O, the seven-membered 1,4-diazepane ring adopts a chair conformation while the 4-chlorophenyl substituents adopt equatorial orientations. The chlorophenyl ring at position 7 is disordered over two positions [site occupancies 0.480 (16):0.520 (16)]. The dihedral angle between the two benzene rings is 63.0 (4)°. The methyl groups at position 3 have an axial and an equatorial orientation. The compound exists as a dimer exhibiting intermolecular N—H⋯O hydrogen bonding with R22(8) graph-set motifs. The crystal structure is further stabilized by C—H⋯O hydrogen bonds together with two C—Cl⋯π (ring) interactions. The geometry was optimized by DFT using the B3LYP/6–31 G(d,p) level basis set. In addition, the HOMO and LUMO energies, chemical reactivity parameters and molecular electrostatic potential were calculated at the same level of theory. Hirshfeld surface analysis indicated that the most important contributions to the crystal packing are from H⋯H (45.6%), Cl⋯H/H⋯Cl (23.8%), H⋯C/C⋯H (12.6%), H⋯O/O⋯H (8.7%) and C⋯Cl/Cl⋯C (7.1%) interactions. Analysis of the interaction energies showed that the dispersion energy is greater than the electrostatic energy. A crystal void volume of 237.16 Å3 is observed. A molecular docking study with the human oestrogen receptor 3ERT protein revealed good docking with a score of −8.9 kcal mol−1. Full Article text
meth Crystal structure and Hirshfeld surface analysis of a new benzimidazole compound, 3-{1-[(2-hydroxyphenyl)methyl]-1H-1,3-benzodiazol-2-yl}phenol By journals.iucr.org Published On :: 2024-01-01 The title compound, C20H16N2O2, is composed of two monosubstituted benzene rings and one benzimidazole unit. The benzimidazole moiety subtends dihedral angles of 46.16 (7) and 77.45 (8)° with the benzene rings, which themselves form a dihedral angle of 54.34 (9)°. The crystal structure features O—H⋯N and O—H⋯O hydrogen-bonding interactions, which together lead to the formation of two-dimensional hydrogen-bonded layers parallel to the (101) plane. In addition, π–π interactions also contribute to the crystal cohesion. Hirshfeld surface analysis indicates that the most significant contacts in the crystal packing are: H⋯H (47.5%), O⋯H/H⋯O (12.4%), N⋯H/H⋯N (6.1%), C⋯H/H⋯C (27.6%) and C⋯C (4.6%). Full Article text
meth Crystal structure of [1,3-bis(2,4,6-trimethylphenyl)imidazolidin-2-ylidene]dichlorido(2-{[(2-methoxyethyl)(methyl)amino]methyl}benzylidene)ruthenium By journals.iucr.org Published On :: 2024-01-01 The title compound, [RuCl2(C33H43N3O)], is an example of a new generation of N,N-dialkyl ruthenium catalysts with an N—Ru coordination bond as part of a six-membered chelate ring. The Ru atom has an Addison τ parameter of 0.244, which indicates a geometry intermediate between square-based pyramidal and trigonal–bipyramidal. The complex shows the usual trans arrangement of the two chlorides, with Ru—Cl bond lengths of 2.3515 (8) and 2.379 (7) Å, and a Cl—Ru—Cl angle of 158.02 (3)°. One of the chlorine atoms and the atoms of the 2-methoxy-N-methyl-N-[(2-methylphenyl)methyl]ethane-1-amine group of the title complex display disorder over two positions in a 0.889 (2): 0.111 (2) ratio. Full Article text
meth The synthesis and structural properties of a chloridobis{N-[(4-methoxyphenyl)imino]pyrrolidine-1-carboxamide}zinc(II) (acetonitrile)trichloridozincate coordination complex By journals.iucr.org Published On :: 2024-01-01 The title complex, [ZnCl(C12H15N3O2)2][ZnCl3(CH3CN)], was synthesized and its structure was fully characterized through single-crystal X-ray diffraction analysis. The complex crystallizes in the orthorhombic system, space group Pbca (61), with a central zinc atom coordinating one chlorine atom and two pyrrolidinyl-4-methoxyphenyl azoformamide ligands in a bidentate manner, utilizing both the nitrogen and oxygen atoms in a 1,3-heterodiene (N=N—C=O) motif for coordinative bonding, yielding an overall positively (+1) charged complex. The complex is accompanied by a [(CH3CN)ZnCl3]− counter-ion. The crystal data show that the harder oxygen atoms in the heterodiene zinc chelate form bonding interactions with distances of 2.002 (3) and 2.012 (3) Å, while nitrogen atoms are coordinated by the central zinc cation with bond lengths of 2.207 (3) and 2.211 (3) Å. To gain further insight into the intermolecular interactions within the crystal, Hirshfeld surface analysis was performed, along with the calculation of two-dimensional fingerprint plots. This analysis revealed that H⋯H (39.9%), Cl⋯H/H⋯Cl (28.2%) and C⋯H/H⋯C (7.2%) interactions are dominant. This unique crystal structure sheds light on arrangement and bonding interactions with azoformamide ligands, and their unique qualities over similar semicarbazone and azothioformamide structures. Full Article text
meth Crystal structure of 2-[(5-amino-1-tosyl-1H-pyrazol-3-yl)oxy]-1-(4-methoxyphenyl)ethan-1-one 1,4-dioxane monosolvate By journals.iucr.org Published On :: 2024-01-01 In the structure of the title compound, C19H19N3O5S·C4H8O2, the two independent dioxane molecules each display inversion symmetry. The pyrazole ring is approximately parallel to the aromatic ring of the oxy-ethanone group and approximately perpendicular to the tolyl ring of the sulfonyl substituent. An extensive system of classical and `weak' hydrogen bonds connects the residues to form a layer structure parallel to (201), within which dimeric subunits are conspicuous; neighbouring layers are connected by classical hydrogen bonds to dioxanes and by `weak' hydrogen bonds from Htolyl donors. Full Article text
meth Crystal structure and Hirshfeld-surface analysis of diaquabis(5-methyl-1H-1,2,4-triazole-3-carboxylato)copper(II) By journals.iucr.org Published On :: 2024-01-01 The title compound, [Cu(HL)2(H2O)2] or [Cu(C4H4N3O2)2(H2O)2], is a mononuclear octahedral CuII complex based on 5-methyl-1H-1,2,4-triazole-3-carboxylic acid (H2L). [Cu(HL)2(H2O)2] was synthesized by reaction of H2L with copper(II) nitrate hexahydrate (2:1 stoichiometric ratio) in water under ambient conditions to produce clear light-blue crystals. The central Cu atom exhibits an N2O4 coordination environment in an elongated octahedral geometry provided by two bidentate HL− anions in the equatorial plane and two water molecules in the axial positions. Hirshfeld surface analysis revealed that the most important contributions to the surface contacts are from H⋯O/O⋯H (33.1%), H⋯H (29.5%) and H⋯N/N⋯H (19.3%) interactions. Full Article text
meth Synthesis, crystal structure and properties of poly[(μ-2-methylpyridine N-oxide-κ2O:O)bis(μ-thiocyanato-κ2N:S)cobalt(II)] By journals.iucr.org Published On :: 2024-01-01 The title compound, [Co(NCS)2(C6H7NO)]n or Co(NCS)2(2-methylpyridine N-oxide), was prepared by the reaction of Co(NCS)2 and 2-methylpyridine N-oxide in methanol. All crystals obtained by this procedure show reticular pseudo-merohedric twinning, but after recrystallization, one crystal was found that had a minor component with only a very few overlapping reflections. The asymmetric unit consists of one CoII cation, two thiocyanate anions and one 2-methylpyridine N-oxide coligand in general positions. The CoII cations are octahedrally coordinated by two O-bonding 2-methylpyridine N-oxide ligands, as well as two S- and two N-bonding thiocyanate anions, and are connected via μ-1,3(N,S)-bridging thiocyanate anions into chains that are linked by μ-1,1(O,O) bridging coligands into layers. No pronounced directional intermolecular interactions are observed between the layers. The 2-methylpyridine coligand is disordered over two orientations and was refined using a split model with restraints. Powder X-ray diffraction (PXRD) indicates that a pure sample was obtained and IR spectroscopy confirms that bridging thiocyanate anions are present. Thermogravimetry and differential thermoanalysis (TG-DTA) shows one poorly resolved mass loss in the TG curve that is accompanied by an exothermic and an endothermic signal in the DTA curve, which indicate the decomposition of the 2-methylpyridine N-oxide coligands. Full Article text
meth Crystal structure and Hirshfeld surface analysis of dimethyl 4-hydroxy-5,4'-dimethyl-2'-(toluene-4-sulfonylamino)biphenyl-2,3-dicarboxylate By journals.iucr.org Published On :: 2024-01-01 In the title compound, C25H25NO7S, the molecular conformation is stabilized by intramolecular O—H⋯O and N—H⋯O hydrogen bonds, which form S(6) and S(8) ring motifs, respectively. The molecules are bent at the S atom with a C—SO2—NH—C torsion angle of −70.86 (11)°. In the crystal, molecules are linked by C—H⋯O and N—H⋯O hydrogen bonds, forming molecular layers parallel to the (100) plane. C—H⋯π interactions are observed between these layers. Full Article text
meth Crystal structure and Hirshfeld surface analysis of 3-benzyl-2-[bis(1H-pyrrol-2-yl)methyl]thiophene By journals.iucr.org Published On :: 2024-01-01 In the title compound, C20H18N2S, the asymmetric unit comprises two similar molecules (A and B). In molecule A, the central thiophene ring makes dihedral angles of 89.96 (12) and 57.39 (13)° with the 1H-pyrrole rings, which are bent at 83.22 (14)° relative to each other, and makes an angle of 85.98 (11)° with the phenyl ring. In molecule B, the corresponding dihedral angles are 89.49 (13), 54.64 (12)°, 83.62 (14)° and 85.67 (11)°, respectively. In the crystal, molecular pairs are bonded to each other by N—H⋯N interactions. N—H⋯π and C—H⋯π interactions further connect the molecules, forming a three-dimensional network. A Hirshfeld surface analysis indicates that H⋯H (57.1% for molecule A; 57.3% for molecule B), C⋯H/H⋯C (30.7% for molecules A and B) and S⋯H/H⋯S (6.2% for molecule A; 6.4% for molecule B) interactions are the most important contributors to the crystal packing. Full Article text
meth Temperature-dependent solid-state phase transition with twinning in the crystal structure of 4-methoxyanilinium chloride By journals.iucr.org Published On :: 2024-01-01 At room temperature, the title salt, C7H10NO+·Cl−, is orthorhombic, space group Pbca with Z' = 1, as previously reported [Zhao (2009). Acta Cryst. E65, o2378]. Between 250 and 200 K, there is a solid-state phase transition to a twinned monoclinic P21/c structure with Z' = 2. We report the high temperature structure at 250 K and the low-temperature structure at 100 K. In the low-temperature structure, the –NH3 hydrogen atoms are ordered and this group has a different orientation in each independent molecule, in keeping with optimizing N—H⋯Cl hydrogen bonding, some of which are bifurcated: these hydrogen bonds have N⋯Cl distances in the range 3.1201 (8)–3.4047 (8) Å. In the single cation of the high-temperature structure, the NH hydrogen atoms are disordered into the average of the two low-temperature positions and the N⋯Cl hydrogen bond distances are in the range 3.1570 (15)–3.3323 (18) Å. At both temperatures, the methoxy group is nearly coplanar with the rest of the molecule, with the C—C—O—C torsion angles being −7.0 (2)° at 250 K and −6.94 (12) and −9.35 (12)° at 100 K. In the extended orthorhombic structure, (001) hydrogen-bonded sheets occur; in the monoclinic structure, the sheets propagate in the (010) plane. Full Article text
meth An unexpected tautomer: synthesis and crystal structure of N-[6-amino-4-(methylsulfanyl)-1,2-dihydro-1,3,5-triazin-2-ylidene]benzenesulfonamide By journals.iucr.org Published On :: 2024-01-09 The title compound, C10H11N5O2S2, consists of an unexpected tautomer with a protonated nitrogen atom in the triazine ring and a formal exocyclic double bond C=N to the sulfonamide moiety. The ring angles at the unsubstituted nitrogen atoms are narrow, at 115.57 (12) and 115.19 (12)°, respectively, whereas the angle at the carbon atom between these N atoms is very wide, 127.97 (13)°. The interplanar angle between the two rings is 79.56 (5)°. The molecules are linked by three classical hydrogen bonds, forming a ribbon structure. There are also unusual linkages involving three short contacts (< 3 Å) from a sulfonamide oxygen atom to the C—NH—C part of a triazine ring. Full Article text